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Abstract 

Despite the traditional view of parietal cortex as an important region for perceptual decision-
making, recent evidence suggests that sensory accumulation occurs simultaneously across many 
cortical regions. We explored this hypothesis by integrating connectivity, cellular and receptor 
density datasets and building a large-scale macaque cortical model able to integrate conflicting 
sensory signals and perform a decision-making task. Our results reveal sensory evidence 
accumulation supported by a distributed network of temporal, parietal and frontal regions, with 
flexible sequential bottom-up or top-down modulation pathways depending on task difficulty. 
The model replicates experimental lesioning effects and reveals that the causal irrelevance of 
parietal areas like LIP for decision performance is explained by compensatory mechanisms 
within a distributed integration process. The model also reproduces observed temporal gating 
effects of distractor timing during and after the integration process. Overall, our work hints at 
perceptual integration during decision-making as a broad distributed phenomenon, providing 
multiple testable predictions. 

 
Introduction 

Decision-making (DM) is a fundamental cognitive function in the brain, involving the processing 
of sensory information towards a categorical decision and a subsequent motion response (1). 
Electrophysiological recordings have characterized DM as an evidence accumulation process, 
where a decision is made when the firing rate of specific neuronal populations, typically in 
association parietal areas such as LIP, exceeds a threshold (2, 3). This principle of sensory 
integration within local (parietal) circuits has been used to understand a vast range of decision-
making paradigms, from simple perceptual decision-making tasks (4–7) to context-dependent 
choices (8–10), multisensory integration (11–14) or even perceptual choices in the context of 
consciousness or arousal modulation (15–18).  
In recent years, however, compelling evidence has emerged against the local (parietal) sensory 
integration theory. Notably, lesioning and optogenetic studies in rodents have revealed that the 
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inactivation of parietal cortex has little effect on the performance of decision tasks, even though 
the activity of those areas is highly correlated with decision speed and accuracy (19, 20). Similar 
experiments in macaques led to similar conclusions, suggesting that sensory areas like MT have 
a greater influence on achieving good performance than LIP (21). It seems implausible, 
therefore, that sensory integration necessary to guide decisions would occur solely on parietal 
circuits. Recent studies have explored whether the involvement of multiple brain regions could 
support perceptual decision-making (9, 22–24), revealing a wide range of differentiated roles 
across cortical regions (25, 26) and emergent interactions across different areas (9). Promising 
conceptual advances have been facilitated by computational modeling work involving two or 
three interacting areas (27–29). However, the lack of a data-constrained, brain-wide framework 
to compare and evaluate the contributions of individual areas involved in decision-making tasks 
has hindered further progress. 

In this work, we integrated multiple brain-wide data sets and used them to develop a 
computational model of the large-scale network of the macaque neocortex with the capacity to 
simulate decision-making tasks. The data integrated into the model included cortex-wide 
variations in autoradiography-derived NMDA and GABAA receptor densities per neuron, and 
average dendritic spine count per cell (30–32), which contribute to capture part of the existing 
regional heterogeneity in cortex. By replicating a classical perceptual decision-making task 
(random dot motion discrimination), our model showed the involvement of multiple cortical 
areas in sensory accumulation, in contrast with the traditionally assumed local integration in 
parietal cortex. We also observed different roles, such as sensory, accumulators and categorizers, 
emerging across cortical areas. In addition, the model revealed the existence of two distinct 
dynamical regimes governing the flow of information during sensory integration, with the level 
of stimulus coherence determining which of them drove the decision process. Furthermore, we 
proposed that temporal gating during decision-making, a phenomenon observed in mice so far, 
would be present in macaques depending on the robustness of the distributed network supporting 
integration and maintenance of choice memory (33). Lastly, by simulating lesions in different 
cortical regions, we reproduced the results of experimental inactivation studies, supporting the 
hypothesis of the causal irrelevance of area LIP for decision making and proposing a more 
important role for temporal lobe regions.  

 
Results 

A large-scale macaque cortex model incorporating data from multiple macroscopic gradients 
We combined multiple neuroanatomical data sets with local dynamical models to build a large-
scale model of the macaque cortex (Figure 1A; see Materials and Methods for further details). 
We first considered a local circuit of two stimulus-selective excitatory populations and one non-
selective inhibitory population. This local circuit was our template to describe each of the 40 
cortical areas considered in our large-scale model, with properties of each individual circuit 
varying across areas following available area-specific data. This ensures that each cortical area 
was unique in its configuration and dynamics, and reflected the high level of neural and circuit 
heterogeneity found in real brains. The area-specific properties revealed macroscopic gradients 
across cortex (34), and included variations in the effective strength of synapses inferred from 
local properties such as the number of dendritic spines per pyramidal cell (31, 33) and the area-
specific density of NMDA and GABAA receptors per neuron (32, 35)(Figure 1B).  
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Before assembling these areas into a large-scale cortical model, we analyzed the organization of 
the receptor density per neuron data (32) when compared to the position of each area in the 
anatomical hierarchy (36, 37) and area-specific dendritic spine numbers (31, 33). A strong 
positive correlation was found between NMDA receptor density and the cortical hierarchical 
position inferred from laminar connectivity data (r=0.731) (Figure 1C), and NMDA receptor 
density had an almost linear relationship with GABA receptor density (Suppl. Fig. S1). As 
previously shown (33, 38), dendritic spine count positively correlated with cortical hierarchy 
(Figure 1D). We identified here some parietal areas (such as LIP, 7m, and 7a) as outliers based 
on their low pyramidal spine count but high cortical hierarchy value and NMDA receptor 
density. This suggested that NMDA-mediated synapses in those areas preferentially target 
inhibitory neurons. 
The data-constrained local circuits were then connected between them to form an extended 
cortical network, using tract-tracing connectivity data of the macaque neocortex (36, 37, 39, 40), 
leading to a cortical model constrained at both the local and large-scale levels by 
neuroanatomical data. Using the layer-specificity and projection-directionality provided by this 
dataset, and following previous work (33, 41), we implemented a counterstream inhibitory bias 
in our network, which assumes that feedforward and feedback projections along the cortical 
hierarchy slightly but preferentially target excitatory and inhibitory neurons, respectively. 
Background input to cortical areas was varied across areas to mimic the differentiated 
thalamocortical projections across cortex and to facilitate that all cortical areas displayed a 
similar spontaneous activity level of about 0.5Hz. 
 

