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In correlated transition-metal oxides, orbital-ordering appears to always precede magnetic ordering
(TN < TOO). The RVO3 series is the exception: it exhibits an inversion of TN and TOO with increasing rare-
earth radius RI . Why vanadates are different is not understood. Here we show that the reason is
fundamental: when lattice effects dominate orbital physics, magnetic order follows orbital order, and thus
TN < TOO. This is what happens in most transition-metal oxides, and it is what quenches exotic quantum
orbital phases. In the RVO3 series, however, lattice effects become ineffective with increasing RI , while, at
the same time, for antiferromagnetic spin order, the orbital-independent dipolar spin-spin interaction
dominates. This has consequences well beyond the RVO3 series itself. In fact, the subtle balance of
interactions leading to the TN-TOO inversion not only explains why it is so rare, but also gives the criteria
for finding it in other materials. The mechanism behind transitions inversion makes such systems an ideal
playground for studying unconventional orbital phases. The results presented here rely on the decom-
position of the order parameter into irreducible tensors, which allows us to identify the mechanism driving
the transition.
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Introduction—The interplay of the spin, orbital, and
lattice degrees of freedom in strongly correlated transition-
metal oxides results in a plethora of phenomena of puzzling
complexity [1–3]. In recent years, heterostructuring, dis-
order and nonequilibrium techniques [4–6] have opened the
path to discovering or engineering new phases. In this
panorama, the series of t22g perovskites RVO3 (where R is a
rare earth) is paradigmatic [7–27]. In fact, these systems
exhibit a set of different phases, structural and electronic,
whose onset depends on the rare-earth radius RI . They are
orthorhombic GdFeO3-type at high temperature and
become monoclinic at a temperature TS; the orthorhombic
phase is, however, either reentrant at TS0 < TS (small RI),
or coexists with the monoclinic phase in a large temperature
window (e.g., for intermediate RI) [12,20]. Structural
changes have been identified with changes in orbital
ordering (OO).
The truly peculiar aspect of the phase diagram, however,

is the reversal of the spin- and orbital-ordering transition
with increasing RI . In correlated transition-metal oxides,
the magnetic transition appears to always occur below the
orbital ordering transition (TN < TOO). In the vanadates,
surprisingly, this classic scenario is only found for small RI;

in this case, the antiferro (AF) magnetic transition occurs in
fact at TN < TS [20–25], when orbital fluctuations are
already suppressed [28–30], i.e., TOO > TS > TN . Yet,
increasing RI , the magnetic and orbital transition approach
each other (TN → TOO), eventually inverting [25–27]. The
complex phase diagram of theRVO3 series is believed to be
the result of the interplay of lattice distortion, leading to a
sizable intra-t2g crystal-field (CF) splitting, and super-
exchange (SE) effects of the Kugel’ and Khomskii (KK)
type [31]. Indeed, we recently have identified LaVO3 as an
orbitally ordered system of the KK kind [32]. What,
however, is responsible for the surprising inversion of

FIG. 1. TN-TOO inversion with increasing RI . Black circles:
orbital-ordering temperature TOO. White circles: Kugel-Khom-
skii superexchange transition temperature TKK. Pentagons: AF-
magnetic transition temperature TN [G-type (black) and A-type
(gray)]. R: real structure. I: idealized case with zero CF. TS:
experimental structural transition [25].
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TN and TOO with increasing RI , and why only in the
vanadates, is not understood.
In this Letter we address and solve this problem. We

show that the inversion is the result of an unusual balance of
interactions. When RI is small, lattice distortions suppress
the most efficient orbital SE channels. This leads to the
“classical” picture [33–37] with TN < TOO, because the
orbital state is determined by the CF splitting. Increasing
RI , however, reinforces xz-xz quadrupolar SE, which,
eventually, drives orbital physics; yet, antiferro (AF)
spin-spin interactions grow as well, while, at the same
time, orbital SE terms of different spin rank compete. In the
end, the energy balance tilts, leading to magnetic ordering
preceding OO. The resulting phase diagram is shown
schematically in Fig. 1.
Model and method—We adopt the local-density

approximationþ dynamical mean-field theory (LDAþ
DMFT) approach. First we perform local-density-approxi-
mation calculations using the full-potential linearized aug-
mented plane-wave method as implemented in the WIEN2K

code [38]. Next we construct Wannier functions spanning the
t2g bands using the maximal localization procedure [39,40].
Finally, we build the associated Hubbard model

