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§s steals the morn upon the night,
And melts the shades away:

So Truth does Fancy’s charm dissolve,
And rising Reason puts to flight

The fumes that did the mind involve,
Restoring intellectual day.

Charles Jennens and George Frideric Handel
L’ALLEGRO, IL PENSEROSO ED IL MODERATO (HWV §5)
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Abstract

The quasi one-dimensional van-der-Waals material a-BiyBr, crystallizes in a monoclinic
crystal structure consisting of covalently bonded Bi,Br, chains parallel to the lattice vector
b. The van-der-Waals interaction connects these chains to form 2D layers. These layers
are then stacked in c-direction. a-BiyBr, features AB stacking. In contrast to well-known
van-der-Waals materials such as WTe, or MoS,, a-Bi Br, features two van-der-Waals
gaps. A monolayer of a-BiyBr, is a quantum spin Hall insulator.

a-Bi,Br, bulk crystals readily cleaves to expose the (001) surface. Furthermore, flakes
of a-Bi Br, showing the same surface can be prepared by mechanical exfoliation. Electri-
cal transport measurements are preformed using a four-tip scanning tunneling microscope
(STM) to investigate the anisotropy of the resistivity of a-BiyBr,. A four-tip STM inte-
grates four individual STMs into a tight unit, in order to enable transport measurements
on surfaces. The piezo-drives of the individual STMs allow flexible tip configurations to
be set up as needed for a transport measurement. Furthermore, a four-tip STM still can
image the surface by scanning a single tip and perform scanning tunneling microscopy.
Due to the small resistances measured here, the exact calibration of the voltage measure-
ment in the four-tip STM became a major issue for the measurement. This calibration
is therefore addressed in chapter [3|

Chapter | presents a modified surface structure of the a-BiyBry(001) surface. Atom-
ically resolved STM images show that the parallel BiyBr, chains exhibit a mutual shift
different from the one expected for this surface. Density functional theory calculations
by Minggian Zheng and Jin-Jian Zhou indicate, that a monolayer of this new structure
is also a quantum spin Hall insulator. The modified structure arises due to shear stress
which is able to shift the parallel chains with respect to each other because neighboring
chains are only connected by weak van-der-Waals forces.

Two different methods to disentangle the resistivity tensor p of o-Bi,Br, are imple-

mented: In chapter [6], the in-plane anisotropy is first measured on the (001) surface of
a bulk a-Bi Br, crystal. For this, two measurements of the resistance in a square tip
configuration are used. Then, the value of resistivity in b-direction is determined using
a distance-dependent measurement on a thin flake. Assuming that the influence of the
off-diagonal element of the resistivity tensor can be neglected, an in-plane anisotropy of
A = p./pp = 6.4£0.5 is obtained at room temperature. Furthermore, the anisotropy nor-
mal to the ab plane is found to be A, = p,/p, = 1300. Thus, the resistivity in d-direction,
parallel to the chains, is the smallest, as expected from the crystal structure. At 77K,
A =5.0%0.3 and A, = 6500 were measured. Chapter [7] demonstrates an alternative
approach to disentangle the three elements on the main diagonal of the resistivity tensor p
when the off-diagonal element is neglected. Here, the tips are positioned in the corners of
a large, rectangular flake. The anisotropy can then be obtained by the Bierwagen-Simon
method. While it is possible to demonstrate the disentanglement of the three components
of the resistivity tensor, the in-plane anisotropy A measured with the second method was
substantially smaller than the result obtained before. The origin of this discrepancy is
traced back to imperfections of the flake.






Kurzfassung

Das quasi-eindimensionale van-der-Waals-Material a-BiyBr, kristallisiert in einer mono-
klinen Kristallstruktur von kovalent gebundenen Ketten aus BiyBrs-Einheiten, die parallel
zum Gittervektor b verlaufen. Diese Ketten sind durch die van-der-Waals-Wechselwirkung
zu 2D-Lagen verbunden, die in c-Richtung gestapelt sind. a-BiyBr, zeigt eine AB-Stape-
lung. Im Gegensatz zu bekannten van-der-Waals-Materialien wie WTe, oder MoS, weist
a-BiyBr, zwei van-der-Waals gaps auf. Eine Monolage a-BiyBr, ist ein Quanten-Spin-
Hall-Isolator.

