001048411 001__ 1048411
001048411 005__ 20251203093742.0
001048411 0247_ $$2doi$$a10.5194/amt-18-6893-2025
001048411 0247_ $$2ISSN$$a1867-1381
001048411 0247_ $$2ISSN$$a1867-8548
001048411 037__ $$aFZJ-2025-04622
001048411 041__ $$aEnglish
001048411 082__ $$a550
001048411 1001_ $$00000-0002-9544-6392$$aKeppens, Arno$$b0$$eCorresponding author
001048411 245__ $$aHarmonisation of sixteen tropospheric ozone satellite data records
001048411 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2025
001048411 3367_ $$2DRIVER$$aarticle
001048411 3367_ $$2DataCite$$aOutput Types/Journal article
001048411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764750949_28696
001048411 3367_ $$2BibTeX$$aARTICLE
001048411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048411 3367_ $$00$$2EndNote$$aJournal Article
001048411 520__ $$aThe first Tropospheric Ozone Assessment Report (TOAR, 2014–2019) encountered several observational challenges that limited the confidence in estimates of the burden, short-term variability, and long-term changes of ozone in the free troposphere. One of these challenges is the difficulty to interpret the consistency of satellite measurements obtained with different techniques from multiple sensors, leading to differences in spatiotemporal sampling, vertical smoothing, a-priori information, and uncertainty characterisation. This motivated the Committee on Earth Observation Satellites (CEOS) to initiate a coordinated activity VC-20-01 on improving the assessment and harmonisation of tropospheric ozone measured from space. Here, we report on work that contributes to this CEOS activity, as well as to the ongoing second TOAR assessment (TOAR-II, 2020–2025). Our objective is to harmonise the spatiotemporal perspective of (sixteen) satellite ozone data records, thereby accounting as much as possible for differences in vertical smoothing and sampling. Four harmonisation methods are presented to achieve this goal: two for ozone profiles obtained from nadir sounders (UV-visible, IR, and combined UV-IR), and two for tropospheric ozone column products derived by one of the residual methods (Convective Cloud Differential or Limb–Nadir Matching). We discuss to what extent harmonisation may affect assessments of the spatial distribution, seasonal cycle, and long-term changes in free tropospheric ozone, and we anchor the harmonised profile data to ozonesonde measurements recently homogenised as part of TOAR-II. We find that approaches that use global ozone fields as a transfer standard (here the Copernicus Atmosphere Monitoring Service ReAnalysis, CAMSRA) to constrain the harmonisation generally lead to the largest reduction of the inter-product dispersion (IPD) between satellite datasets. These harmonisation efforts, however, only partially account for the observed discrepancies between the satellite datasets, with a reduction of about 10 %–40 % of the IPD upon harmonisation, depending on the products involved and with strong spatiotemporal dependences. This work therefore provides evidence that it is not only the differences in spatiotemporal smoothing and sampling, but rather the differences in measurement uncertainty that pose the main challenge to the assessment of the spatial distribution and temporal evolution of free tropospheric ozone from satellite observations.
001048411 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001048411 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048411 7001_ $$00000-0002-4365-865X$$aHubert, Daan$$b1
001048411 7001_ $$0P:(DE-HGF)0$$aGranville, José$$b2
001048411 7001_ $$00000-0001-7116-2494$$aNath, Oindrila$$b3
001048411 7001_ $$0P:(DE-HGF)0$$aLambert, Jean-Christopher$$b4
001048411 7001_ $$0P:(DE-HGF)0$$aWespes, Catherine$$b5
001048411 7001_ $$0P:(DE-HGF)0$$aCoheur, Pierre-François$$b6
001048411 7001_ $$0P:(DE-HGF)0$$aClerbaux, Cathy$$b7
001048411 7001_ $$0P:(DE-HGF)0$$aBoynard, Anne$$b8
001048411 7001_ $$0P:(DE-HGF)0$$aSiddans, Richard$$b9
001048411 7001_ $$00000-0001-5101-9316$$aLatter, Barry$$b10
001048411 7001_ $$0P:(DE-HGF)0$$aKerridge, Brian$$b11
001048411 7001_ $$00000-0003-0476-4545$$aDi Pede, Serena$$b12
001048411 7001_ $$00000-0003-0336-6406$$aVeefkind, Pepijn$$b13
001048411 7001_ $$0P:(DE-HGF)0$$aCuesta, Juan$$b14
001048411 7001_ $$00000-0001-8847-2165$$aDufour, Gaelle$$b15
001048411 7001_ $$00000-0001-8823-7712$$aHeue, Klaus-Peter$$b16
001048411 7001_ $$00000-0002-9275-498X$$aColdewey-Egbers, Melanie$$b17
001048411 7001_ $$00000-0002-8547-9350$$aLoyola, Diego$$b18
001048411 7001_ $$00000-0001-8346-5409$$aOrfanoz-Cheuquelaf, Andrea$$b19
001048411 7001_ $$0P:(DE-HGF)0$$aMaratt Satheesan, Swathi$$b20
001048411 7001_ $$0P:(DE-HGF)0$$aEichmann, Kai-Uwe$$b21
001048411 7001_ $$00000-0003-4525-3223$$aRozanov, Alexei$$b22
001048411 7001_ $$00000-0002-9192-2208$$aSofieva, Viktoria F.$$b23
001048411 7001_ $$0P:(DE-HGF)0$$aZiemke, Jerald R.$$b24
001048411 7001_ $$00000-0003-0603-5389$$aInness, Antje$$b25
001048411 7001_ $$00000-0002-1369-8853$$aVan Malderen, Roeland$$b26
001048411 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b27
001048411 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-18-6893-2025$$gVol. 18, no. 22, p. 6893 - 6916$$n22$$p6893 - 6916$$tAtmospheric measurement techniques$$v18$$x1867-1381$$y2025
001048411 8564_ $$uhttps://amt.copernicus.org/articles/18/6893/2025/
001048411 8564_ $$uhttps://juser.fz-juelich.de/record/1048411/files/amt-18-6893-2025.pdf$$yRestricted
001048411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b27$$kFZJ
001048411 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001048411 9141_ $$y2025
001048411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2022$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:30:35Z
001048411 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:30:35Z
001048411 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:30:35Z
001048411 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-12-20T09:30:35Z
001048411 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-06
001048411 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-06
001048411 920__ $$lyes
001048411 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001048411 980__ $$ajournal
001048411 980__ $$aEDITORS
001048411 980__ $$aVDBINPRINT
001048411 980__ $$aI:(DE-Juel1)JSC-20090406
001048411 980__ $$aUNRESTRICTED