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3Institut für Experimentalphysik IV A, RWTH Aachen University, 52074 Aachen, Germany
4Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany

5Peter Grünberg Institute (PGI-1), Forschungszentrum Jülich, 52425 Jülich, Germany
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Van der Waals (vdW) heterostructures allow the engineering of electronic and magnetic properties by the
stacking different two-dimensional vdW materials. For example, orbital hybridisation and charge transfer at
a vdW interface may result in electric fields across the interface that give rise to Rashba spin-orbit coupling.
In magnetic vdW heterostructures, this in turn can drive the Dzyaloshinskii–Moriya interaction which leads to
a canting of local magnetic moments at the vdW interface and may thus stabilise novel 2D magnetic phases.
While such emergent magnetic ‘interphases’ offer a promising platform for spin-based electronics, direct spec-
troscopic evidence for them is still lacking. Here, we report Zeeman effects with Landé g-factors up to ≈ 230 at
the interface of graphene and the vdW ferromagnet Fe3GeTe2. They arise from a magnetic interphase in which
local-moment canting and itinerant orbital moments generated by the non-trivial band topology of Fe3GeTe2
conspire to cause a giant asymmetric level splitting when a magnetic field is applied. Exploiting the inelas-
tic phonon gap of graphene, we can directly access the buried vdW interface to the Fe3GeTe2 by scanning
tunnelling spectroscopy. Systematically analyzing the Faraday-like screening of the tip electric field by the
graphene, we demonstrate the tunability of the constitutional interface dipole, as well as the Zeeman effect, by
tip gating. Our findings are supported by density functional theory and electrostatic modelling.

The interplay of topological band structures and magnetism
provides a rich playground for the realization of exotic ma-
terials [1–4]. This combination of properties may either be
achieved by doping magnetism into topological matter, or by
employing materials in which intrinsic magnetic order coex-
ists with non-trivial band topologies. An example for the latter
case is Fe3GeTe2 (FGT), a metallic vdW ferromagnet with a
Curie temperature of Tc ≈ 220K in the bulk [5, 6]. While
FGT’s magnetic properties at temperatures T ≳ Tc originate
from localized Fe moments, for T ≪ Tc itinerant Stoner-like
magnetism, carried by coherent delocalized Fe states, domi-
nates [7–9]. In addition to its ferromagnetic properties, the
band structure of FGT exhibits a topological nodal line gap
that originates from a crossing of hybridized Fe-I and Fe-II
spin-majority bands at its k = K/K’ points (Ref. 10 and
Fig. 1a-c). The band hybridization near this topological gap
results in large Berry curvatures Ω(k) [10] and in turn orbital
magnetic moments m(k) ∼ −Ω(k) which dominate the spin
moments at the edges of these bands (Fig. 1d). The interplay
of strongly correlated itinerant magnetism and Fe local mo-
ments results in a large magnetic anisotropy energy [11–13]
that allows to control the magnetic state of FGT not only by

external magnetic fields but also by charge-addressing stim-
uli, such as electric fields, currents and doping [11, 14–16].
This opens up the possibility to engineer magnetic properties
at interfaces via the electric fields that arise when different
materials are brought into contact, or even by external gates.

Here, we report a giant asymmetric Zeeman effect at the in-
terface between monolayer graphene and FGT, which is more-
over tunable by varying the interface dipole via electrostatic
gating. A detailed analysis combining scanning tunnelling
microscopy/spectroscopy (STM/STS) and theoretical calcu-
lations reveals that this unusual Zeeman effect is the result
of two coupled orbital Zeeman effects: On the one hand, the
band hybridization near the topological band gap results in lo-
calized out-of-plane band orbital moments (BOM) mBO

z near
the K/K’ points. On the other hand, a canting of Fe local mo-
ments that has previously been reported in transport studies
of graphene/FGT interfaces [13, 21] gives rise to chiral or-
bital moments (COM) mCO

z , which result from the winding of
the itinerant charge carrier wave functions as they traverse the
non-collinear texture of localized moments at the vdW inter-
face and which can directly couple to external magnetic fields
with large g-factors [22–27]. This complex compound Zee-
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FIG. 1. Orbital moments in Fe3GeTe2 and scanning tunnelling microscopy experiment of the graphene/Fe3GeTe2 heterostructure.
(a) Top view of the monolayer Fe3GeTe2 unit cell, highlighting the two inequivalent Fe sites. (b) First Brillouin zone of Fe3GeTe2 with
indicated symmetry points and lines. (c) Spin-resolved band structure of bulk Fe3GeTe2, calculated by density functional theory including
spin-orbit coupling, with color-coded majority (red) and minority (blue) bands. Near Γ only dispersive bands cross the Fermi energy EF, while
at K/K’ several band extrema are located close to EF. (d) Zoom into the shaded region in panel c, calculated without (left) and with (right)
spin-orbit coupling. The latter calculation shows out-of-plane orbital magnetic moments mBO

z near the K/K’ points. (e) Optical micrograph
of a graphene/Fe3GeTe2 heterostructure. Outlines of the respective flakes are indicated. (f) Schematic side view of the heterostructure and the
scanning tunnelling microscopy setup. There are two parallel tunnelling channels, from the tip to graphene (black arrow) and to Fe3GeTe2
(orange arrow). The tip-sample distance h and graphene-Fe3GeTe2 distance d are indicated. Vs is the sample bias and It the tunnelling current.
At the graphene/Fe3GeTe2 vdW interface, a charge transfer dipole gives rise to an internal electric field ⃗EFGT, which results in a canting of
the Fe spins at the interface (indicated by the red arrows at the Fe-II sites), due to the Rashba effect and Dzyaloshinskii–Moriya interaction
(see main text for details). (g) Schematic of non-collinear spin arrangement in the Fe-I sublattice, where a canting of localized spins S⃗i results
in a conical spin structure. The ensuing scalar spin chirality gives rise to a chiral orbital moment mCO

z ∼ S⃗1 · (S⃗2 × S⃗3) [17–20].

man effect signals the emergence of subtle correlations be-
tween magnetic and topological electronic properties, which
may open up the opportunity to engineer the response of the
heterostructure to magnetic and electric fields, e.g., for chiral
orbitronics applications.