Die (001)-Ebene ist eine Spaltfliche von a-Bi,Br,-Volumenkristallen. Die gleiche Ober-
flache zeigen a-BiyBr-Flocken, die durch mechanische Exfolierung hergestellt werden kon-
nen. Zur Untersuchung der Anisotropie der Resistivitdt von a-BiyBr, werden elektrische
Transportmessungen mit einem Vier-Spitzen-Rastertunnelmikroskop (STM) durchgefiihrt.
Ein Vier-Spitzen-STM integriert vier einzelne STMs zu einer zusammenhéngenden Ein-
heit, um Transportmessungen auf Oberflichen zu erméglichen. Die Piezomotoren der
einzelnen STMs erlauben es, flexible Spitzenkonfigurationen fiir die Transportmessung
einzustellen. Zuséatzlich kann mit dem Vier-Spitzen-STM die Oberfliche abgebildet und
Rastertunnelspektroskopie durchgefithrt werden. Aufgrund der kleinen hier gemessenen
Widerstande ist die genaue Kalibrierung der Spannungsmessung des Vier-Spitzen-STMs
von grofier Bedeutung. Daher wird diese Kalibrierung in Kapitel [§] im Detail dargestellt.

In Kapitel 5| wird eine modifizierte Oberflichenstruktur von a-Bi,Br,(001) vorgestellt.
Atomar aufgeléste STM-Aufnahmen zeigen, dass die parallelen BiyBr-Ketten eine an-
dere gegenseitige Verschiebung aufweisen, als auf dieser Oberfliche zu erwarten wére.
Dichtefunktionaltheorie-Berechnungen von Minggian Zheng und Jin-Jian Zhou deuten
darauf hin, dass eine Monolage dieser neuen Struktur ebenfalls ein Quanten-Spin-Hall-
Isolator ist. Die modifizierte Struktur entsteht durch eine Scherspannung, welche die
parallelen Ketten gegeneinander verschieben kann, da benachbarte Ketten nur durch
schwache van-der-Waals-Kréfte aneinander gebunden sind.

Zur Bestimmung der Elemente des Resistivititstensors p von a-BisBr, werden zwei
verschiedene Methoden verwendet: In Kapitel [f wird zunéchst die Anisotropie in der
(001)-Ebene eines a-BiyBr,-Volumenkristalls gemessen. Dazu werden zwei Messungen
in einer quadratischen Spitzenanordnung durchgefiihrt. AnschlieBend wird der Wert der
Resistivitat in b-Richtung mittels einer abstandsabhéingigen Messung auf einer diinnen
Flocke bestimmt. Unter der Annahme, dass die Nichtdiagonalelemente des Resistivitats-
tensors p von a-BigBr, vernachléssigt werden kénnen, ergibt sich bei Raumtemperatur
die Anisotropie A = Pa/pp = 6,4 £ 0,5. Zusatzlich wird die Anisotropie senkrecht zur
ab-Ebene bestimmt: A, = p,/pp = 1300. Somit ist die Resistivitdt in b-Richtung paral-
lel zu den Ketten am kleinsten, wie auch von der Kristallstruktur zu erwarten ist. Bei
77K werden A = 5,0 £ 0,3 und A, = 6500 gemessen. In Kapitel [7] wird ein alternativer
Ansatz zur Entflechtung der drei Hauptdiagonalelemente von p vorgestellt, bei dem die
Nichtdiagonalelemente ebenfalls vernachlissigt werden. Die Spitzen werden hier in den
Ecken einer grofien, rechteckigen Flocke positioniert. Die Anisotropie kann dann mit der
Bierwagen-Simon-Methode bestimmt werden. Obwohl es moglich ist, die Entflechtung der
drei Komponenten auf der Hauptdiagonalen des Resistivitétstensors zu demonstrieren, ist
der gemessene Wert der Oberflachenanisotropie A erheblich kleiner als der zuvor erhaltene.
Diese Diskrepanz wird auf Unvollkommenheiten der Flocke zuriickgefiihrt.
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1. Introduction