Ĥ ¼ −
X
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Here ti;i
0

mm0 is the hopping integral from orbital m on site i to
orbital m0 on site i0; εi;imm0 ¼ −ti;imm0 is the crystal-field matrix.
The operator c†imσ (cimσ) creates (annihilates) an electron with
spin σ in Wannier state m at site i and n̂imσ ¼ c†imσcimσ.
The screened Coulomb parameters are U ¼ 5 eV and
J ¼ 0.68 eV, established values for these systems
[29,41,42]. We solve this model using the dynamical
mean-field theory (DMFT).We adopt the generalized hybridi-
zation-expansion continuous-time quantum Monte Carlo
method [43], in the implementation of Refs. [36,44] and
[45], for solving the quantum impurity problem; more
details are given in Supplemental Material [46]. We define
the orbital polarization, the order parameter for OO, as
pðTÞ ¼ ðn3 þ n2Þ=2 − n1, where ni are the occupations of
the natural orbitals, ordered such that niþ1 ≥ ni. The mag-
netization is mðTÞ ¼ ðn↑ − n↓Þ=2, where niσ ¼

P
m nimσ.

The atomic-limit ground t22g multiplet is 3P, a spin and or-
bital triplet. The orbital triplet states can be written as
jm̄3i ¼ jm1m2i, where m1 ≠ m2 are the occupied orbitals
and m̄3 the empty orbital, with mi ∈ spanðxy; xz; yzÞ [30].
Using this notation, the hole orbital at site i is

jθ;ϕiiα ¼ sin θ cosϕjxzi þ cos θjxyi þ sin θ sinϕjyzi: ð2Þ

In the GdFeO3-type structure, there are four (equivalent) V
sites in the unit cell. The reference site is i ¼ 1, and for
simplicity we set jθ;ϕi1α ¼ jθ;ϕiα; the hole orbitals for the
remaining sites are constructed by symmetry [47]. The label α
in Eq. (2) specifies how the state is obtained: jθ;ϕiOO, from
LDAþ DMFT calculations for the experimental structure;
jθ;ϕiKK, from LDAþ DMFT calculations for an idealized
structure with no CF splitting; jθ;ϕiM, maximizing the SE
total energy gain (see next section). Finally, the highest energy
CF state is jθ;ϕiCF.
Superexchange Hamiltonian—The crucial element of the

puzzle is the materials-specific SE Hamiltonian [31].
Recently we introduced a systematic approach to build it
from (1) via irreducible-tensor decomposition [30,35]. This
yields ĤSE ¼ 1

2

P
ij Ĥ

i;j
SE, with

Ĥi;j
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X

qq0

X
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where r ¼ 0, 1, 2 is the orbital rank (monopole, dipole,
quadrupole) with components μ ¼ −r;…; r, and q ¼ 0, 1
(monopole, dipole) is the spin rank with components
ν ¼ −q;…; q. It is convenient to split Eq. (3) as

Ĥi;j
SE ¼ ĤCij

þ ĤOiOj
þ ĤSiSj þ ĤSiSjOiOj

: ð4Þ
The first term, ĤCij

, obtained by setting r ¼ r0 ¼
q ¼ q0 ¼ 0, in the absence of charge ordering, is a constant,
independent on the orbital and spin state; here we take it as
the energy zero. The second term, ĤOiOj

, obtained by
setting q ¼ 0 and rþ r0 ≠ 0, describes the interaction
between orbital pseudospins, independent of the magnetic
state. The third term (r ¼ r0 ¼ 0 and q ≠ 0) describes a
pure spin-spin interaction, independent of the orbital state.
Finally the last term, obtained for rþ r0 ≠ 0; q ¼ 1, is
ĤSiSjOiOj

, and describes the entangling of spins and
orbitals. The analytic expressions of the tensor elements
Dij;qν

rμ;r0μ0 can be found in Ref. [30]. They depend onU, J, and
the hopping integrals; the latter are listed in Supplemental
Material [46]. From Eq. (3) we calculate ΔEðθ;ϕÞ, the SE
energy for a given spin and orbital ordering; minimizing it
yields jθ;ϕiM. Finally, in order to unravel the mechanism
behind the emergent ordering, we resort to a novel scheme:
we decompose the order parameter itself into its irreducible
components, pq ¼