 

 
Figure 1: Scheme and anatomical basis of the large-scale macaque cortical model. (A) Lateral view of the 
macaque cortical surface with modelled areas in color. In each area, cortical dynamics follow a local winner-take-all 
model, and areas are connected using anatomical connectivity data. (B) Area-specific values for the number of 
dendritic spines per neuron (top), the densities of NMDA receptors per neuron (middle) and GABAA receptors per 
neuron (bottom). (C) Correlation between NMDA receptor density per neuron and anatomical hierarchy as defined 
by layer-dependent connections. (D) Correlation between spine count data and anatomical hierarchy (labels of areas 
were partly displayed for better visualization). 
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Distributed and heterogeneous evidence accumulation process in decision making 
We simulated our large-scale macaque cortical model performing a classical two-choice random-
dot motion discrimination task for decision making (2, 3), where subjects have to choose which 
of two possible movement directions has a larger number of dots involved (Figure 2A). In our 
model, this visual input is modelled as two 700-ms-duration external currents entering both 
selective excitatory populations in V1 (Figure 2A and B), with dot movement coherence (the 
degree of agreement among moving dots, ranging from 0-100%), or motion contrast (the 
consistency in the direction of motion for all moving dots, ranging from -1 to 1), reflected in the 
difference between these currents (Figure 2B). This sensory input drives a competition between 
both selective excitatory V1 populations, and subsequently such a competition took place in 
other cortical areas within individual excitatory populations.  
Simulations of the large-scale cortical model (Figure 2C) revealed that the competing visual 
stimuli induced the accumulation of sensory evidence and the resulting competition and winner-
take-all dynamics in area LIP, as shown in experiments and classical models (6, 7). However, 
such dynamics were also present in other brain areas, such as temporal lobe regions (TEO, 
TEpd), prefrontal cortex (9/46v), and many others (Suppl. Fig. S2). This suggests that the 
decision process, including sensory accumulation and winner-take-all dynamics, occurs across a 
distributed cortical network rather than in localized parietal regions. When comparing the firing 
rate evolution of stimulus-selective sustained activity across 40 areas and clustered them 
according to characteristic dynamics (Figure 2D), we found dynamics greatly varied across the 
cortex: sensory areas like V1 and V2 responded during cue duration and maintained spontaneous 
states during delay (sensory) , somatosensory areas like 1 and 3 displayed little reaction to the 
stimulus (unresponsive), frontal areas like F5 and 9/46v underwent a sharp transition reflecting a 
categorical choice dynamic (categorizer), areas like LIP, TEO and 7M showed a slow and 
gradual ramping process, and temporal areas like MT and TEpd displayed mutual ramping after 
stimulus onset and then bifurcated to encode the final decision (accumulator). As in classical 
models and experimental evidence on single areas, the accumulation process was dependent on 
the level of stimulus coherence (Figure 2E): as illustrated by this example in LIP, ramping 
activities bifurcated earlier in high-coherence trials compared to low-coherence ones, and 
experienced different activity patterns for two situations. In both cases, the winning population 
displayed sustained activity after the integration process, due to the bistability of the system, and 
related to working memory capacity of the network (33). When adopting a majority rule to infer 
the behavioral decision from the winning populations across all cortical areas, the large-scale 
cortical model was also able to replicate psychometric curves in agreement with macaque 
behavioral output data (Figure 2F), as well as plausible chronometric curves (Figure 2G). The 
reaction time in chronometric curves was defined as the time at which mean firing rates of 
excitatory populations displaying bifurcation (like LIP, 9/46v) reached a threshold of 3 Hz to fit 
experimental data, signaling a joint contribution of association areas towards a decision. 
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Figure 2: Large-scale cortical model reveals a distributed sensory accumulation process for decision making. 
(A) Random-dot motion discrimination task simulated in our work (left panel), where monkeys must choose which 
is the preferred direction of movement of the visual stimuli. The stimuli can display any coherence level from 100% 
right to 100% left movement (right panel). (B) Circuit schematic of the simulation. Two external stimuli 
representing motion information enter the excitatory populations of V1. (C) Activity of selected cortical areas during 
the decision-making task, with a 5%-coherent selective visual input duration of 700 ms, displaying a sensory 
accumulation process distributed across areas. (D) Clusters of all 40 areas according to characteristic responses. (E) 
Sensory accumulation activity in LIP, for two different coherence levels. Green (orange) traces correspond to hard 
(easy) trials. Populations encoding the correct and incorrect choice are shown in thick and thin lines, respectively. 
(F) Psychometric and (G) chronometric curves as a function of stimulus coherence. Green dots and curves are 
experimental data from macaques (2). 
 

Winning onset times uncover motion information flow across the cortex 
While evidence accumulation was observed across many cortical areas, integration times greatly 
varied across regions. We analyzed the temporal integration across multiple areas by comparing 
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the normalized firing rate traces of the populations encoding the winning choice. For low 
coherence levels, temporal and prefrontal areas (like TEO and 9/46v, respectively) led the 
integration and were the first ones to reach their half-maximum level (Fig. 3A, left). However, 
the situation changed for trials with high coherence levels, as visual areas like MT were the first 
ones reaching their half-maximum level (Fig. 3A, right) and temporal and frontal areas evolved 
at a slower pace. This suggests that the information flow during decision-making is stimulus-
dependent, and that the functional relationships between cortical areas (i.e. which area leads the 
integration), rather than being a fixed structure, flexibly depends on task difficulty. 

To estimate the moment in which a winner emerges in the local competition between selective 
populations in each area, we defined the ‘winning onset’ in a cortical area as the moment in 
which the difference between their firing rates becomes larger than a certain threshold (zero, for 
simplicity) and continues evolving towards the decision threshold without returning back (black 
dot in Fig. 3B). Intuitively, the winning onset signals the time at which a winner population gains 
an edge over the other one, and a differentiated integration emerges. The winning onset provides 
a simple way to evaluate which areas lead the integration process, which aligns reasonably well 
with decision sequences observed in categorical decision tasks in macaques (9)(see Suppl. Fig. 
S3 for a direct comparison). We simulated, for a given coherence level, 2000 decision-making 
trials and computed the winning onset for each area. By sorting these winning onset times and 
ranking all areas from first/fastest to last/slower, we obtained a trial-averaged distribution of 
winning-onset ranks for each area (Fig. 3C).  