Following a steady path of miniaturization has enabled the semiconductor industry to
produce microprocessors and other devices with increased performance. Currently, the
smallest metal-to-metal distance on microprocessors is 24nm [1, [2]. Thus, there is
still some “room at the bottom” [3] left for further improvement by miniaturization [2].
Quantum computing is an alternative to the conventional design of microprocessors that
uses elemental quantum states for computations, the qubits [4]. A qubit is a two-state
system, that is generally in a superposition of its two bases states [5], pp. 35-38]. This
superposition state is described by two complex numbers per qubit. These complex
numbers, however, are analogue signals making a quantum computer more susceptible
to noise [5, pp. 35-38]. Nevertheless, similar to error-correction code in conventional
computing [5, p. 34], it is possible to design error-corrected quantum computers [5, p. 52].
However, error-corrected quantum computers lead to a very high overhead due to the
large number of qubits needed to form a single, error-corrected logical qubit 5, pp. 72-79].

One way to create fault-tolerant qubits is through topological quantum computing.
[4, 6]. Majorana bound states are a possible way to realize fault-tolerant quantum
qubits. These Majorana bound states can be realized by combining topological insulators
with superconductors [7]. In simple terms, topological insulators combine an insulating
interior with a conductive surface [§]. Topological insulators are described by topological
invariants, e.g., the Z, topological invariant, which can take the values v =0and v =1
for a topologically trivial and non-trivial insulator, respectively [8, [9]. A two-dimensional
(2D) topological insulator (quantum spin Hall insulator) hosts topologically protected edge
states at its boundaries, that allow ballistic transport [10]. These edge states also exhibit
spin-momentum locking, i.e. spin-up electrons are transported in one direction, while
spin-down electrons are transported in the opposite direction [8]. A three-dimensional
(3D) topological insulator hosts topologically non-trivial surface states on some or all of
its faces [8 [11].

In the present thesis, the quasi-one dimensional van-der-Waals material a-BiyBr, is
studied [12]. «-BiyBr, is a member of the emerging group of bismuth halides, Bi,X,
(X = I,Br), that all consist of quasi-one dimensional, covalently bonded Bi,X, chains
[12-14]. Parallel chains, connected by van-der-Walls forces, form 2D layers, which are
then stacked to form the quasi-one dimensional crystal structures [12, [13, [15]. Thus,
the bismuth halides feature two van-der-Waals gaps. The topological properties of the
different bismuth halide compounds depend critically on their stacking: (-Bisl, features
AA stacking [13, [16] and has been shown to be a weak topological insulator featuring
topologically protected surface states only on certain facets [16], 17]. «-Bisl,; features
AA’ stacking [14]. The topological properties of a-Bil, are somewhat unclear at present:
Based on angle-resolved photoemission spectroscopy supported by theory, a-Bisl, was
classified as trivial insulator [18]. Recent scanning tunneling microscopy results, however,
indicate that o-Bisl, is a 3D quantum spin Hall insulator [19]. a-Bi,Bry, on the other
hand, features AB stacking [12, [14, [20] and was recently shown to be a higher-order



1. Introduction

topological insulator [20-22]. As a higher order topological insulator, a-Bi,Br, features
so-called hinge states: topologically protected one-dimensional states that extent along
the line at which certain crystal facets meet. A monolayer of a-Bi,Br, has been shown
to be a quantum spin hall insulator [20, [23]. The edge states of a-Bi,Br, were observed
in scanning tunneling spectroscopy up until room temperature [20]. Due to its quasi-one
dimensional crystal structure, a-BiyBr, is expected to exhibit a pronounced electrical
anisotropy [12].

To investigate the anisotropy, a four-tip scanning tunneling microscope is used [24].
A (single-tip) scanning tunneling microscope (STM) is a tool to investigate surfaces
of conductive materials in real space [25, 26]. An image of the surface is obtained by
scanning it with a metallic tip which is placed in so called tunneling contact. The purpose
of the four-tip STM is to use the nano-positioning capabilities of an STM and its metallic
STM tip to measure the resistance of surfaces and bulk crystals. In order to separate
the contact resistance from the surface or bulk resistance that is to be measured, the
four-point method is used 27, 28]: The tips are navigated into a predefined configuration
(e.g. linear equidistant) and then contacted to the surface. From the measured resistance
and the tip configuration, the resistivity of an isotropic sample can then be obtained [27,
28]. This treatment can be extended to anisotropic samples, where multiple independent
measurements are needed to disentangle all components of the resistivity tensor [29} [30].