RESULTS

The graphene/FGT heterostructure

An optical micrograph of a graphene/FGT heterostructure,
a 28 nm thick FGT flake encapsulated between monolayer
graphene on the top and an additional graphite flake under-
neath, is shown in Fig. 1e. For details of the sample fabri-
cation see the Methods section. We note that the complete
encapsulation of FGT by a larger graphene flake prevents
the former’s degradation. At this thickness and the experi-
mental temperature of ∼ 6K, an isolated FGT flake would
be in a single-domain ferromagnetic state [14, 28], however,
the symmetry breaking and electric field at the interface to
the graphene give rise to a Dzyaloshinskii–Moriya interac-
tion, which cants the magnetic moments at the interface away
from surface normal [13], as indicated schematically in the

sketch of the heterostructure and the tunnelling experiment in
Fig. 1f. Constant-current STM topography images of the
graphene/FGT heterostructure (Fig. 2a) show a superposition
of the atomic lattice of graphene and a long-range modulation
that is a characteristic feature of FGT: It stems from random
disorder in the partially occupied Fe-II sites (see Fig. 2a in
Ref. 12). In the corresponding Fourier transform (Fig. 2b), we
observe sharp spots due to the graphene (agr = 246 pm) and
the FGT lattices (aFGT = 399 pm), as well as their Moiré pat-
tern (a = 524 pm), indicating an atomically clean vdW inter-
face. The relative orientation of both lattices is approximately
17◦ and can be visualized by respective Fourier filtering of the
topography images (see Extended Data Fig. S1).

The inelastic tunnelling gap of graphene

Tunnelling spectra recorded on the heterostructure reveals
the characteristic V-shaped density of states of the graphene
Dirac cone (Fig. 2c), as well as an inelastic tunnelling
gap at the Fermi energy EF (eVs = 0). This gap results
from a suppression of the tunnelling probability due to a
momentum mismatch between the tunnelling tip and the
finite parallel momenta of the graphene Dirac states at the
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FIG. 2. Tunnelling through the inelastic gap of graphene. (a) STM topography of the graphene/Fe3GeTe2 heterostructure surface
(Vs = −50mV, It = 70pA), simultaneously revealing atomic resolution of the graphene lattice and a longer-range modulation stemming
from the partial occupancy of the Fe-II sites in Fe3GeTe2. Inset: Zoom into the graphene lattice (scan size 2.5 nm). (b) Fourier transform
of the topography in panel a. The hexagonal patterns of graphene (black circles), Fe3GeTe2 (orange circles), and their moiré pattern (red
circles) are clearly visible. (c) Spatially averaged tunnelling spectrum of the heterostructure (blue solid line, Vs = 500mV, It = 200 pA).
Below the inelastic threshold, i.e., for |eVs| < ℏω where ω is a typical phonon frequency of graphene, an inelastic tunnelling gap is observed
(vertical dotted lines), while outside this range the linear dispersion of the graphene Dirac cone is visible. Within the inelastic gap, a significant
conductivity is measured, in contrast to the findings for graphene/hBN heterostructures (grey dashed line, data from Ref. [29]). The graphene
is close to charge neutrality in both cases. For better comparison, both data sets are normalized at eVs = −500meV. (d) Schematic diagram
of the tunnelling processes. With its gapless spectrum, Fe3GeTe2 dominates the tunnelling current within the inelastic gap of the graphene.

K/K’ points [29, 30]. However, above a threshold energy, i.e.,
for |eVs| ≥ ℏω = (65 ± 2)meV (Extended Data Fig. S2),
phonon-assisted tunnelling channels become available, which
significantly enhance the tunnelling probability. Our observed
onset energy of the inelastic tunnelling channels corresponds
to the lowest-energy graphene phonon mode [31], in good
agreement with the phonon thresholds reported for graphene
on different substrates [29, 30, 32]. This agreement indicates
that the graphene is neither significantly strained nor strongly
doped [30]. However, in contrast to graphene on insulating
substrates, where the dI/dV signal almost vanishes below
the phonon threshold [29–31, 33], we observe a significant
tunnelling conductance for |eVs| < ℏω. The reason is that,
while tunnelling to the graphene is suppressed in this energy
range, charge carriers can still tunnel between the tip and the
metallic FGT underneath the graphene, which allows us to
directly access the electronic properties at the graphene/FGT
interface (Fig. 2d).

Giant asymmetric Zeeman effect

A careful analysis of the tunnelling spectrum inside the
inelastic phonon gap of graphene reveals two peaks, which
strengthen on application of a magnetic field (Fig. 3a). At
the same time, the linear Dirac spectrum of graphene out-
side the inelastic tunnelling gap remains mostly unaffected.
Strikingly, the two peaks within the inelastic gap show signif-
icant energy shifts as function of the magnetic field. Linear
fits to the data result in g1µB = (1.8 ± 0.3)meV/T and
g2µB = (13.3 ± 0.4)meV/T, corresponding to Landé g-
factors g = EZeeman/(µBB) of g1 ≈ 30 and g2 ≈ 230,
respectively (Fig. 3b and Extended Data Fig. S3). Further-
more, a spatial analysis of the peaks shows that they are con-
sistent across the heterostructure surface and not localized at
defects (Extended Data Fig. S4), pointing to a band-structure
origin of of these features. Considering the FGT band struc-
ture, the observed peaks can be intuitively understood to stem
from the flat band edges near the topological gap at the K/K’
points, where the orbital magnetic moments mBO

z , concen-
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FIG. 3. Giant orbital Zeeman effects at the graphene/Fe3GeTe2 interface. (a) Tunnelling spectra (differential conductance in arbitrary
units) for different out-of-plane B fields (normal to surface). For clarity, curves are offset by 0.2 arb. units each. In the inelastic gap of graphene
(shaded region), two peaks emerge with increasing B field, as indicated by arrows and symbols. Tip stabilization parameters: Vs = 300mV
and It = 1nA. (b) Zoom into the inelastic-gap region, revealing both a continuous increase of the two peaks’ intensities and shifts to higher
energy as a function of applied B field. Curves are offset by 0.2 arb. units each. Dashed arrows are guides to the eye. Tip stabilization
parameters: Vs = 50mV and It = 0.5 nA. (c) Symbols: Peak positions (horizontal axis) as function of applied B field (vertical axis). The
solid lines are linear fits, yielding effective Landé g-factors g1 ≈ 30 (circles) and g2 ≈ 230 (squares). Inset: Schematic decomposition of
the observed peak shifts into a splitting and a shifting contribution. The former arises from the band orbital moments (BOM) induced by the
topological nodal line gap, while the latter has its origin in the chiral orbital moments (COM) induced by spin canting. For more details, see
main text.

