| Home > Publications database > Giant orbital Zeeman effects in a magnetic topological van der Waals interphase > print |
| 001 | 1048374 | ||
| 005 | 20251125153920.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2510.26662 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04589 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04589 |
| 100 | 1 | _ | |a Wichmann, Tobias |0 P:(DE-Juel1)187583 |b 0 |e First author |u fzj |
| 245 | _ | _ | |a Giant orbital Zeeman effects in a magnetic topological van der Waals interphase |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1764081401_7063 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a Bitte Postprint ergänzen |
| 520 | _ | _ | |a Van der Waals (vdW) heterostructures allow the engineering of electronic and magnetic properties by the stacking different two-dimensional vdW materials. For example, orbital hybridisation and charge transfer at a vdW interface may result in electric fields across the interface that give rise to Rashba spin-orbit coupling. In magnetic vdW heterostructures, this in turn can drive the Dzyaloshinskii-Moriya interaction which leads to a canting of local magnetic moments at the vdW interface and may thus stabilise novel 2D magnetic phases. While such emergent magnetic 'interphases' offer a promising platform for spin-based electronics, direct spectroscopic evidence for them is still lacking. Here, we report Zeeman effects with Landé $g$-factors up to $\approx230$ at the interface of graphene and the vdW ferromagnet Fe$_3$GeTe$_2$. They arise from a magnetic interphase in which local-moment canting and itinerant orbital moments generated by the non-trivial band topology of Fe$_3$GeTe$_2$ conspire to cause a giant asymmetric level splitting when a magnetic field is applied. Exploiting the inelastic phonon gap of graphene, we can directly access the buried vdW interface to the Fe$_3$GeTe$_2$ by scanning tunnelling spectroscopy. Systematically analyzing the Faraday-like screening of the tip electric field by the graphene, we demonstrate the tunability of the constitutional interface dipole, as well as the Zeeman effect, by tip gating. Our findings are supported by density functional theory and electrostatic modelling. |
| 536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie (443416235) |0 G:(GEPRIS)443416235 |c 443416235 |x 1 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)422707584 - SPP 2244: 2D Materialien – die Physik von van der Waals [Hetero-]Strukturen (2DMP) (422707584) |0 G:(GEPRIS)422707584 |c 422707584 |x 2 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)422213477 - TRR 288: Elastisches Tuning und elastische Reaktion elektronischer Quantenphasen der Materie (ELASTO-Q-MAT) (422213477) |0 G:(GEPRIS)422213477 |c 422213477 |x 3 |
| 536 | _ | _ | |a EXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769) |0 G:(BMBF)390534769 |c 390534769 |x 4 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall) |2 Other |
| 650 | _ | 7 | |a FOS: Physical sciences |2 Other |
| 700 | 1 | _ | |a Sastges, Mirco |0 P:(DE-Juel1)206983 |b 1 |u fzj |
| 700 | 1 | _ | |a Jin, Keda |0 P:(DE-Juel1)188290 |b 2 |u fzj |
| 700 | 1 | _ | |a Martinez-Castro, Jose |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Saunderson, Tom G. |0 P:(DE-Juel1)186680 |b 4 |u fzj |
| 700 | 1 | _ | |a Go, Dongwook |0 P:(DE-Juel1)178993 |b 5 |u fzj |
| 700 | 1 | _ | |a Boban, Honey |0 P:(DE-Juel1)187220 |b 6 |u fzj |
| 700 | 1 | _ | |a Lounis, Samir |0 P:(DE-Juel1)130805 |b 7 |u fzj |
| 700 | 1 | _ | |a Plucinski, Lukasz |0 P:(DE-Juel1)130895 |b 8 |u fzj |
| 700 | 1 | _ | |a Ternes, Markus |0 P:(DE-Juel1)174438 |b 9 |u fzj |
| 700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 10 |u fzj |
| 700 | 1 | _ | |a Tautz, F. Stefan |0 P:(DE-Juel1)128791 |b 11 |u fzj |
| 700 | 1 | _ | |a Lüpke, Felix |0 P:(DE-Juel1)162163 |b 12 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.48550/ARXIV.2510.26662 |
| 856 | 4 | _ | |u https://arxiv.org/abs/2510.26662 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1048374/files/2510.26662v1.pdf |y OpenAccess |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187583 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)206983 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188290 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)186680 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178993 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)187220 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130805 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130895 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)174438 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130848 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128791 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)162163 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 2 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|