In the present thesis, the anisotropy of the resistivity of a-BiyBr, arising from its
quasi-one dimensional crystal structure is studied. The methods used to disentangle the
elements of the resistivity tensor p are presented together with the results in chapterslg

o

and [7l In chapter [2} the relationship between measured resistance and the elements
the resistivity tensor is discussed in detail. Furthermore, correction factors needed for
measurements on finite samples are introduced in chapter 2l Correction factors for a
rectangular tip configuration, which could not be found in the literature are also derived.
Chapter [ introduces the four-tip STM. During the measurements, the correct calibration
of the voltage measurement became a major concern; consequently, chapter 3| focuses on
the electronics of the four-tip STM and their calibration. In chapter [, the higher-order,
quasi-one dimensional topological insulator a-BiyBr, is introduced.

Chapter [5| presents a modified surface structure of the a-BiyBry,(001). Atomically
resolved STM images show that the parallel BiyBr, chains exhibit a mutual shift different
from the one expected for this surface [12]. Density functional theory calculations by
Minggian Zheng and Jin-Jian Zhou indicate, that a monolayer of this new structure is
also a quantum spin hall insulator [31]. The modified structure arises due to shear stress
which is able to shift the parallel chains with respect to each other because neighboring
chains are only connected by weak van-der-Waals forces.



2. Resistance and resistivity

The four-probe method to measure resistivities with four equal distant electrodes was
first proposed by Wenner [27]. This method features a line of four equidistantly placed
(distance s) electrodes at an equal depth b in the soil. The two outer electrodes inject a
dc-current, the two inner electrodes measure the voltage drop. Wenner obtained for the
resistivity
_ 47sR
P=7 n 2 1

Vi) ()

The measurements were intended e.g. to analyze the return current path of electrical
railways, or to find natural resources [27]. In geophysics, the electrode configuration
originally proposed by Wenner is referred to as the Wenner method [32] or the Wenner
configuration 33, pp. 128-173].

Valdes introduced a version of the Wenner method into condensed matter physics,
originally to assist in the manufacturing of germanium transistors [28]. Figure shows
a simple model of such a four-probe measurement and an equivalent circuit. Since the four-
probe method excludes the effect of the contact resistance by virtue of the two potential
measuring contacts [27], 28], it is ideally suited for materials such as semiconductors
(or earth), where good (i.e. low resistance, ohmic) contacts are difficult to establish.
In principle, this is a variation of the long known four-terminal sensing method, first
introduced by Thomson [34, pp. 891-892; 35} 36|, with the key difference being a physical
separation between the current injection contacts and the voltage probing contacts.

When computing the resistivity p from the four-probe resistance Ryp [(see Fig. 2.1(b)]
two geometric effects have to be taken into account:

(2.1)

1. The contact configuration, and

2. The finite extent of the sample.

(a) (b) I (1)
F;@] A @O

R4P

F1c. 2.1.: (a) A simple model of a four-probe resistance measurement according to Wenner and
Valdes [27], [28]. (b) The equivalent circuit of a four-probe resistance measurement.
The two outer resistors contain both the resistance of the sample and the contact
resistances. The resistance obtained from the four-probe measurement is R4p.



2. Resistance and resistivity

Even on infinite samples, geometrical configuration factors arise, describing the contact
layout [e.g. Eq.(2.1))]. For example, there are specific factors linking the resistance R to
the resistivity p for the in-line and for the square contact configuration. These factors
can be derived from the potential of the current injection tips placed in an infinitely large
2D or 3D sample [27] 28, [37]. Anisotropic materials are described with the resistivity
tensor, having up to six independent elements [38, Chapter 11], further complicating the
relationship between geometry, resistivity, and the measured resistance R. Moreover, real
samples are not infinitely large. To contend with this problem, correction factors exist
(28, 37, 139].

Since all transport measurements were carried out using a four-tip STM (see the
following chapter), contacts will also be referred to as tips.