For low coherence values, frontal areas like 9/46v and 45A, as well as temporal areas like TEO, 
STPc and STPi were usually ranked in the first place. Areas linking sensory and association 
areas, like MT and LIP, as well as vision-unrelated areas such as areas 2 and 5 (primary and 
secondary somatosensory cortex), fell behind in the ranking. This suggests that, under low 
coherence input, higher association areas led the sensory integration and decision process, which 
was later reflected in the activity of areas like LIP and MT. For high coherence values, the 
pathway for sensory integration drastically changed (Fig. 3C, right). In this condition, LIP, MT 
and similar areas connecting sensory and association cortex become fast integrators and reclaim 
the first places in the winning onset ranking. Association areas, on the other hand, became slower 
and decreased in the ranking (although some of them, like TEO, remain in moderately high 
ranks). Overall, high-ranked areas seemed to be hierarchically close to early sensory areas V1 
and V2, indicating that sensory integration follows the anatomical hierarchy for high coherence 
input.  
Two distinct mechanisms accounted for decision making in our model, depending on the 
coherence level (Supply. Fig. S4). When plotting the expected winning onset rank of all 
association areas, we found a near-zero correlation (r=0.009) (Fig 3D). However, certain areas 
exhibited negative correlations in both scenarios (red dots in Fig. 3D), suggesting a reversal in 
sequential order upon task difficulty transitions. Specifically, their expected winning-onset rank 
showed a tendency to decrease along the hierarchy during low-coherence situations (top-down, 
r=-0.61), while increasing during high-coherence situations (bottom-up, r=0.65) (Fig. 3E and F, 
Suppl. Fig. S7A). Additionally, a small subset of regions remained stable across both scenarios 
(blue dots in Fig. 3D). We focused on the rank distribution of area MT to further illustrate the 
intrinsic mechanisms. Area MT experienced a remarkable transition from low to high winning-
onset ranks when coherence increased from 0% to 100% (Fig. 3G). For low coherence, the 
differentiated sensory drive received by MT was weak, and due to the low self-coupling strength 
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of this area, it took some time for its firing rate to reach the winning onset. Association areas, 
which typically have stronger self-coupling, reached their winning onset points faster in this 
condition, and hence ranking higher. For higher coherence levels, the differentiated sensory drive 
was strong enough to trigger a winning onset (and therefore a choice) in MT and related areas, 
and this information was then passed to higher association areas which followed MT. 
The rank switch phenomenon could be further illustrated with a toy model (Fig. 3H, left) 
including only V1, MT and 9/46v. Here we rescaled the anatomical connections while keeping 
their relative ratios, and kept other parameters constant (see Methods). As in Fig. 2C, we 
observed activity ramping in both MT and 9/46v (Suppl. Fig. S5). Winning onset times 
decreased with coherence level for both areas (as easier trials lead to faster decisions), and the 
intersection between both curves signaled a switch in the winning onset ranking (Fig. 3H, right). 
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Figure 3: Winning onset analysis reveals information flow during decision making. (A) Normalized firing rate 
difference between both excitatory populations for selected cortical areas under zero (left) and full coherence (right). 
(B) Winning onset was defined as the time from stimulus onset until the difference of firing rate between both 
excitatory populations rose from zero (black dot), without reverting to zero later in the trial. Dotted line indicates the 
baseline for excitatory firing rate difference. (C) Winning-onset rank distribution of selected areas under zero (left) 
and full coherence (right). (D) Expected (average) winning-onset rank for association areas during low coherence 
(1%) versus high coherence (100%) trials. Red dots corresponded to areas exhibiting negative correlations in both 
scenarios, and blue dots were areas remaining stable. (E) Expected winning-onset rank tended to decrease along 
hierarchy during low-coherence situation. (F) Expected winning-onset rank tended to increase along hierarchy 
during high-coherence situation. Selected areas in (E) and (F) corresponded to red points in (D). (G) Winning-onset 
rank for area MT across six coherence levels. (H) Toy distributed model consisting of three areas (left) and the 
relation between coherence level and winning onset for MT and 9/46v. All datapoints in (C) -(H) were averaged 
over 2000 trials. 
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Effects of receptor density per neuron and connectivity on evidence accumulation 
The incorporation of NMDA and GABA receptor densities per neuron allowed us to explore 
their influnce on the evidence accumulation process. For the purpose of maintaining their linear 
relationship (Suppl. Fig. S1), we randomly shuffled NMDA and GABA receptor densities across 
the cortex as a whole. Following previous work (33), the maximum local excitatory self-coupling 
strength was set below the threshold value for a local bifurcation (=0.46). The network was then 
sensitive to certain parameters, particularly the global coupling G, which controlled the inter-area 
signal transmission strength (see Materials and Methods). When randomly shuffling parameter 
values, we set G to establish an adjusted network consistent with the controlled model, guided by 
two criteria: (i) before stimulus onset, all 40 areas remained in spontaneous states, and (ii) during 
the stimulus duration, with V1 excitatory populations receiving coherent directional inputs, the 
network exhibited ramping dynamics. After stimulus offset, some association areas displayed 
persistent activity indicative of the final decision. 
We ran the simulation for 100 different parameter configurations and calculated the mean 
winning onset rank across 1000 trials. Interestingly, we found that the expected winning onset 
rank for each area displayed minimal difference under two task difficulty scenarios (Suppl. Fig. 
S6A). The correlations with the cortical hierarchy were -0.48 in low coherence situations and -
0.46 in high coherence situations, indicating a top-down modulation in both scenarios (Suppl. 
Fig. S6B and S7C). The computational mechanism behind this observation lies in the adaptive 
setup of individual excitatory background currents, which ensured that the spontaneous activities 
of each region remained constant. Consequently, external currents through inter-areal 
propagation did not change across varied parameter configurations.  However, when high 
hierarchy areas like 9/46v, endowed with high excitatory self-coupling strength due to high 
dendritic spine count density, with their NMDA and GABA receptor densities shuffled with low 
hierarchy areas, the indirect inhibition effect between local excitatory population significantly 
decreased. This shift in the bifurcation point as a function of external current (Suppl. Fig. S6D) 
necessitated a decrease in global coupling strength to adjust the inter-areal current. As 
demonstrated in Suppl. Fig. S6E, the majority of fine-tuned global coupling strengths were 
significantly below the original model (G=0.52), indicating a less connected neocortical 
coupling. The loss of inter-areal coupling resulted in decreased efficiency of signal propagation. 
We recorded the long-range excitatory current in association areas in both scenarios under one 
shuffled receptor density setting and found that they were on the same scale as background noise 
(Suppl. Fig. S6F). Consequently, even in high coherence cases, the decision signal was 
insufficient to implement bottom-up transmission, and association areas would need to infer the 
final decision based on background noise and weak current decision signals, similar to low-
coherence cases. We also applied the same protocol to shuffle the FLN connectome data and 
only the GABA receptor density data to disrupt the excitatory-inhibitory (E-I) balance. When 
shuffling FLN, the correlations between the expected winning onset and cortical hierarchy were 
nearly zero (Suppl. Fig. S7B). However, shuffling E-I ratio led to noticeable differences under 
both scenarios, with correlation coefficients of r = -0.59 under low-coherence cases and r = -0.23 
under high-coherence cases (Suppl. Fig. S7D). 
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Temporal gating in the macaque brain 
In our large-scale cortical model, information about the decision taken can be stored in working 
memory as distributed sustained activity patterns, as in previous work (33) and experimental 
evidence (42–44). For categorical decision-making tasks, the robustness of such sustained 
activity is important for translating decision outcomes into motor output. This has been 
experimentally tested in rodents and macaques, by presenting distractors at different time points 
across the delay period, revealing that the robustness of decision outcomes greatly depends on 
the distractor timing, a phenomenon known as temporal gating (45–47). We tested the robustness 
of our decision-related sustained activity in a decision-making task with distractors (Fig. 4A), 
and here distractors were modeled as external currents into the V1 excitatory population different 
from the one encoding cue stimulus. Two versions of the task were considered: one in which 
distractors have a fixed onset but variable duration, and one in which they have a fixed duration 
but variable onset: at the sampling, early delay, or late delay phases (Fig. 4B).  
We first studied the system in the fixed duration version of the task, and calculated the fraction 
of trials in which the decision was changed as a consequence of a distractor at different onsets 
(Fig. 4C). We observed that early distractors, especially those presented during the sampling 
phase, have stronger effects on changing the decision output than late ones, in agreement with 
experimental observations (45, 46). The effects were similar for weak and strong distractors, 
with the latter simply scaling up the fraction of trials with reversed decisions. We observed a 
positive relationship between the distractor onset and the minimal strength needed for the 
distractor to be effective, i.e. to change the decision outcome (Fig. 4D, left panel). For the fixed 
onset version of the task, we found an inverse relationship between the distractor strength and the 
minimal duration required for the distractor to be effective (Fig. 4D, right panel).  
The results were similar for networks with a stronger global coupling (Fig. 4E), although with 
more abrupt limits in distractor effectiveness. For example, in the fixed duration version of the 
task (left panel), the decision was nearly impossible to be reversed with distractors of very late 
onset, irrespective of the distractor strength. Likewise, in the fixed onset version of the task (right 
panel), decisions could not be reversed with very weak distractors, irrespective of the distractor 
duration. Changes in distractor duration (for the fixed onset version) or distractor strength (for 
the fixed duration version) were determinant factors for the success of the distractor in 
overturning the decision (Suppl. Fig. S8). 
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Figure 4: Temporal gating effects during decision making. (A) Decision making task with distractor. The model 
was presented with a 100%-coherence stimulus of strength 0.1 and duration 250ms, and then a distractor was 
presented in one of three time points (sample, early delay, or late delay). (B) Distractors in this task can be 
considered as either fixed onset (here at 125 ms) and variable duration, or as fixed duration (here, 250 ms) and 
variable onset. (C) Behavioral impact was quantified as the fraction of trials in which the network changed its 
decision due to the distractor, for the case of a weak (I=0.17, top panel) or strong distractor (I=0.80, bottom panel) 
and G=0.42. (D) Minimal effective distractors in terms of duration and strength, for the fixed duration (left) and 
fixed onset (right) versions of the task, global coupling G=0.42 and input noise of 𝛔𝐬 = 𝟎. 𝟎𝟏𝟕. (E) Same as panel 
D, but for a network with a stronger global coupling G=0.52 and 𝛔𝐬 = 𝟎. 𝟎𝟏. 