P
r>0μ arμ;q0hτ̂rμ;q0i i; the orbital polari-

zation is p ¼ p0, while m ¼ hτ̂00;10i i. Last, the expectation
value of an operator for a specific hole orbital [48]
is hτ̂r;μi iα ¼α hθ;ϕjτ̂r;μ;qνi jθ;ϕiα.
Orbital ordering in the paramagnetic phase—In Fig. 2,

panel (a), we show the orbital polarization, pðTÞ, in the
paramagnetic (PM) phase; the corresponding hole orbital is
jθ;ϕiOO. We define TOO as the temperature for which
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pðTÞ ¼ 0.5, i.e., for which orbital fluctuations are sizably
suppressed. The figure shows that TOO is appreciably
higher for R ¼ Lu than for R ¼ La. These calculations

include both SE and lattice distortion effects. In order to
single out SE effects from the rest, we repeat the same
calculations but this time for εCF ¼ 0, panel (b); this yields
TKK, the SE transition temperature, and the associated hole
orbital, jθ;ϕiKK. The figure shows that TKK increases going
from Tb to La, with a variation of at most 60 K, i.e., TKK
behaves the opposite of TOO.
The trend for TKK can be understood from Fig. 3, bottom

panel. It shows the SE energy, ΔEðθ;ϕÞ, split into its
irreducible-tensor components, for the ideal case
jθ;ϕi ¼ jθ;ϕiM, the state that maximizes the SE energy
gain (empty triangles). For small RI the main contribution
is from the anisotropic dipolar term ðx; zÞ. Increasing RI ,
however, the weight shifts progressively to the quadrupolar
ðxz; xzÞ channel; this is because the GdFeO3-type distor-
tion decreases [42], which, ceteris paribus, reduces off-
diagonal hopping integrals (see Supplemental Material
[46]). This makes SE more efficient: the maximum energy
gain in the ðx; zÞ channel is for states not in line with lattice
symmetry [47]. This explains the trends for TKK in Fig. 2:
indeed, when CF effects are negligible, jθ;ϕiKK ∼ jθ;ϕiM.
The trend of TOO is more complex to unravel. In the real

structures, CF and SE energies are comparable, and the SE
energy surface alone is not sufficient. To make progress, we
decompose the order parameter pðTÞ into its irreducible
components, hτ̂rμ;qνi i. The results are shown in Fig. 4,
bottom panels (q ¼ 0). For small RI , all components rise
smoothly: there is no phase transition; the signature of SE
interactions is merely small deviations of the saturation
moments from the CF expectation values (filled squares).
Increasing RI , however, a sudden change of behavior
occurs: a phase transition appears in the xz channel, very
similar to the one obtained in the ideal case with no CF
splitting (empty triangles) [46]. The ðxz; xzÞ interaction is
here the dominant one, as in the ideal case. This provides

FIG. 3. SE energy gain ΔEðθ;ϕÞ decomposed in irreducible tensor components for hole orbitals jθ;ϕiCF (filled circles) and jθ;ϕiM,
(empty triangles). From top to bottom: AF (A type), AF (C type), AF (G type), and PM case. Most terms give a very small contribution.
The key terms (see main text) are bold and indicated by an arrow in each case.

(a)

(b) (d)

(f) (e)

(c)

FIG. 2. Orbital and magnetic transitions in the RVO3 series.
Order parameters: pðTÞ (orbital polarization), panels (a), (b), (c)
and (f), and mðTÞ (magnetic moment), panels (d), (e) and (f).
Open symbols: pðTÞ, paramagnetic (PM) phase. Filled symbols:
pðTÞ, AF phase. I: idealized case with no CF splitting. R:
experimental structure; TOO: temperature yielding p ¼ 0.5 (cor-
responding to the jump in pðTÞ in case I). AF: antiferromagnetic
of G, C, A type.
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the key for explaining the trends. Starting from small RI ,
the evolution of TOO with increasing RI essentially reflects
the CF: TOO decreases because the CF splitting decreases.
Eventually, TOO ∼ TKK, but this happens only for large RI .
This explains the opposite behavior of TOO and TKK with
increasing RI.
The resulting theoretical phase diagram for the PM phase

is shown in Fig. 1, where the experimental structural
transition TS is also reported. The figure shows that TOO >
TS for small RI, while TOO ∼ TS for large RI .
Correspondingly, for small RI, right above TS the polari-
zation is large (pðTÞ≳ 0.75), i.e., OO is already well
developed. Finally, TKK < TS for small RI , while TKK ∼
TOO ≳ TS for large RI . Entering the monoclinic phase
modifies the OO state, not the overall picture; it slightly
enhances TKK, but the CF increases as well.
Antiferromagnetic phase—Finally, we turn to the sur-