trated at the band extrema, lead to large g-factors (Fig. 1 and
Refs. 26 and 34). This interpretation also explains the increas-
ing peak intensity and sharpness with increasing magnetic
field in Fig. 3b, analyzed in detail in Extended Data Fig. S3:
DFT calculations show opposite orbital moments at the two
band edges (Fig. 1d), such that the topological gap increases
as function of the applied magnetic field. Concurrently, the
band edges at K/K’ flatten out further, again because the or-
bital magnetic moment is concentrated at the band extrema
(Fig. 1c, d and Refs. [26, 34]). Extracting the splitting of
the two peaks at B = 0 results in 2∆0 = (10.8 ± 0.7)meV,
which agrees reasonably well with our DFT calculated spin
orbit gaps at K/K’ of ∼ 52meV and Refs. [10, 11], consid-
ering that the gap size decreases when inversion symmetry is
broken (Extended Data Fig. S5). Note that the smaller the gap
at B = 0, the larger the orbital moments mBO

z ∼ ∆−1 at K/K’

(see Methods section and Ref. 35).

While the model of opposite orbital moments mBO
z , con-

centrated at the upper and lower band edges, respectively,
qualitatively explains both the observation of large g factors
and of tunneling conductance peaks with increasing intensity
and sharpness as the magnetic field is turned up, it disagrees
with our experimental observations in that it would predict
a B-field-induced shift of these conductance peaks in oppo-
site directions, whereas we find that the peaks move in the
same direction (to higher energy), albeit with different slopes
(Fig. 3c). We therefore conclude that, in addition to the band
orbital effect, there must be a second Zeeman effect at play
which shifts both conductance peaks to higher energies, as
schematically shown in the inset in Fig. 3c. Considering the
band structure of FGT, such an effect is indeed expected, be-
cause the bands forming the topological gap exhibit the same
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FIG. 4. Tuning the orbital Zeeman effects at the graphene/Fe3GeTe2 interface by electric fields. (a) Differential conductance spectra
(in arbitrary units) for different tunnelling setpoints. The inelastic gap is cut out, and the curves for different setpoints are offset vertically for
clarity. The Dirac point energy ED (black dots) is extracted from the crossing points of line fits to the linear graphene spectrum above/below
the vertical dashed lines, revealing a shift to higher values as the setpoint is increased. The dashed arrow is a guide to the eye. Remnant features
due to Fe3GeTe2 near the edge of the inelastic gap do not shift with setpoint, as indicated by red dotted lines. The tip stabilization voltage
was Vs = 150mV for all setpoints. (b) Dirac point energies ED (filled circles, extracted from panel (a)) plotted as function of the change in
tip-sample distance δh (see upper inset). Error bars are propagated from the fits of the Dirac spectrum in panel (a). The red curve is a fit to
the data points, using the capacitor model in the lower inset (Eqs. 20 and 21 in the Methods section). (c) Differential conductance spectra (in
arbitrary units) of the Fe3GeTe2-derived peaks in the inelastic gap of graphene for different tunnelling setpoints (curves are vertically offset
for clarity. All spectra are recorded at a fixed external field of B = 2T. (d) Energy positions of the peaks in panel c as a function of setpoint
current (Extended Data Fig. S8).

spin polarization (Fig. 1c, Extended Data Fig. S6). However,
including the corresponding spin Zeeman effect, the com-
bined g-factor of BOM and the band’s spins at K/K’ is only
gBO
z = |2 + ⟨L⟩/⟨S⟩| ≲ 10 (Ref. 36 and Extended Data

Fig. S7), where ⟨L⟩ ∼ 3 ℏ and ⟨S⟩ ∼ 0.5 ℏ are taken from our
DFT calculations, corresponding to shifts of ∼ 0.6meV/T.
Thus, the expected Zeeman effect purely based on FGT’s spin
and orbital band magnetism is much too small to explain the
experimental observations in Fig. 3.

At this point, we recall that the local Fe moments at the
graphene/FGT interface are canted (Fig. 1f), which is not in-
cluded in the DFT calculations. The reason for the cant-
ing is the electric field perpendicular to the interface be-
tween the two vdW layers, which gives rise to a Rashba
spin-orbit coupling and thus Dzyaloshinskii–Moriya interac-
tion (DMI), which acts on the localized moments of primar-

ily Fe-I 3dx2−y2/xy orbitals [9, 13, 21]. The Rashba coef-
ficient at the graphene/FGT interface was theoretically esti-
mated as αR ≈ 246meVÅ, giving rise to a DMI strength of
|D⃗| = 0.089meV per unit cell [13], which we expect to be a
lower bound for our experiments, because of an enhancement
of the interface dipole by the tip compared to experiments dis-
cussed in the literature — see the next section. While at in-
termediate temperatures 10K < T < 220K, this effect leads
to skyrmion formation [13], at our lower experimental tem-
peratures we most likely stabilize a conical phase [37, 38], as
schematically shown in Fig. 1f, g.