 
Inactivation reveals the functional irrelevance of LIP during decision making 

Inactivation of specific brain regions, either by lesioning, pharmacology or optogenetics, has 
provided valuable insight for decision-making circuits. In macaques, inactivation via the GABAA 
receptor agonist muscimol revealed a profound impact of MT inactivation in behavioral 
performance, while LIP inactivation had no measurable impact on performance(21). We used our 
model to simulate inactivation of MT and LIP areas (Fig. 5A), and we compared our modeling 
results with experimental evidence. We found a strong agreement between our results and the 
experimental findings of Katz and colleagues (21), with LIP inactivation barely affecting the 
psychometric curve for our model and MT inactivation leading to a flattening of the sigmoidal, 
reducing the accuracy of the decision process (Fig. 5B). Our results therefore support the 
evidence of LIP playing a relatively minor role in decision making, despite accurately reflecting 
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the sensory accumulation process occurring across other distributed cortical networks. The 
effects of inactivation were consistent with (21) for higher values of the global synaptic coupling 
strength (G=0.52), but in this case, the effect of MT lesioning compared to baseline was less 
significant as the inactivation of any area could be easily covered by the joint contribution of 
other areas (Suppl. Fig. S9).   
To better explain this result, we evaluated how the percentage of valid trials, defined as those for 
which the model was able to make a decision, depended on the coherence level for different 
global coupling values. For small global coupling, lesioning MT prevents the sensory evidence 
to reach higher cortical areas, leading to noise-driven trials and poor performance. Larger global 
coupling values ensure instead that trials are evidence-driven, leading to a good performance for 
MT inactivation due to compensatory effects of other regions. The inactivation of LIP, however, 
can be compensated by sensory accumulation in other areas for both small and large global 
coupling, leading to a causal irrelevance of LIP for the decision process (Fig. 5C-E). The role of 
MT as a bridge between sensory visual areas and superior association areas can be further 
elucidated by removing feedforward transmission in all 40 areas except from primary visual 
areas including V1, V2, V4 and V6, and then we injected a pulse input into the one of the 
excitatory populations in V1, resulting in responses exclusively from MT, TEO and TEpd to this 
stimulus (Suppl. Fig. S10). Considering the positions of MT, TEO and TEpd on the hierarchy 
axis were 8, 15 and 27, MT took a more important role in the transmission of visual information 
to higher areas. 

Our distributed computational model was also able to infer how lesioning one area would affect 
the dynamics of other areas, especially their ramping speed, which is a key feature of the 
evidence accumulation process. To precisely define ramping speed, we introduced three area-
specific metrics besides the winning onset:  (i) the winning rate, defined as the firing rate of the 
winning population at the winning onset, (ii) the reaching rate, defined as 75% of the attractor 
firing rate minus 25% of the winning rate, and (iii) the reaching onset, defined as the time at 
which the winning population firing rate arrives at the reaching rate (Figure 5F). Ramping speed 
was defined as the change in firing rate over the ramping time window, and the lesioning effect 
of area 𝑗 on area 𝑖 was the percentage change between pre- and post-inactivation ramping speed. 
To better capture the ramping dynamics, we use a winning onset threshold of 0.5 instead of zero. 

We then observed that lesioning MT had a stronger effect on other non-sensory areas than 
lesioning LIP (Figure 5G). Though lesioning LIP has a stronger impact in certain areas like 7B 
or STPi, the ramping speed of most areas (especially LIP, 7m, 8l and 10) changed more 
drastically when lesioning MT except for area 7B. Notably, lesioning LIP led to ramping speed 
increases in areas like F3 and TEpd; the reason was that long-range projections from LIP on 
those areas targeted inhibitory populations more strongly than excitatory ones, so removing LIP 
had a positive effect on those areas. This effect was not observed when lesioning MT, which 
follows from its early position on the feedforward cortical hierarchy and its role in the excitatory 
feedforward pathway. 
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Figure 5: Comparison between MT lesion and LIP lesion in decision making. (A) Schematic of the inactivation 
protocol. (B) Psychometric curves for baseline, MT lesion and LIP lesion in macaques (left) and in our 
computational cortical model with global coupling strength of G= 0.42 and 𝝈𝒔 = 𝟎. 𝟎𝟏𝟖 (right). (C-E) Relationship 
between coherence and fraction of valid trials, for different global coupling strength values. (F) Illustration of 
winning onset, winning rate, reaching onset, reaching rate, and ramping period. (G) Relative slope change 
(percentage of ramping speed change) across individual areas when lesioning MT or LIP, averaged over 300 trials. 

