001048413 001__ 1048413
001048413 005__ 20251127202205.0
001048413 037__ $$aFZJ-2025-04624
001048413 041__ $$aEnglish
001048413 1001_ $$0P:(DE-Juel1)131650$$aKedo, Olga$$b0$$eCorresponding author$$ufzj
001048413 1112_ $$a9th BigBrain Workshop -HIBALL Closing Symposium$$cBerlin$$d2025-10-27 - 2025-10-29$$wGermany
001048413 245__ $$aThe hippocampal formation mapped in the BigBrain: The deep-learning supported high-resolution mapping and 3D reconstruction
001048413 260__ $$c2025
001048413 3367_ $$033$$2EndNote$$aConference Paper
001048413 3367_ $$2BibTeX$$aINPROCEEDINGS
001048413 3367_ $$2DRIVER$$aconferenceObject
001048413 3367_ $$2ORCID$$aCONFERENCE_POSTER
001048413 3367_ $$2DataCite$$aOutput Types/Conference Poster
001048413 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1764234981_29108$$xAfter Call
001048413 520__ $$aThe hippocampal formation (HF) plays a pivotal role in different aspects of memory, with its subdivisions having various functional implications. The hippocampus has been parcellated in different ways both in histological and MRI studies [1, 2]. In the BigBrain, 3D rendering of the hippocampus was performed with its subdivisions being revealed through unfolding and unsupervised clustering of laminar and morphological features [3]. However, this parcellation was not detailed enough, e.g. in the field of the subicular complex (subiculum).We cytoarchitectonically identified and mapped in 10 postmortem brains and generated probabilistic maps of CA1, CA2, CA3, CA4, Fascia dentata (FD), prosubiculum (ProS), subiculum (Sub), presubiculum (PreS), parasubiculum (PaS), transsubiculum (TrS), hippocampal-amygdaloid transition area (HATA) and entorhinal cortex (EC) [4]. Based on this research, we mapped HF in the BigBrain and generated the 3D maps of HF in the BigBrain template. Cytoarchitectonic mapping of 12 structures was performed in at least each 15th serial histological sections in the web-based annotation tool MicroDraw at 1-micron resolution in-plane in the BigBrain. Subsequently, a Deep Learning Workflow was utilized to 3D-reconstruct the structures. Convolutional Neural Networks were trained for image segmentation in the sections lying between those manually mapped using ATLaSUI [5]. The annotations of each structure were non-linearly transformed to the sections of the 3D reconstructed BigBrain space at 20-micron isotropic resolution [6], and was further visualized using the Neuroglancer.We have identified 12 cytoarchitectonic structures of HF in the BigBrain and analyzed their macroanatomy (Fig. 1). Fasciola cinerea (FD in its mediocaudal extension) was larger in the left hemisphere, while it was minuscule on the right (Fig.1A). Left ProS extended onto dorsomedial surface of the parahippocampal gyrus (PHG), while the right ProS almost does not appear on the surface (Fig.1B). Caudally, PreS occupied medial surface of the PHG. TrS abutted on PreS ventrally. Caudal TrS bordered the temporo-parieto-occipital proisocortex laterally (Fig.1A), while rostral TrS abutted upon area 35. PaS replaced TrS rostrally. The detailed mapping of HF reflected a transition from the allocortex (ProS and Sub) to the periallocortex (PreS, PaS) within the subicular complex that traditionally was considered as a cytoarchitectonic unit. Rostrally, both hemispheres had three Digitationes hippocampi respectively (Fig.1C). The high-resolution (20 μm) whole-brain histological references of HF were generated on the basis of the BigBrain. They will be publicly available on the EBRAINS platform and integrated with the BigBrain model, extending maps of the piriform cortex [7] to represent two hubs of limbic system [8].1.	Wisse L.E.M. et al. (2017) Hippocampus, 27(1): p. 3-11.2.	Yushkevich P.A. et al. (2015), Neuroimage, 111: p. 526-41.3.	DeKraker J. et al. (2020), Neuroimage, 206: p. 116328.4.	Palomero-Gallagher N. et al. (2020), Brain Struct Funct, 225(3): p. 881-907.5.	Schiffer C. et al. (2021), Neuroimage, 240: p. 118327.6.	Amunts K. et al. (2013), Science, 340(6139): p. 1472-5.7.	Kedo O. et al. (2024), Anatomia, 3(2): p. 68–92.8.	Catani M. et al. (2013), Neurosci Biobehav Rev, 2013. 37(8): p. 1724-37.
001048413 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048413 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1
001048413 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001048413 7001_ $$0P:(DE-Juel1)196766$$aLothmann, Kimberley$$b1$$ufzj
001048413 7001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b2$$ufzj
001048413 7001_ $$0P:(DE-Juel1)131660$$aMohlberg, Hartmut$$b3$$ufzj
001048413 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b4$$ufzj
001048413 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b5$$ufzj
001048413 8564_ $$uhttps://juser.fz-juelich.de/record/1048413/files/Figure_Abstract.tif$$yRestricted
001048413 8564_ $$uhttps://juser.fz-juelich.de/record/1048413/files/Figure_Abstract.gif?subformat=icon$$xicon$$yRestricted
001048413 8564_ $$uhttps://juser.fz-juelich.de/record/1048413/files/Figure_Abstract.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001048413 8564_ $$uhttps://juser.fz-juelich.de/record/1048413/files/Figure_Abstract.jpg?subformat=icon-180$$xicon-180$$yRestricted
001048413 8564_ $$uhttps://juser.fz-juelich.de/record/1048413/files/Figure_Abstract.jpg?subformat=icon-640$$xicon-640$$yRestricted
001048413 909CO $$ooai:juser.fz-juelich.de:1048413$$pVDB
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131650$$aForschungszentrum Jülich$$b0$$kFZJ
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196766$$aForschungszentrum Jülich$$b1$$kFZJ
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b2$$kFZJ
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131660$$aForschungszentrum Jülich$$b3$$kFZJ
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b4$$kFZJ
001048413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b5$$kFZJ
001048413 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048413 9141_ $$y2025
001048413 920__ $$lyes
001048413 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048413 980__ $$aposter
001048413 980__ $$aVDB
001048413 980__ $$aI:(DE-Juel1)INM-1-20090406
001048413 980__ $$aUNRESTRICTED