The un-canting of local moments by the application of an
out-of-plane magnetic field is expected to ultimately result in
the moments being aligned out-of-plane. However, to fully
align the moments fields much larger than 0.089meV/µB ≳
1.5T (Ref. [13]) must be applied, which are not accessible in
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our experiment. Also, it cannot explain the observed large
g-factor of the Zeeman effect in Fig. 3c, because when the
moments are canted away from the surface normal and thus
are no longer aligned with the B field, their Zeeman effect
is weakened instead of enhanced. Instead, we propose that
the winding of the charge carrier wave functions of the spin-
polarized bands that form the topological gap, as they traverse
the non-collinear magnetic texture at the vdW interface, gives
rise to chiral orbital moments (COM), which are described in
detail in the literature [17–20, 23, 24, 27, 39]. In our system,
since the bands in question have identical spin polarization,
we expect any local-moment canting-induced COM to affect
both bands in the same way, i.e., result in a Zeeman effect
which shifts both bands to higher energy as we increase the
magnetic field (inset Fig. 3c). Crucially, the canting, and con-
sequently the COMs, are the result of the Rashba effect and
the resulting DMI at the graphene/FGT interface. Thus, the
resulting giant Zeeman effect should be tunable by variation
of the electric field across the interface, which we demonstrate
in the following.

Electric field tunability of the Zeeman effect

From simple electrostatic considerations, we estimate the
electric field at the graphene/FGT interface as

EFGT ≡ E⃗FGT · ẑ = (Φgr − ΦFGT)/ed ≈ 1.41GV/m, (1)

with the interlayer distance between graphene and FGT d =
3.34 Å (Fig. 1f), the elementary charge e, the work function of
FGT ΦFGT ≈ 4.08 eV [40], and Φgr = Φ0

gr ≈ 4.55 eV [41]
the work function of charge-neutral graphene, respectively.
However, when the heterostructure is initially assembled, the
work function difference between graphene and FGT gives
rise to a charge transfer (electrons flow from the low-work
function FGT to the high-work function graphene), resulting
in an intrinsically interface-driven n doping of the graphene
and a corresponding shift of the Dirac point energy E0

D rela-
tive to the Fermi level, and thus the graphene work function
becomes Φgr = Φ0

gr + E0
D, where E0

D is a priori unknown.
In addition to the interface-driven doping, the pres-

ence of the STM tip with its own distinct work function
(Φtip ≈ 4.85 eV, see Methods section) should affect ED due
to tip gating (clearly, also the applied bias voltage will con-
tribute to a polarity-dependent gating; however, for bias volt-
ages within the inelastic gap of graphene this effect is so
small that it can be neglected). In Fig. 4a, tunnelling spec-
tra recorded at different setpoints and therefore different tip
heights h are plotted. Fitting the linear graphene spectrum
outside of the inelastic gap to extract the setpoint-dependent
Dirac point energy ED from the crossing points of the linear
fits (Fig. 4a and Extended Data Table I), we observe a shift
of ED to more positive values as h decreases. This corre-
sponds to the graphene becoming less electron-doped as the
tip is brought closer to the sample surface. In contrast, addi-
tional FGT features that are located outside the inelastic gap

of graphene show no sign of shifting as function of the set-
point current, demonstrating that mainly the graphene doping
level is changed by the tip gating (Fig. 4a).

In order to determine the intrinsic doping level of graphene
at the interface to FGT, we model the experimental tip-sample
geometry by a capacitor circuit (lower inset in Fig. 4b and
Methods section), which we fit to the experiment. Extrapo-
lating this model to δh → −∞, i.e., to the absence of the
tunnelling tip, we find a graphene doping level of E0

D =
−(579 ± 171)meV (Fig. 4b). The corresponding intrin-
sic electric field at the graphene/FGT interface is EFGT =
(−0.3 ± 0.5)GV/m, i.e., lower and of opposite sign com-
pared to charge-neutral graphene and FGT. We note that a
non-zero field is the prerequisite for the anomalous Hall ef-
fects and giant magnetoresistances at the graphene/FGT inter-
face reported in the literature [13, 42]. In comparison, in the
presence of the STM tip the interfacial electric field is signif-
icantly larger, in the range EFGT = 1.29 to 1.32GV/m for
tunnelling setpoints 0.1 − 1 nA (see Extended Data Table 1)
and thus also the DMI is expected to be larger.

To demonstrate that the variation of the interfacial electric
field leads to a variation of the Rashba splitting and DMI, we
study the peak positions inside the inelastic gap as function
of tunnelling setpoint while keeping B = 2T fixed (Fig. 4c).
Doing so, we find an increase in the intensity of both peaks as
we bring the tip closer to the sample surface. Such behaviour
is a known effect for tunnelling into sharp energy levels orig-
inating from states with finite in-plane momenta, such as flat
bands and localized states at K/K’ [11, 43–45], which again
is consistent with our DFT calculations. More interestingly
though, extracting the precise peak positions as function of
the tunnelling setpoint once more reveals systematic energy
shifts (Fig. 4d and Extended Data Fig. S8). Linear fits to the
data (solid lines in Fig. 4d) are described by eVs = (11.8 ±
2.8)meV (GV/m)−1EFGT − (28.1 ± 2.8)meV and eVs =
(26.4 ± 8.1)meV (GV/m)−1EFGT − (13.5 ± 10.6)meV,
respectively. Remarkably, the peak positions show a qualita-
tively similar asymmetric splitting as function of E field at
fixed B field, as they do for the increasing B field at fixed E
field (Extended Data Fig. S9).

DISCUSSION

Our observed DMI-induced Zeeman effect indicates a
strong inversion symmetry breaking at the graphene/FGT in-
terface, evidenced by measurements on bulk FGT crystals,
where no significant Zeeman effect is observed when the
inversion symmetry is only weakly broken (Extended Data
Fig. S10 and Ref. [11]). In general agreement with this inter-
pretation, such symmetry breaking has recently been proposed
as the origin of the anomalous Hall effect in graphene/FGT
[46], which can be understood as the manifestation of the Zee-
man effect in transport. Our observations imply that the band-
structure-induced and chirality-induced moments are directly
coupled beyond a mere superposition, which may explain the
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enhancement of the BOM by more than one order of magni-
tude compared to the theoretical moments alone. Currently,
the exact interaction mechanism between the chiral and band
orbital moments is yet to be understood, but considering that
both effects are closely related to the Berry curvature, it does
not come as a surprise that they are coupled. Estimating the
g-factors of the two contributions according to the inset in
Fig. 3c results in gBO