 
Effects of lesioning areas across the whole cortex 

We extended the study of the previous section by lesioning all non-sensory areas one by one 
(Fig. 6A) and analyzed how any particular inactivation affects ramping speeds across cortex. The 
full inactivation matrix is displayed in Fig. 6C. We observed, for example, that lesioning 
prefrontal area 46d had a strong effect on the ramping speed of parietal areas LIP and 7m, 
indicating a supportive role of PFC on parietal cortex. Furthermore, lesioning TEO greatly 
decreased the ramping speed of TEpd and increased that of area 45A and the OPRO. Lesioning 
temporal areas like STPc, STPi and MT affected virtually all association areas. 
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When we took mean values of the lesioning effect matrix, effectively applying the majority rule, 
we could infer how lesioning specific cortical areas globally affected the macaque’s decision-
making performance (Fig. 6B) and the mean ramping speed across areas (Fig. 6D). For example, 
lesioning areas MT, TEO and TEpd had biggest effects on psychometric curve (as indicated by 
changes in its slope), corresponding to the ignition phenomenon when removing most 
feedforward transmission links (Suppl Fig. S8). Also, frontal areas like OPRO, PRoM, 32 and 25 
had little effect on the psychometric curve, since their interareal connectivity with other regions 
was relatively weak. This link between structural connectivity (defined as 𝑆𝐿𝑁 ∗ 𝐹𝐿𝑁) and 
lesioning effects was reflected in a negative correlation of 𝑟 = −0.39	between both factors (Fig. 
6E). In contrast, inactivation of temporal areas led to strong effects, suggesting a more salient 
role of the temporal lobe in decision making.  

 

 
Figure 6: Model prediction of unrecorded cortical areas. (A) Schematic of the inactivation protocol for the 
neocortex. (B) Slopes of psychometric curve for baseline (0.45) and single area inactivation. (C) Inactivation matrix, 
with rows indicating the lesioned area, columns the affected areas, and color the relative slope change of the 
psychometric curve. (D) Mean of relative ramping speed changes when lesioning individual areas. (E) Relationship 
between lesioning effect (mean relative slope change) and structural connectivity. The distribution of corresponding 
variables is also displayed (left and bottom). 
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Discussion 
In this work we investigated the distributed computations underlying decision-making tasks, by 
simulation of large-scale cerebral network models. Traditionally, decision making has been 
characterized by a gradual evidence accumulation process reflected in ramp-up activity in local 
cortical circuits (6, 7, 48, 49). While a few computational studies have approached this topic 
considering two interconnected areas (27–29), our work provides a formal leap as a novel and 
detailed computational study of decision making encompassing a large-scale, data-constrained 
cortical network. Additionally, our study opens the door to explore cognitive functions within 
large cortical networks in an integrative manner, as its architecture and properties align with a 
recent proposal regarding the distributed nature of working memory (33). 

A salient feature of our work is the integration of multiple data sets of gradients of biophysical 
properties across the cortical network: (i) a pyramidal cell dendritic spine gradient informing on 
local synaptic density, (ii) a tract-tracing connectome embedding the model with directed and 
weighted long-range connections, (iii) a neuroanatomical cortical hierarchy used to infer targeted 
populations in long-range projections, and (iv) gradients of receptor density per neuron for the 
NMDA and GABAA receptors which allowed to constrain the excitatory/inhibitory balance and 
strength. This level of detail allowed us to identify outliers like LIP or 7A, which had a high 
hierarchical rank and NMDA receptor density per neuron but a low level of pyramidal dendritic 
spines. This pointed at an unexpected abundance of NMDA receptors on inhibitory neurons, 
which contributed to the observed slow ramping activity in parietal cortex compared to other 
areas such as prefrontal cortex. The combination of data sets also allowed our model to explain 
sustained activity as reported in areas V4 and MT (50, 51), which previous models had missed. 
Despite this, our model, augmented with receptor heterogeneity, yielded different evidence 
accumulation trajectories compared to the hierarchy-driven model proposed by (33). For 
instance, the correlation between the expected winning onset rank of all association areas during 
low coherence trials exhibited only intermediate agreement between the two model simulations 
(Suppl. Fig. S11).  Combining these data sets with additional refinements, such as causality-
reconstructed connectivity maps and hierarchical interactions (38, 52–55) or additional receptor 
per neuron densities (32, 39) may further increase the model’s predictive capacity. 
Winning onsets uncover multiple information pathways 

The sequential order of winning onsets observed in our model was a reflection of how motion 
information may be processed and broadcasted in the brain. Interestingly, the information 
pathways revealed by the model were not fixed, and rather dependent on the input coherence and 
therefore the task difficulty. We observed that higher cognitive and association areas like TEO 
and 9/46d led the decision process for hard trials, while early sensory areas led for easier trials. 
The alteration in winning onset order could indicate a change in the role of certain areas when 
the macaque encountered a tough vs simple task. This suggests that an efficient performance on 
difficult decision-making tasks might benefit from top-down modulation, a prediction aligned 
with conscious perception theories (16–18, 56). There is also evidence of monkeys taking 
different strategies depending on task difficulty (57, 58).  

In addition, previous experimental attempts to uncover the information flow during categorical 
perceptual decision tasks  revealed a decision-related cortical pathway given by MTà LIPà 
V4à ITà FEFà PFC. By setting the input to full coherence, therefore approximating a 
categorical perceptual decision task, our model led to a similar cortical pathway for information 
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flow attending to winning onset order: V4à MTà IT(TEO)à LIPà FEF (8I)à PFC (9/46v) 
(Suppl. Fig. S3), with only minor misalignments with the data for the positions of V4 and 
TEO/IT. Furthermore, the activation of this sequence occurs within 0.2 seconds for both 
experimental data and our model predictions. This indicated that data-constrained large-scale 
models are well-suited to explore decision-related information pathways in cortical networks, 
and to uncover the mechanisms behind sequential decision stages (45, 59). 

Temporal gating in decision-related memory 
In decision making tasks, monkeys are sometimes expected to maintain their choice in memory 
for a short time, which posits the robustness of choice-related memories as fundamental for 
performance. We varied global coupling strength to individually simulate both strongly and 
weakly distributed circuit models. As in the literature (45), distractors with different duration and 
strength were fed to the model, revealing distinct reactions to distractors and suggesting that 
early distractors are most effective than late ones. In weakly distributed models, it was easier for 
distractors to disturb the ramping activity, perhaps reflecting the performance of poorly trained 
monkeys. Future experiments could address how monkeys at different trained stages react to 
distractors, to test the existence of these two effects behind temporal gating (60). 

Causal irrelevance of LIP is replicated by simulated inactivation 
Despite the traditional focus on parietal cortex as a circuit involved in sensory accumulation, 
recent evidence on rodents and primates has disputed this idea (19, 21, 22, 25, 26). However, a 
mechanistic explanation as of why parietal cortex would play a relatively minor role in decision 
making despite its activity’s high correlation with behavior was crucially lacking. By simulating 
lesioning effects across different areas, our model demonstrates that a distributed network of 
redundant evidence accumulation is sufficient to explain the experimentally observed causal 
irrelevance of LIP, as its inactivation may be compensated by the integration process occurring 
in parallel in other areas. Inactivation of other areas such as MT led by contrast to a much more 
substantial impairment in performance, as also observed experimentally. This is mostly due to 
the relatively low hierarchical position of MT, acting as an important bridge in the sensory 
pathway. When further exploring currently unknown effects of lesioning other areas, the model 
predicted an important role of temporal lobe areas such as TEO and TEpd, a prediction that 
requires experimental validation. 
 