2.1. Four probe resistance of isotropic samples

2.1.1. Bulk

For an arbitrary tip setup [40; 41], pp. 6-7], the resistance is given by

AVes Va=Vs _ p 11 }_[ 11
Ly Ly 21 | [Ise — 81l [s2 — 84l Iss — 81| |85 — 84

Vo Vs

Rav3p =

(2.2)

Figure[2.2)(a) depicts an arbitrary tip geometry, where the position vectors s; are measured
from an arbitrary point 7, on the surface. In addition to the numbering from 1 to 4, the
tips are labeled with I and V' according to their function in the four probe measurement
described by Eq. (2.2). The voltage drop AV is measured across tips 2 and 3, while the
current flows from tip 1 (I*) to 4 (I7)[| When the injection voltage is applied across tips 1
and 4 as shown in Fig. 2.]] the voltage drop is positive. The current then flows from tip 1
to tip 4, so the resistance is also positive Rarb’?,D.H In Eq. the terms in parenthesis can
be understood as follows: The first term, |s, — §1|_1, describes the potential at tip 2 due
to the current injected at tip 1. The second term, — |s, — §4|_1, describes the potential
at tip 2 due to the current flowing through tip 4, etc. Using Eq. expressions for
the resistance measured in a particular configuration of the tips on the surface of a semi
infinite sample can be derived. Eq. can be derived from the electrostatic potential of
a point source, placed on the surface of a infinitely large object, see e.g. [27; 42, Chapter 3;
43, Chapter 2; 44, Chapter 9].

1Obviously, this uses the technical definition of current direction. If the majority carriers in the sample
are electrons, the physical current direction would be inverse.

2By exchanging the two current injection tips or the two voltage probing tips with each other, the
sign of the resistance can be reversed, see section 2.7 Furthermore, during the experiment, current
flowing into the sample will be counted as negative current by the electronics. Thus, during data
analysis, the magnitude of R4p is considered.



2.1. Four probe resistance of isotropic samples

(c)
Y33 r v, V3 I
S v 2 3
S [.—4 1“ S 2‘ S ’3" S ’4’

Fia. 2.2.: Tip geometries after [40]. Current is always injected from Tip 1 (I) to tip 4 (I7).
(a) An arbitrary placement of tips. (b) The tips are placed in a rectangle with
the distance s between the two current injection tips and the distance v between
a current injection tip and its neighboring voltage probing tip. (c) An in-line (or
linear) tip geometry with an equal distance s between all neighboring tips.

2.1.1.1. Calculating resistances for rectangular tip configurations

In the following, an equation describing the resistance measured in a rectangular tip
configuration as shown in Fig. 2.2(b) will be derived. Formulas describing different tip ge-
ometries can easily be derived using the same methods. The rectangular tip configuration
is particularly important for correction factors, which will be calculated in section
Here and in the following, s always refers to the distance between the two current injec-
tion contacts; v refers to the distance between a given current injection tip and a voltage
probing tip.

First, the potentials V; and V3 below the voltage probing tips 2 and 3 are calculated.
From the schematic in Fig. 2.2(b), the inter-tip distances needed can be obtained:

|s3 = 81| =Vs?+ 0% ss—sl=v, s, —s]=v, [s,—s)/=vs+02 (23

As all tips are placed on the surface of the semi-infinite bulk sample, all vectors s; lie in
the plane with z = 0. Plugging these inter-tip distances into Eq. (2.2)), the potentials

ol (1 1
el _ 24
V2 2w (v V2 +52) (24)
ol 1 1
_pP — = 2.
Va 27T< e v) (2.5)
can be found. From this, the potential voltage drop AV =V, — V5 and the resistance R

(2 2
g (22 ) .

can be found. Solving for p yields

R. (2.8)
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2.1.1.2. Further tip configurations

By letting s = v, the well known equation for a square tip configuration [32, [39]
2rs
=——R
P=e 2
can be recovered. Another important tip configuration is the in-line, equidistant tip

configuration, as shown in Fig. 2.2)(c). In this case, the relationship between measured
resistance R and the resistivity p is given by [28|, [32; 41}, p. 7]

p =27sR. (2.10)

(2.9)

Note the linear dependence of p on s for bulk samples. In practice, of course, the inverse
relation is much more important: R o< 1/s in Eq. and Eq. (2.10). Consequently, for
a material with a given resistivity p, the measured resistance R increases with decreasing
s. Hence, measuring R as a function of s can serve as a simple test for 2D (see below) or
3D behavior. In addition, if p is small, the resistivity R might be difficult to measure at
large inter-tip distances s. The last consideration has to be balanced with the increased
relative uncertainty at small inter-tip distances (see section [3.5).