z ≈ 100 and gCO
z ≈ 130, respectively,

signifying their similar strength (see Methods section). In this
context, we note that the spin Berry curvature vanishes for the
band structures shown in Fig. 1c,d. However, spin canting
likely leads to a finite spin Berry curvature, with similar local-
ization at the K/K’ points as the Berry curvature [34], which
would couple the spin canting directly to the topological gap.
Similar effects were recently reported in magnetic Kagome
compounds, where the orbital moments of gapped Dirac cones
interact with local moments [23, 26, 34, 47–50]. In the ab-
sence of spin canting, these bulk compounds can show spin-
orbit-driven orbital Zeeman effects [34, 48], which are ini-
tially approximately a linear function of the applied B field
but saturate as the Berry curvatures decrease with increasing
gap sizes. In the presence of spin canting, however, additional
orbital moments with g ≫ 2 were reported, due an interplay
of the spin-orbit gap and spin chirality [22, 23, 25, 26]. How-
ever, in contrast to the Kagome compounds, where the Zee-
man effects typically saturate at fields of B ≲ 2T, we do not
observe any sign of a saturation at the graphene/FGT interface
up to our maximum accessible field of 3T, which is consis-
tent with the spin un-canting at the graphene/FGT occuring
only at much larger fields B ∼ 10T.

CONCLUSION

In conclusion, despite the lack of strong bonding in
graphene/FGT vdW heterostructures, interface dipoles give
rise to emergent magnetoelectronic properties, which are lo-
calized at the 2D interface and result in a rich interplay of or-
bital magnetism and local moments. This ”vdW interphase”
provides a flexible platform to engineer magnetic properties,
allowing to control them via gate-tuning the Rashba effect and
DMI, which may find applications in spintronics or orbitron-
ics.

METHODS

Density functional theory

The orbital magnetization in three-dimensional k-space is
given by [22]

MBO =
e

2ℏ
Im

∑
n

∫
BZ

dk
(2π)

3 fnk⟨∂kunk| ×
(
Ĥk + εnk − 2µ

)
|∂kunk⟩,

(2)

where |unk⟩ is the Bloch-like eigenstate associated with the
nth eigenvalue εnk of the Hamiltonian Hk of the system,
fnk is the zero-temperature Fermi occupation factor and µ
the chemical potential. Note that the vector product is taken
between the two derivatives ∂k = ∂

∂k in the bra and ket,
respectively.

Unlike transport, which probes all occupied states and is
therefore sensitive to the orbital magnetization, STM/S probes
the either filled or empty states at a given energy and is thus
sensitive to the orbital magnetic moment (OMM) of the band,
which is given by

mn(k)
BO =

e

2ℏ
Im⟨∂kunk| ×

(
Ĥk − εnk

)
|∂kunk⟩. (3)

To calculate this quantity using ab initio methods, we
performed the following procedure: The electronic structure
of bulk Fe3GeTe2 was computed with the density functional
theory code FLEUR [51] using the full-potential linearized
augmented plane wave method [52]. We chose the Perdew-
Burke-Ernzerhof exchange correlation functional within the
generalized gradient approximation [53]. The lattice param-
eters for the system are [54] a = 3.99 Å and c = 16.33 Å
in a hexagonal close-packed lattice. We performed a full
self-consistent calculation to find the charge density including
the effect of spin-orbit coupling within FLEUR, with a
resulting magnetocrystalline anisotropy of 1.06meV per Fe
atom. The plane-wave cutoffs for the basis functions, for the
charge density and for the exchange correlation functional
were set to 5a−1

0 , 15a−1
0 , and 12.5a−1

0 , respectively, where
a0 is the Bohr radius. For Fe and Ge, the maximum in the
angular momentum expansion was set to lmax = 8 and the
muffin-tin radii rMT for both species was set to 2.12a0; for
Te, lmax = 10 and rMT = 2.74a0. Despite previous work on
FGT indicating the effects of strong electronic correlations
[8, 12], in the present scenario we do not see indications of
such correlations, e.g. as the conduction band minimum is
moved through the Fermi energy, and thus did not consider
them theoretically. Using the Wannier90 package [55, 56],
from the DFT-calculated Bloch wave functions |unk⟩, we
constructed maximally localised Wannier functions (MLWFs)
and determine the Bloch-like basis |uW

nk⟩ [57, 58]. A mesh of
8 × 8 × 8 k-points was used with 192 Bloch states to obtain
96 MLWFs. Initial projections were chosen to be d states for
Fe and p states for Ge and Te atoms. The maximum frozen
window was set to 2.344 eV above the Fermi energy. The
Hamiltonian, spin, and orbital angular momentum (OAM)
operators were evaluated in the Bloch basis and transformed
into the MLWF basis. The OAM was integrated inside the
muffin-tins. Further details of the calculations can be found
in Refs. 59 and 60.

In the Wannier description, the orbital magnetization can be
quantified as proposed by Lopez et al. [58]: First, the Bloch-
like basis |uW

nk⟩ is transformed into the so called Hamiltonian
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gauge, using the transformation

|uH
nk⟩ =

J∑
m

|uW
mk⟩Umn (k) . (4)

This is necessary in order to compute the magnetization ac-
cording to the so-called ”modern theory of orbital magnetiza-
tion” expression Eq. 2. This expression allowed us to decom-
pose the orbital magnetization into its local

MBO
LC =

e

2ℏ
Im

∑
n

∫
BZ

dk
(2π)

3 fnk⟨∂ku
H
nk| ×

(
Ĥk − µ

)
|∂ku

H
nk⟩,

(5)

and itinerant contributions

MBO
IC =

e

2ℏ
Im

∑
n

∫
BZ

dk
(2π)

3 fnk⟨∂ku
H
nk| × (εnk − µ) |∂ku

H
nk⟩.