Materials and Methods 
 
The large-scale cortical model presented here uses previous modeling work on distributed 
working memory as a basis (33), and substantially improves upon it with the introduction of (i) a 
larger number of cortical areas interconnected by neuroanatomical data, (ii) area-specific data on 
the density of NMDA and GABA receptors across the neocortex, obtained via autoradiography 
experiments, and (iii) novel theoretical assumptions on the relative impact on the effects of the 
density of dendritic spines and postsynaptic receptors on intra- and inter-areal interactions.  
 
We describe our model in three steps: the local circuit employed, the differentiation of such 
circuit across the whole neocortex via synaptic gradients, and the inter-areal projections. We then 
briefly define several metrics for behavioral performance and inactivation effects, ending with a 
short summary on our simplified ‘toy model’ for winning onset results. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2023.12.26.573347doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573347
http://creativecommons.org/licenses/by/4.0/


 

17 
 

 
Computational model: local neural circuit 
 
We employed the Wong-Wang model (7) to characterize the neural dynamics of a local 
microcircuit representing a cortical area. This model, in its three-variable version, captures the 
temporal evolution of the firing rates of two input-selective excittory populations, as well as the 
firing rate dynamics of an inhibitory population. The populations are interconnected with each 
other, as depicted in Figure 1A. The model is governed by the following equations: 
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Here, SA and SB are the NMDA conductances of selective excitatory populations A and B 
respectively, and SC is the GABAergic conductance of the inhibitory population. Values for the 
constants are τN=60 ms, τG=5 ms, γ=1.282 and γI=2. The variables rA, rB and rC are the mean 
firing rates of the two excitatory and one inhibitory population, respectively.  
 
They are obtained by solving, at each time step, the transcendental equation 𝑟) = 𝜙)(𝐼)) (where 𝜙 
is the transfer function of the population, detailed below), with Ii being the input to population 
‘i’, given by 
 
𝐼% = 𝐽*𝑆% + 𝐽+𝑆& + 𝐽,'𝑆( + 𝐼-% + 𝐼./#% + 𝑥%(𝑡)    (Eq. 4) 
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𝐼( = 𝐽',𝑆% + 𝐽',𝑆& + 𝐽''𝑆( + 𝐼-( + 𝐼./#( + 𝑥((𝑡)    (Eq. 6) 
 
In these expressions, Js, Jc are the self- and cross-coupling between excitatory populations, 
respectively, JEI is the coupling from the inhibitory populations to any of the excitatory ones, JIE 
is the coupling from any of the excitatory populations to the inhibitory one, and JII is the self-
coupling strength of the inhibitory population. The parameters I0i with i=A, B, C are background 
inputs to each population. Fixed parameters across the cortex are Jc=0.0107 nA, JEI=-0.31 nA, 
JII=-0.20 nA, and I0C=0.26 nA (background currents for populations A and B are specified later). 
The term Iinet denotes the long-range input coming from other areas in the network and will be 
detailed later. Sensory stimulation can be introduced here as extra pulse currents of strength IstimA 
=0.3(1+c) and IstimB=0.3(1-c) to the V1 excitatory populations A and B respectively, where c is 
the coherence level, with a duration of Tpulse =0.7 sec, unless specified otherwise. 
 
The last term xi(t) with i=A, B, C is an Ornstein-Uhlenbeck process, which introduces some level 
of stochasticity in the system. It is given by 
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Here, ξi(t) is a Gaussian white noise, the time constant is τnoise=2 ms and the noise strength is 
σA,B=0.01 nA for excitatory populations and σC=0 for the inhibitory one. 
 
The transfer function ϕi(t) which transform the input into firing rates takes the following form for 
the excitatory populations(61): 
 
𝜙%,&(𝐼) = 	
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       (Eq. 8) 
 
The values for the parameters are a=135 Hz/nA, b=54 Hz and d=0.308 s. For the inhibitory 
population a similar function can be used, but for convenience we choose a threshold-linear 
function: 
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A
      (Eq. 9) 

 
The notation [𝑥]A denotes rectification. The values for the parameters are gI=4, cb=615 Hz/nA, 
ca=177 Hz and r0=5.5 Hz. 
 
Computational model: Gradient of synaptic strengths 
 
Before considering the large-scale network and the inter-areal connections, we look into the area-
to-area heterogeneity to be included in the model.  
 
Our large-scale cortical system consists of N=40 local cortical areas, for which inter-areal 
connectivity data is available. Each cortical area is described as a Wong-Wang model of three 
populations like the ones described in the previous section. Instead of assuming areas to be 
identical to each other, here we will consider some of the natural area-to-area heterogeneity that 
has been found in anatomical studies. For example, work from Elston (31) has identified a 
gradient of pyramidal cell dendritic spine density, from low spine numbers (~600) found in early 
sensory areas to large spine counts (~9000) found in higher cognitive areas. From an 
electrophysiological point of view, excitatory postsynaptic potentials (EPSP) have similar values 
both in early sensory (~1.7+1.3 mV) and higher cognitive areas (~0.55+0.43 mV). The 
combination of these findings suggests an increase of local recurrent strength as we move from 
sensory to association areas. In addition, cortical areas are distributed along an anatomical 
hierarchy (37, 62). The position of a given area ‘i’ within this hierarchy, namely hi, can be 
computed with a generalized linear model using data on the fraction of supragranular layer 
neurons (SLN) projecting to and from that area. In particular, we assigned hierarchical values to 
each area such that the difference in values predicts the SLN of a projection. Concretely, we 
assign a value Hi to each area Ai so that SLN(Aj à Ai) ~ f (Hi-Hj), with ‘f’ being a logistic 
regression. The final hierarchical values are then obtained by normalizing hi=Hi/Hmax. Further 
details on the regression are provided elsewhere (37, 38). 
 