2.1.2. Thin film samples

Sufficiently thin samples can be described as an infinitely large two-dimensional sheet.
What exactly constitutes a “sufficiently thin sample” will be discussed in section 2.6.1}
In the 2D case, the electrostatic potential is no longer described by the 1/r-function,
but by the In(r)-function. As a result, the resistance of an arbitrary tip configuration is
described by [40; 41}, p. 10]

Re P |l sil lss— sl ’ (2.11)
2mt " | sy — 84| |85 — 84
—_——— —~—
Va V3

where t is the thickness of the sheet. Figure[2.2)(a) illustrates also the tip positions for the
2D case. Similar to Eq. (2.2)), Eq. can be derived from the electrostatic potential of
a point source. However, in this case the point source is placed within a two-dimensional
sheet, see e.g. [42, Chapter 3; |43, Chapter 2; 44, Chapter 9].

In the 2D case, instead of the resistivity p, the sheet resistivity R;

R, = % (2.12)

is often used. In the literature, sometimes the symbol p,p, or indeed oop for the sheet
conductivity, are used. In this work, however, the symbol R; is used for better clarity.
The Sl-unit of R, is Q. In practice, the unit Q! is used [40].

As the distances listed in Eq. were calculated for the surface of a bulk sample
(with constant z), they can also be applied in the 2D case. Substituting Eq. into
Eq. yields

2
p= _ 2mR (2.13)

In (1 + (5)2)



2.1. Four probe resistance of isotropic samples

F1ac. 2.3.: A thin, singly connected sample with arbitrary shape for the van-der-Pauw method.
The contacts are indicated with red circles.

for the case of a rectangle [c.f. Fig. 2.2(b)] on a 2D sheet. When s = v, one easily obtains
the known result [32] for a square:

2ntR
= . 2.14
) (2.14)
For a linear, equidistant tip setup, it holds that [32, [37; 41|, pp. 9-10; 45]:
wtR
= . 2.1
P~ ) (2.15)

Comparing Eq. (2.14) and (2.15) to the ones found for the 3D case [Eq. (2.9) and
Eq. (2.10)] in the previous section, in the 2D case there is obviously no dependence on the

inter-tip distance s. Thus, for the geometries discussed here and a given resistivity p, the
resistance is constant. As already discussed above, this allows for a rather straightforward
way to distinguish between 2D and 3D samples.

2.1.2.1. The van-der-Pauw method

With the van-der-Pauw method, the resistivity p of finite, thin samples of arbitrary shape
can be found. The tips have to be placed at the sample boundary and the sample has
to be singly connected, i.e. it must not have holes [46, 47]. A sketch of such a sample is
shown in Fig. 23]

According to van der Pauw, it then holds [32, [46], 47]:

t t
1= exp <_7TR12’34p> + exp (—ﬂ'RggAlp) . (216)

Ri2,34 is the resistance measured when current is injected from tip 1 to tip 2, and the
corresponding voltage drop is measured across tips 3 and 4. Should there be a hole in
the sample, this equality is only fulfilled for specific contact positions, which would have
to be found using simulations before the measurement [48]. The resistivity can then be
found from [46; 41, pp. 14-18; 32, |47]

_ mt R12,34+R23,41f
P = @) 2 ’

(2.17)
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where f has to satisfy

In(2)
Ryg34 — Ry f exp ( f )
. = = arccosh | ————~ | . 2.18
Rig34+ Ross1  In(2) ( 2 ( )

If the sample is symmetrical and two contacts are placed on the symmetry line, Eq. (2.17)
simplifies to

p= %R, (2.19)

with R = R12’34 = R23,41-
Following van der Pauw [47], the relationship between Eq. (2.17) and (2.18) and
Eq. (2.16) can be easily seen. First, the shorthand