(6)

We computed the band-resolved contributions to the magneti-
zation

mBO
n,LC =

e

2ℏ
Im⟨∂ku

H
nk| ×

(
Ĥk − µ

)
|∂ku

H
nk⟩, (7)

and

mBO
n,IC =

e

2ℏ
Im⟨∂ku

H
nk| × (εnk − µ) |∂ku

H
nk⟩. (8)

similar to Ref. 58, where it was shown that Eqs. 7 and 8 can
be recast into a gauge-invariant formulation. A more detailed
theoretical description will be presented in a forthcoming pub-
lication. Finally the orbital magnetic moments in Eq. 3 were
determined from the k-resolved local and itinerant contribu-
tions as mn(k)

BO = mBO
n,LC(k)−mBO

n,IC(k).
We note at this point that an earlier proposed model of the

relevant bands at K/K’ [10], when inserted into Eq. 3, results
in orbital moments which directly contradict our DFT calcu-
lations, indicating that such a model does not seem suitable to
capture the full orbital physics.

Sample fabrication

Graphite and FGT crystals were exfoliated onto SiO2

and assembled by a standard dry-transfer technique
with a microdome polyvinylchlorid/polydimethylsiloxane
(PVC/PDMS) stamp [61]. Ti/Au contacts were fabricated
using maskless optical lithography, and samples were sub-
sequently cleaned in an ambient-condition atomic force
microscope by repeated scanning in contact mode over night.
Extended Data Fig. S11 shows an AFM image, recorded be-
fore the STM measurements, of the heterostructure displayed
in Fig. 1e. After introduction into the STM ultra-high vacuum
chamber, the sample was annealed at 240◦C for 15mins
to desorb residues and water and subsequently transferred
to the STM. There, the sample was zero-field cooled to the

base temperature of ∼ 6.1K, and magnetized by ramping the
surface-normal field to B = 2T, prior to STS measurements.

Graphite and Fe3GeTe2 were obtained from commercial
sources (graphite from HQ graphene, FGT from 2D semi-
conductors). FGT bulk crystals from the same batch were
characterized by angle-resolved photoemission spectroscopy
(ARPES), showing general agreement with the DFT calcula-
tions and literature, and a doping level for which EF is close to
the topological gap (Extended Data Fig. S12). STM/S spec-
tra taken on the bulk crystals did not exhibit any peak fea-
tures and virtually no magnetic field dependence (Extended
Data Fig. S10), confirming the graphene/FGT interface as the
source of the observed behaviour.

Scanning tunneling experiments

All STM/STS measurements were performed in a commer-
cial Sigma Polar instrument at ∼ 6.1K. Electro-chemically
etched W tips were annealed to orange glow in vacuum and
prepared on an Ag(111) surface. After introducing the het-
erostructure sample to the STM scanner, we first approached
the tip to the contact leads using visual control and then nav-
igated the tip to the heterostructure by scanning. On the het-
erostructure, we performed large-area STM scans to locate the
graphene and FGT flakes and to check the cleanliness of the
heterostructure surface. To ensure a clean tunnelling spec-
trum, we then moved the tip back to the Ti/Au contact and
safeguarded that it showed a linear I(V ) characteristics by
repeated careful indentation. We then retracted the tip out
of tunnelling contact and jumped directly back to the clean
surface of the heterostructure, where we performed the mea-
surements, thus preventing any tip alterations that might have
occured during intermediate scans. All spectroscopy measure-
ments were performed after ramping the magnetic field above
the saturation field of the FGT flake, to achieve a well-defined
magnetization. STS was performed using standard lock-in
techniques at a frequency of 877Hz and modulation ampli-
tudes of V mod

s = 1 to 3meV.
We extracted ED in Fig. 4a from the V-shaped Dirac spec-

trum outside the inelastic gap, by (i) subtracting the energy
offset resulting from the inelastic tunnelling process above the
phonon threshold ±ℏω, for positive and negative bias volt-
ages separately, and (ii) performing linear fits to the electron
and hole sides of the linear Dirac cone spectrum, respectively;
the Dirac point energy ED at each setpoint current was then
extracted from their intersection. To determine δh in Fig. 4,
we used the exponential dependence of the tunnelling cur-
rent on the tip-sample distance I/I0 = exp(h0−h

λ ), where
δh = h0 − h and λ−1 ≈ (0.455 Å)−1 is the decay constant
of the tunnelling current for monolayer graphene above the
phonon threshold [30]. Then

δh = λ ln(I/I0), (9)

which is independent of the absolute values of h and h0.
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Electrostatic model

From the experimental geometry, we estimate the tip and
FGT capacitance density with respect to the graphene as

Ctip =
ε0
h

≈ 0.88µFcm−2 (10)

CFGT =
ε0
d

≈ 2.651µFcm−2, (11)

where ε0 is the vacuum permittivity and we estimate a
graphene/FGT layer spacing of d = 3.34 Å and the ini-
tial tip height of h = 10 Å at setpoint Vs = 300mV,
I0 = 0.1 nA. We note that, realistically, the permittivity of
the graphene/FGT interface is expected to be higher than ε0,
which would result in an increase of CFGT and thus a decrease
of the electric field at the graphene/FGT interface. The finite
screening length of the electric field in the FGT, on the other
hand, leads to a decrease of CFGT; however, this change is
expected to be small because of the metallic character of FGT
and the resulting short screening length [62]. In any case,
both of these effects have only minor influence on the tip-
height dependence of the interface field in our study, because
the response of the system is dominated by the change of the
tip-sample capacitance Ctip.