In the following, we will assign the incoming synaptic strength (both local and long-range) of a 
given area as a linear function of the pyramidal dendritic spine count values observed in 
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anatomical studies, with age-related corrections when necessary. Alternatively, when spine count 
data is not available for a given area, we will use its position in the anatomical hierarchy, which 
displays a high correlation with the spine count data, as a proxy for the latter. After this process, 
the large-scale network will display a gradient of local and long-range recurrent strengths, with 
sensory/association areas showing weak/strong local connectivity, respectively. We denote the 
local and long-range strength value of a given area i in this gradient as hi, and this value 
normalized between zero (bottom of the gradient, area V1) and one. We assume therefore a 
linear gradient of values of Js, with its value going from Jmin to Jmax: 
 
𝐽*(𝑖) = 𝐽B). + (𝐽B51 − 𝐽B).)	ℎ)      (Eq. 10) 
 
The above equation considers the impact of the number of dendritic spines per neuron in the 
synaptic strength of each brain area, but the density of NMDA and GABAA receptors per neuron 
must also be taken into account. Since excitatory signals target not only other pyramidal neurons 
but also interneurons, we assume that the local NMDA receptor density has a positive correlation 
with the sum of all excitation signals in a given brain region. We use a saturating gradient, or 
logistic function, to model such area-specific parameters:  
 
𝐽") + 𝐽( + 𝐽',) = 5*
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+ 𝑐3																			                   (Eq. 11) 

 
Here, the sum of the three excitatory projections in the left-hand side defines the strength of 
excitatory transmission, which depends on 𝑁𝑀𝐷𝐴), the experimental NMDA receptor density of 
brain area ‘i’, via a logistic function. The constants 𝑎3 = 0.524, 𝑏3 = 1.01, 𝑐3 = 0.018, 𝑑3 =
0.12, 𝑘 = 9.35 are used to constrain the slope and roof of the curve. Since receptor density ratio 
between NMDA and GABA measures the relative excitatory-inhibitory synaptic strength 
balance, GABAergic receptor density can be introduced via the following balance equation: 
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where 𝐺𝐴𝐵𝐴) is the experimental GABAA receptor density of brain area ‘i’.  
 
If association areas have large values of 𝐽", it can influence their spontaneous activity, even 
without considering inter-areal coupling. To ensure that the spontaneous firing rate of these areas 
remains within the physiologically realistic regime, a viable approach is to enforce that the fixed 
point of spontaneous activity is the same for all areas, which is a reasonable approximation. This 
can be done by adjusting the background currents 𝐼- (for both excitatory populations A and B) on 
an area-specific basis, which aligns with the differentiated thalamocortical input observed in real 
brains. We therefore use adaptive background current to balance spontaneous firing rate: 
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𝐼-) = 𝐼-K'L − TU𝐽") − 𝐽"K'LV + 2U𝐽,') 𝐽',) − 𝐽,'K'L𝐽',K'LV𝜁W 𝑆*M − U𝐽,') − 𝐽,'K'LV𝛽      (Eq. 15) 
 
Here 𝐼-K'L is the background current in parietal area LIP and its value has been set 𝐼-K'L = 0.3294 
as in previous work (7) to fit temporal ramping excitatory neuron firing rates in LIP. The 
parameter 𝑆*M = 0.03566 is the constant value of spontaneous NMDA gating variable in a local 
disconnected circuit. 
 
Unless specified otherwise, we set 𝐽B).=0.225 𝑛𝐴 and 𝐽B51 = 0.42	𝑛𝐴 (i.e., below the critical 
value), so that the model displays distributed attractors as in the case of working memory (33). 
 
Computational model: Inter-areal projections 
 
In the present study, the inter-areal projections that connect isolated areas contribute to the 
formation of the expansive cortical network. We assume that these inter-areal projections 
originate solely from excitatory neurons, as inhibitory projections typically exhibit a more 
localized pattern within real circuits and are selective for excitatory neurons. Thus, the network 
or long-range input term within a specific area "x" from all other cortical areas, can be expressed 
as follows: 
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Here, 𝐺 is the global coupling strength, which controls the overall long-range projection strength 
in the network (𝐺 = 0.52 unless specified otherwise). 𝑍 = 1.2 is a factor that considers the 
relative balance between long-range excitatory and inhibitory projections.  
 
Aside from global scaling factors, the effect of long-range projections from population y to 
population x is influenced by two factors. The first one, 𝑊1N, is the anatomical projection 
strength as revealed by tract-tracing data (36). We use the fraction of labelled neurons (FLN) 
from population y to x to constrain our projections values to anatomical data. We rescale these 
strengths to translate the broad range of FLN values (over five orders of magnitude) to a range 
more suitable for our firing rate models. We use a rescaling that maintains the proportions 
between projection strengths, and therefore the anatomical information, that reads 
 
𝑊1N = 𝑘3	(𝐹𝐿𝑁1N)C,        (Eq. 19) 
 
Here, the values of the rescaling are k1 =1.2 and k2 =0.3. The same qualitative behavior can be 
obtained from the model if other parameter values, or other rescaling functions, are used as long 
as the network is set into a standard working regime (i.e. signals propagate across areas, global 
synchronization is avoided, etc.) FLN values are also normalized so that ∑ 𝐹𝐿𝑁1N

N = 1. While 
in-degree heterogeneity might impact network dynamics (63, 64), this was done to have a better 
control of the heterogeneity levels of each area, and to minimize confounding factors such as the 
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uncertainty on volume injections of tract tracing experiments and the influence of potential 
homeostatic mechanisms. In addition, and as done for the local connections, we introduce a 
gradient of long-range projection strengths using the spine count data: 𝑊1N → (𝐽*(𝑥)/
𝐽PQ9	)	𝑊1N	, so that long-range projections display the same gradient as the local connectivity 
presented above. 
 
The second factor that needs to be taken into account is the directionality of signal propagation 
across the hierarchy. Feedforward (FF) projections that are preferentially excitatory constitute a 
reasonable assumption which facilitate signal transmission from sensory to higher areas. On the 
other hand, having feedback (FB) projections with a preferential inhibitory nature contributes to 
the emergence of realistic distributed WM patterns (Figure 4) (see also previous work (37, 65)). 
This feature can be introduced, in a gradual manner, by linking the different inter-areal 
projections with the SLN data, which provides a proxy for the FF/FB nature of a projection 
(SLN=1 means purely FF, and SLN=0 means purely FB). In the model, we assume a linear 
dependence with SLN for projections to excitatory populations and with (1-SLN) for projections 
to inhibitory populations, as shown above. 
 
Following recent evidence of frontal networks having primarily strong excitatory loops (66), it is 
convenient to ensure that the SLN-driven modulation of FB projections between frontal areas is 
not too large, so that interactions between these areas are never strongly inhibitory. In practice, 
such constraint is only necessary for projections from frontal areas to 8l and 8m (which are part 
of the frontal eye fields) and has little effect on the behavior of our model otherwise. The 
introduction of this limitation has two minor consequences: (i) it allows area 8l and 8m to exhibit 
a higher level of persistent activity during distributed WM –as their hierarchical position and 
recurrent strength are not strong enough to sustain activity otherwise, as previously suggested in 
anatomical studies (36, 37), and (ii) it slightly shifts the transition point in cortical space. Unless 
specified otherwise, we consider that the SLN-driven modulation of FB projections to 8l and 8m 
is never larger than 0.4.  
 
Behavioral performance: psychometric curves 
 
Psychometric curves were fitted with a binomial generalized linear regression model (GLM): 
 

log
𝑦

1 − 𝑦 = 𝛽3𝑥 + 𝛽- 

 
where 𝑦 was the probability to choose population A as the final decision and 𝑥 was the contrast 
strength. 𝛽 = (𝛽3, 𝛽-) were the parameters of the fit, with 𝛽3 representing the slope of the 
psychometric curve and 𝛽- the value at zero contrast. 
 