prising inversion of TN and TOO with increasing RI . In the
large RI limit, G-type magnetic fluctuations, AF in all
directions, are the first to appear on lowering the temper-
ature [10]. Thus we start from the results for the G-type
structure. Figure 2 shows that TN [panel (d)], increases with
RI , similarly to TKK [panel (b)], but much more rapidly.
Thus, remarkably, our numerical calculations do yield
TN < TKK < TOO for small RI and TN > TKK ∼ TOO for
large RI , in line with experiments.
Next, we explain why. Our decomposition of the SE

interaction makes clear that the only interaction that can
lead to TN > TKK is the r ¼ 0 (orbital monopolar) dipolar
spin-spin term, ðs; sÞ. The latter, by itself, depends little on
OO or the CF. We find that, furthermore, it is AF in all
directions, and it is the dominant interaction; see Fig. 3. Its
strength increases with RI, in particular along c, i.e., it is
weaker for small RI; in the ideal case with no CF, it is just
strong enough to make TN slightly larger than TKK for all

RI; see Fig. 2, panel (e). It is only when we switch on the
CF splitting, that we obtain the inversion of TN and TKK
with increasing RI.
This surprising effect is a consequence of the spin-orbital

coupling via the ĤSiSjOiOj
SE term. Figure 4, top panel,

shows that the q ¼ 1 and q ¼ 0 operators with rþ r0 > 1
have similar expectation value below TN. Thus, their
contributions tend to cancel each other for AF order; see
Fig. 3, AF(G) panel, for the limit of full magnetization. The
channels influencing TN , besides the dipole-dipole one
ðq ¼ 1; r ¼ 0Þ, are thus mostly ðs; μÞ terms with spin rank
q ¼ 1 and μ ¼ x, z. However, for small (but not for large)
RI , the latter, on a site i, yield moments parallel to the
magnetization mj on a neighbor j; see arrows in Fig. 4; the
associated frustration reduces TN . This is why, for the real
structures, TN > TKK ∼ TOO for large RI but TN < TKK <
TOO when RI is small.
Let usnowconsider other possibleAFmagnetic structures:

C type, with ferro (F) order along c, found in the monoclinic
phase, and A-type, with F order in the ab plane, not found
experimentally in the series. In both these structures, for at
least one bond the (s, s) component of the spin-spin
interaction is frustrated. This, taken alone, reduces TN .
The F stacking, either along c or in the plane, is stabilized
by termswith orbital rank rþ r0 > 0, hence byOO, however.
For La, Fig. 2 shows that indeed TN ∼ TKK ∼ TOO for C-type
magnetic order. Entering the monoclinic phase, ceteris
paribus, does not change this conclusion: the ðs; sÞmagnetic
term remains in fact essentially the same; C-type spin order is
assisted by the CF splitting [49]. Finally, in the A phase, there
is no magnetic order without OO for the systems considered,
since the ðs; sÞ spin-spin orbital monopolar interaction alone
gives an energy loss; see Fig. 2, panel (f).
Conclusion—In this Letter, augmenting DMFT with a

new analysis scheme based on the decomposition of the

FIG. 4. Irreducible components of the order parameter, hτ̂rμ;qνi i, normalized to the maximum value they can reach [46]. T ¼ 0 axis:
hθ;ϕjτ̂r;μ;qνi jθ;ϕiα for α ¼ M (triangles) and α ¼ CF (filled square). Bottom: PM phase (empty symbols). Top: AF (G) (filled symbols).
The magnetization is mi ¼ m > 0 at site i (Fig. 2) and mj ¼ −m at a neighboring site.
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order parameter into its irreducible components, we explain
the origin of the TN-TOO inversion in the vanadates. This
has consequences beyond the RVO3 series. In fact, our
results clarify why the inversion is rare: in most orbitally
ordered systems TOO is determined by lattice distortions,
i.e., TOO ≫ TKK. This in turn explains why unconventional
quantum orbital phases are usually suppressed. The inver-
sion instead requires, at the same time, that (i) TOO ∼ TKK,
and (ii) the magnetic structure is mostly determined by
dipolar interactions with orbital rank r ¼ 0. Furthermore,
the nature of the inversion, unraveled here, makes systems
potentially hosting it an ideal playground for studying
quantum orbital phases, at the same time providing criteria
for finding more systems of that kind. Moreover, the order
parameter decomposition should prove a powerful tool for
understanding other classes of problems, such as the nature
of octupolar order in materials with strong spin-orbit
coupling.
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