To model the charge distribution across the junction and the
heterostructure, we must take into account that the graphene
screens the tip electric field from the FGT, similar to a Fara-
day screen [63]. We therefore employed a capacitor model of
the junction similar to the one used in Ref. 64. Because of
the low density of states of graphene close to the Dirac point,
the model needs to include the graphene quantum capacitance
(per unit sample area) [65]

Cq = e2ρ, (12)

where

ρ =
2ED

π(ℏvF)2
(13)

is the spin- and valley-degenerate graphene density of states
at EF (per unit sample area), and vF the Dirac Fermi veloc-
ity. Integrating ρ from the Dirac point to EF, one obtains
from Eq. 13 the number of carriers per unit area in graphene
as ngr = π−1(ED/ℏvF)2. As usual, the quantum capacitance
is implemented as a capacitor in series to the geometric ca-
pacitance between tip and graphene, Ctip (see inset Fig. 4b)
[64]. As a result of the quantum capacitance, the tip elec-
tric field is not perfectly screened by the graphene and can
penetrate to the FGT underneath, establishing a capacitance
CFGT between graphene and FGT, in series with Ctip. Be-
cause it is equivalent to a single capacitor with distance h+d,
the arrangement of Ctip and CFGT in series is consistent with
a tunneling path from the tip directly to the FGT. We thus
have two parallel tunneling paths (the other one from the tip
to graphene), which suggests putting the two capacitances Cq

and CFGT in parallel, both connected to the same back contact

of the Ti/Au substrate (within the metallic FGT layer, there
will be no potential drop, despite its considerable thickness).
In this model, we neglect the inhomogeneity of the electric
field due to the curved tip shape, because we are interested
only in the properties right underneath the tip apex and the
small graphene-FGT distance compared to the tip radius (10 to
100 nm) results in effectively parallel electric field lines there.

From the circuit diagram it is clear that

nFGTe

CFGT
=

ngre

Cq
=

ntipe

Ctip
− Vts (14)

and

ntip + ngr + nFGT = 0, (15)

the latter due to charge conservation, where ngr, ntip, and
nFGT are the areal charge densities on graphene and the sur-
faces of the tip and FGT, respectively. We solve the lin-
ear equation system by substituting expressions derived from
Eq. 14 into Eq. 15, obtaining

ngr +
CtipVts

e
+

Ctip

Cq
ngr +

CFGT

Cq
ngr = 0. (16)

Using the graphene quantum capacitance (Eqs. 13 and 12)
[65]

Cq =
2e2√

π(ℏvF)2
√
ngr, (17)

results in

ngr + (Ctip + CFGT)

√
π(ℏvF)2
2e2

√
ngr +

CtipVts

e
= 0. (18)

Substituting a ≡
√

π(ℏvF)2

2e2 gives

ngr + a(Ctip + CFGT)
√
ngr +

CtipVts

e
= 0, (19)

which yields

√
ngr =− a(Ctip + CFGT)

2

+

√(
a(Ctip + CFGT)

2

)2

− CtipVts

e
, (20)

where only the positive solution of the quadratic expression
is physical, as ngr must vanish at Vts = 0. With Eq. 20, we
determined the Dirac point energy as

ED = ±2e2a
√
ngr. (21)

The positive (negative) sign applies to holes (electrons).
The potential difference Vts between the tip and graphene

is given by the sum of the applied bias voltage and the contact
potential difference between tip and sample surface

Vts = Vs + VCPD = Vs + (Φtip − Φgr)/e (22)
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where the Φ are the respective work functions. While the
work function of charge-neutral graphene is well known (see
above), the work function of the tip is more difficult to es-
timate, and critically depends on the details of the tip apex.
As a result, for W tips the tip work function can vary in the
range 3.9 − 5.5 eV[66], but is more typically in the range
4.5 − 5.1 eV[11]. We indent our W tips into Au before mea-
surements and expect Au to stick to the tip as a result of
the preparation procedure. The work function of bulk Au is
ΦAu ≈ 5.1 eV, such that we estimate the resulting tip work
function to be in the range Φtip = 4.6 − 5.1 eV, i.e., greater
or equal to that of graphene. The fit in Fig. 4b results in a
tip work function of Φtip = (4.66 ± 0.03) eV, in excellent
agreement with this range of expected values. Our model
further compares well with experiments on graphene/NbSe2
heterostructures (ΦNbSe2 ≈ 5.6 eV), where a significant hole
doping corresponding to ED ≈ +400meV was reported [67].

Angle-resolved photoemission spectroscopy

Photoemission measurements were performed on cleaved
FGT bulk single crystals and were conducted at NanoESCA
beamline at Elettra, using the modified Focus GmbH Na-
noESCA momentum microscope. The sample was cooled us-
ing LHe and the temperature was stabilized at ≈ 40K. The
light was incident at an angle 65◦ with respect to the surface
normal, along the K-Γ-K’ direction. Extended Data Fig. S12
shows spectra collected at ℏν = 60 eV in sweep mode with
an energy step size of 0.02 eV.

Disentangling band-orbital and chiral-orbital Zeeman effects

We approximate the observed peak shifting behaviour as
function of magnetic field by the linear equation system

E1 = g1µBB + E0
1 = (gCO

z − gBO
z )µBB + E0

1 (23)
E2 = g2µBB + E0

2 = (gCO
z + gBO

z )µBB + E0
2 , (24)

where Ei(B) are the peak energies, with E0
i ≡ Ei(B = 0),

and gCO
z and gBO

z are the chiral- and band-orbital g-factors ,
respectively. Inserting the fitted slopes from Fig. 3c, g1µB =
1.8meV/T and g2µB = 13.3meV/T, results in

gBO
z =

g2 − g1
2

≈ 100 (25)

and gCO
z ≈ 130.
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EXTENDED DATA

Extended Data Fig. S1. Fourier-filtered topography of graphene, Fe3GeTe2 and their moiré lattice. (a) STM topography (constant-
current image at Vs = −50mV, It = 70pA), measured on the heterostructure shown in Fig. 2a (b) Fourier-filtered graphene lattice. (c)
Fourier-filtered Fe3GeTe2 lattice. (d) Fourier-filtered moiré lattice. The images in panels b to d were generated by inverse FFT of the Fourier
transform image of panel a, selecting only the corresponding spots, as marked by the black, orange and red circles in Fig. 2b, respectively.

Extended Data Fig. S2. Threshold determination of the inelastic tunnelling gap of graphene. Differential conductance spectrum (blue
curve, arbitrary units) measured on the graphene/Fe3GeTe2 heterostructure shown in Fig. 2a (Vs = 500mV, It = 200 pA), and numerically
differentiated d2I/dV 2 curve (green, arbitrary units). The leading peaks and dips of the second derivative (vertical dashed lines) were used to
determine the thresholds of the inelastic tunnelling gap as |eVs| = ℏω = (65± 2)meV, corresponding to the out-of-plane acoustic phonon of
graphene [31].

