001     1048425
005     20251204202144.0
024 7 _ |a 10.1515/cdbme-2025-0192
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04636
|2 datacite_doi
037 _ _ |a FZJ-2025-04636
082 _ _ |a 570
100 1 _ |a Goldermann, Lavinia
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Influence of Human Annotation on CNN Performance for Anomaly Detection in ICU Data
260 _ _ |a Berlin
|c 2025
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764851276_6975
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deep learning methods are increasingly used in clinical artificial intelligence (AI) research, including for detecting anomalies in intensive care data. However, their evaluation often depends on human annotations, which can vary in quality and consistency. In this study, we analyse the effect of annotation variability on the performance of DeepAnT, an unsupervised convolutional neural network for anomaly detection (AD). Using intensive care time-series data from 38 patients for training and six patients separately annotated for evaluation, we compare F1 scores based on two independent physician annotations. Our results show differences in model performance across different vital parameters, between patients, and especially between annotators evaluating the same data. These findings indicate that human labelling has a measurable impact on the perceived performance of the AD algorithm. Structured labelling protocols may be beneficial for achieving more consistent and reliable evaluations.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fonck, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Olivier, Lena
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 3
|u fzj
700 1 _ |a Stollenwerk, André
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1515/cdbme-2025-0192
|g Vol. 11, no. 1, p. 362 - 365
|0 PERI:(DE-600)2835398-5
|n 1
|p 362 - 365
|t Current directions in biomedical engineering
|v 11
|y 2025
|x 2364-5504
856 4 _ |u https://juser.fz-juelich.de/record/1048425/files/The%20Influence%20of%20Human%20Annotation%20on%20CNN%20Performance%20for%20Anomaly%20Detection%20in%20ICU%20Data.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048425
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:39:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:39:59Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:39:59Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21