Evaluation of lesioning effects 
 
To replicate the results of the lesioning protocol, we employed a manual approach to induce 
lesioning effects in the target area's three populations. Specifically, we set the firing rates of all 
three populations to zero. We evaluated the impact of such lesioning by assessing the percentage 
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change in ramping speed, which measures the speed at which a specific area encodes the final 
decision: 
 
𝑅𝑆) =

RR(6SR(
RT(6ST(

              (Eq. 20) 
 
Here, RSi is the ramping speed for area 𝑖 in the decision-making task with the intact recurrent 
network. As mentioned in the main text, the winning onset (WOi) is the time at which the 
difference between the firing rates of both excitatory populations becomes larger than a certain 
threshold (zero for Fig. 3, 0.5 for Figs. 5 and 6) and increases from there without returning to 
zero (see Fig. 3B). The winning rate (WRi) is defined as the firing rate of the winning population 
at the winning onset, the reaching rate (RRi) is defined as (0.75 x attractor firing rate – 0.25 x 
winning rate), and the reaching onset (ROi) is defined as the time at which the winning 
population firing rate arrives at the reaching rate. We compare how lesioning one area affects the 
other area under same realization of Gaussian white noise with the following expression: 
 
𝐿𝐸),U =

R"(,.6R"(
R"(

            (Eq. 21) 
 
where LEi,j is the degree by which lesioning area ‘j’ affects the ramping speed of area ‘i’, and 
RSi,j is the ramping speed in area ‘i’ when area ‘j’ is lesioned. 
   
 
A toy model accounting for the shift of winning onset order 
 
The toy model of Figure 3E consists of three cortical areas V1, MT and 9/46v, with V1 
transmitting motion information, MT as an intermediate area connecting association areas with 
sensory areas, and 9/46v as an association area to sustain delay activity. The computational 
model structure is the same except for the long-range projections, which are now as follows: 
 
𝐼%,./#1 = ∑ 𝑊∗

1N𝑆%
N

N         (Eq. 22) 
 
𝐼&,./#1 = ∑ 𝑊∗

1N𝑆&
N

N         (Eq. 23) 
 
𝐼(,./#1 = ∑ 𝑊61N(𝑆%

N + 𝑆&
N)N                   (Eq. 24) 

 
Here, 𝑊∗

1N ,𝑊61N are parameters assigning individual roles to the three areas. All parameter 
values of the model can be found in Supplementary Table S1. 
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Supplementary figures 

 
Figure S1: Correlation between the density of GABAA and NMDA receptors per neuron across all cortical 
areas considered. The high correlation allows to adopt several modeling assumptions (see Methods). 
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Figure S2: Evidence accumulation is distributed across multiple cortical areas. Integration of sensory evidence 
across all 40 cortical areas in the model, for a visual input of 5% coherence entering V1. We can distinguish 
between sensory-driven areas (such as V1 and V2), accumulators (like TEO, LIP and 9/46d) and classificators (like 
45A and 24c) depending on their response profile and speed of integration. 
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Figure S3: Comparison of area-specific decision times in experiments and model. Top: Timing of onsets in the 
cortical information flow in categorical decision-making as measured experimentally in macaques (9). Bottom: 
Timing of the winning onsets for decision making as predicted by our model. Area legend applies to both panels. 
Both experimental data and model predictions have the same overall activation window of ~0.2 seconds and both 
follow the same order, except for areas V4 and TEO/IT. 

 
 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2023.12.26.573347doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573347
http://creativecommons.org/licenses/by/4.0/


 

31 
 

 
Figure S4: Winning onset distribution of all association areas: (A) Coherence = 0%. (B) Coherence = 100%. 
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Figure S5: Evidence accumulation at MT and 9/46v during the decision-making task for the simplified three-
area model (V1, MT, 9/46v). As in the full-network model, trials with low coherence led to longer decision times.  

 

 
 

 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2023.12.26.573347doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573347
http://creativecommons.org/licenses/by/4.0/


 

33 
 

 
Figure S6: Effects of NMDA and GABA receptor density shuffling. (A) The expected winning onset ranks under 
coherence 1% and coherence 100% of 32 association areas, with V4 and MT excluded. (B) Relationships between 
expected winning onset ranks and cortical hierarchy position under coherence 1%. (C) The same as (B), under 
coherence 100%. (D) The bifurcation diagram for a specific area with high dendritic spine count, high NMDA and 
GABA receptor densities. In the control model (left), the inter-areal current is not enough to induce bifurcation at 
spontaneous states. When shuffling its receptor density data with a lower area, with the same global coupling 
strength, the inter-areal current crosses the new bifurcation point (right) because of the decreasing indirect inhibitory 
coupling between excitatory populations. Dashed line is the spontaneous inter-areal current. (E) Distribution of 
global coupling strength over 100 receptor density data shuffling. (F) For one specific shuffled model configuration, 
the neocortical responses for stimulus under coherence 1% (left) and coherence 100% (right). (G) The 
corresponding dynamics of inter-areal current in both scenarios. (H) Temporal dynamics of background excitatory 
current noise, on the same scale compared to inter-areal current in (G). 
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Figure S7: Correlation between expected winning rank and hierarchy value under different shuffling 
situations. (A) Without shuffling. (B) Shuffling FLN connectome. (C) Shuffling NMDA and GABA receptor 
density together. (D) Shuffling E-I ratio (only GABA receptor density). 
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Figure S8: Temporal gating effects. Impact of temporal gating of distractor signals (purple) on the maintenance of 
cue information (blue) for V1 and TEpd. Top and middle-top: effects of changing the duration from 280 ms to 270 
ms in a fixed onset task. Middle-bottom and bottom: effects of changing the distractor strength in a fixed duration 
task. 
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Figure S9: Lesioning effect on behavioral performance for strongly connected networks. Psychometric curve 
of the full-network model for the control case (baseline), inactivation of MT (green) and inactivation of LIP (blue) 
for global coupling of G=0.52. Due to the strong interaction between cortical areas, lesioning either MT or LIP does 
not lead to substantial performance drops in the task, in contrast to the case of weakly connected networks described 
in the main text. 
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Figure S10: Signal propagation of visual information. Feedforward connections were all removed except 
originating from visual areas V1, V2, V4 and V6, and a step visual input (=0.6A) was injected into one of V1 
excitatory populations. All association areas didn’t respond to this stimuli despite MT, TEO and TEpd, indicating 
the role of visual transmission bridges of those areas. 
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Supplementary tables 
 
 
 V1 MT PFC 
Js 0.25 0.42 0.29 
JIE 0.015 0.05 0.1 
I0I 0.26 0.26 0.26 
I0E 0.3195 0.3192 0.3172 
WE from V1 to area: 0 0.07 0.01 
WE from MT to area: 0.01 0 0.1 
WE from PFC to area: 0.01 0.07 0 
WI from V1 to area: 0 0.001 0.01 
WI from MT to area: 0.01 0 0.005 
WI from PFC to area: 0.01 0.05 0 

 
Table S1: Parameters of the toy model used to explain the shift in winning onset values. 
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