It (nA) δh (Å) Ctip(µFcm
−2) ED (meV) ngr (1010 cm−2) EFGT (GV/m)

0.1 0 0.885 −38.7± 2.6 5.50± 0.74 1.291± 0.008
0.3 0.500 0.932 −33.6± 2.6 4.15± 0.64 1.306± 0.008
0.5 0.732 0.955 −30.5± 2.2 3.42± 0.49 1.316± 0.007
0.8 0.946 0.978 −26.5± 2.7 2.58± 0.53 1.328± 0.008
1.0 1.048 0.989 −27.8± 2.4 2.84± 0.49 1.324± 0.007

Extended Data Table I. Change in tip height δh, tip-graphene capacitance Ctip (Eq. 10), Dirac point energy ED (Fig. 4a), charge carrier
concentration (Eq. 21), and interface electric field EFGT (Eq. 1), all as a function of setpoint tunnel current It.
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Extended Data Fig. S3. Fit results for the two Fe3GeTe2-related peaks in the inelastic tunnelling gap of graphene, as a function of
external B field. (a) Differential conductance spectra (arbitrary units) after subtraction of a polynomial background (colored data curves, same
data set as in Fig. 3b). The displayed Gaussians Aie

−(eVs−Ei)
2/2σ2

i (black curves) were fitted to the data separately for each curve and peak,
except at B = 0, where because of their significant overlap the two peaks were fitted simultaneously . (b, c) Fitted peak energies Ei and
widths σi, respectively, with linear fits for each peak.

Extended Data Fig. S4. Spatial consistency of the two Fe3GeTe2-related peaks at B = 2 T. (a) Color map of differential conductance
spectra (arbitrary units), recorded at positions along the arrow in the STM topography in the inset The map reveals constant peak energies
and intensities. (b) STM topography recorded at another position on the graphene/Fe3GeTe2 heterostructure. Scan size: 10 nm. (c, d) Color
maps of differential conductance spectra (arbitrary units) recorded in the area shown in panel b at the two peak energies marked by dotted
lines in panel a. No spatial variations, for example due to scattering at defects, are discernible. Tip stabilization parameters for all panels:
Vs = 50mV, It = 1nA.

Extended Data Fig. S5. DFT-calculated band structure of trilayer Fe3GeTe2. (a) In Fe3GeTe2 trilayers, the inversion symmetry of bulk
Fe3GeTe2 (bilayer unit cell) is broken. This leads to additional bands close to EF, a smaller nodal line gap, and smaller band orbital moments
(color coded). Furthermore, the K and K’ points are no longer equivalent, although their differences are minimal. We thus only show the K
point here. The band structure in this panel should be compared with Fig. 1c, which was calculated for bulk Fe3GeTe2. We note that the band
crossing at K/K’ does not exist in monolayer FGT. However, the spin canting, which is strongest in the layer closest to the interface (compare
Fig. 1e) may break inversion symmetry for two or more FGT layers and thus can explain a smaller gap at K/K’. (b) Zoom into the shaded
region in panel a, showing the bands close to the K point.
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Extended Data Fig. S6. Fe3GeTe2 band structure as a function of magnetic exchange potential strength. To model the spin Zeeman
effect in an external magnetic field, we took the DFT-calculated single-particle band structure of Fe3GeTe2 (see Fig. 1c) and added exchange
coupling of varying size, ranging from Jxc = 0 to 0.5 eV. The additional exchange coupling is added on top of the FGT Wannier Hamiltonian
by using the matrix elements of the spin operator in terms of Wannier functions.

Extended Data Fig. S7. Calculated out-of-plane g-factor, neglecting the influence of spin canting and chiral orbital moments. The plot
shows the band structure of Fig. 1c, with color-coded gBO

z = 2+ ⟨L⟩/⟨S⟩ resulting from the spin and orbital moments shown as color-coding
in Fig. 1c and d, respectively.



16

Extended Data Fig. S8. Fit results for the two Fe3GeTe2-related peaks in the inelastic tunnelling gap of graphene, as function of
setpoint current. (a) Differential conductance spectra (arbitrary units, measured at B = 2T) after subtraction of a polynomial background
(colored data curves, same data set as in Fig. 4c). The displayed Gaussians Aie

−(eVs−Ei)
2/2σ2

i (black curves) were fitted to the data separately
for each curve and peak. (b, c) Fitted peak energies Ei and widths σi, respectively, with linear fits in panel b for each of the two peaks.

Extended Data Fig. S9. Fitted peak positions for the two Fe3GeTe2-related peaks in the inelastic tunnelling gap of graphene, as function
of magnetic and electric field. (a) B-field-dependent Zeeman effect at EFGT = 1.31GV/m. Data points and linear fits (solid lines) are the
same as in Fig. 3c. (b) EFGT-field-dependent Zeeman effect at B = 2T. Data points and linear fits (solid lines) are the same as in Fig. 4d.

Extended Data Fig. S10. Differential conductance spectra of bulk Fe3GeTe2. No significant change is observed as a function of applied
magnetic field up to our maximum field of B = 3T. The data is consistent with previous reports in the literature [11, 12] and confirms that
breaking of inversion symmetry at the interface is a necessary condition to observe the specific behavior of spectral features reported in the
main text .
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Extended Data Fig. S11. Atomic force microscopy on the the graphene/Fe3GeTe2 heterostructure. (a) Optical micrograph of the
heterostructure (same as in Fig. 1e), with the black dashed line representing the outline of the AFM measurement in panel b. (b) Atomic force
micrograph of the graphene-covered Fe3GeTe2 flake. The formation of ‘dirt pockets’ indicates an atomically clean vdW interface in between
the pockets, in consistency with the spatially uniform STM measurements that were performed in different spots on the sample.

Extended Data Fig. S12. Angle-resolved photoemission spectroscopy of bulk Fe3GeTe2. The experimental photoemission data (band maps
from Γ̄ to K̄ on the left and Γ̄ to K̄′ on the right) are overlayed with the DFT-calculated band structure including SOC (from Fig. 1c) in Γ̄K
direction. Red and blue bands correspond to the majority (minority) spins.
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