51 = 71'R12’34t and 62 = 7TR23,41t (220)
is defined. Thus Eq. (2.16) becomes

1=-exp <_€1) + exp (—62> . (2.21)
P P
Eq. can also be written as (this corresponds to adding a “zero”)
& =% G+&L—&+&)= % (&1 + &) + (6 — &) (2.22)
b=y G+ 6+6) = [(6+8)— (6 - &) (223)
Plugging into Eq. yields
exp (—&;;&) : [exp (—&2;52) +exp (512;&)} =1 (2.24)
— 1
exp (—&2-;62) cosh (& 2p£2) =3 (2.25)
One can now define
G+& _In(2) 2.26
2 Fo (2:26)

which already recovers Eq. (2.17). Replacing the exponent of Eq. (2.25) and the numerator
of the argument of the cosh-function with Eq. (2.26) yields

N <_m1(‘2)> ot (2 e m?) -5 (227)

which checks Eq. [47].

The factor f can be found graphically, e.g. from plots in references [41], p. 15; 46;
47). Furthermore, Hurand et al. published a convenient fit to f, with adequate precision
for most practical purposes [49]. f can also be calculated from iterative methods, e.g.
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[50]. On the other hand, Eq. can also be solved for p using numerical root finding
procedures. This requires a good starting value. The latter procedure together with the
one introduced by Hurand etal. [49] is used for this work.

For finite samples, that possess at least one symmetry plane, Thorsteinsson et al. pro-
posed a variation of the van-der-Pauw method, based on the realization that for such a
sample, the current density flowing across the mirror plane vanishes if the contacts are
placed on the mirror plane [51]. The authors assume a micro-four-point probe, which
features four in-line contacts with a pitch of a few 10ym. While a varying inter-tip dis-
tance s cannot induce a positioning error in the van-der-Pauw method, shifting contacts
away from the sample edge still induces an error [49, [52, [53]. Consequently, placing
the tip array not exactly on the symmetry line will induce a positioning error as well.
Thorsteinsson et al. analyzed this positioning error for a linear probe array on different
sample geometries (e.g. square and rectangular samples) by calculating the lines of equal
error, the isoerror contours. This analysis provides a guideline for the selection of the
optimal symmetry plane for the measurement. For example, on a rectangular sample,
the optimal symmetry plane is the one parallel to the short edges of the sample [51].
Since each tip is navigated independently in a four-tip STM, applying the method by
Thorsteinsson et al. here could introduce additional errors, if some tips are placed at one
side of the symmetry line, and others are placed at the other side. Furthermore, while
this method allows to measure the resistivity p without the need for correction factors,
it prohibits a simple check of the 2D or 3D nature of a sample by changing the inter-tip
distance s. Furthermore, placing the tips at the circumference of the sample can permit
large inter-tip distances, which in turn might change the character of the sample from 3D
to 2D (see section below). Due to the positioning error, the conditions for the use
of Eq. can be violated. To allow for this, Thorsteinsson et al. suggest a modified
van-der-Pauw equation

t t
1= exp (—WR12734> + exp (—’/TR23’41) ; (228)
XpP Xp

with 0 < x < 2 [51].

2.2. Crystal physics and anisotropic resistivity

For electrical current in an anistropic crystal, Ohm’s law holds [38, pp. 205-214]
3 3 8@
Ji = Z oibL = — Z Oik - (2'29)
k=1 o Oz

The oy, are the components of the conductivity tensor [38, pp. 205-214]

Oxe Ozy Ogzz
Oys Oyy Ouz |- (2.30)
Ozz Ozy Ozz

IS}

At first glance, this means that there are nine components and thus nine measurements
necessary, to fill the complete tensor. However, g is in fact symmetrical, o;; = oy,
reducing the number of independent components to six [32; [38, Chapter 11; 54} 55]. Due



2. Resistance and resistivity

to Neumann’s principle, the symmetry of the crystal can further reduce this number.
Neumann’s principle relates the symmetry elements (e.g. an n-fold rotation axis) of the
crystal to those of its physical properties. Nye states it as: “The symmetry elements of
any physical property of a crystal must include the symmetry elements of the point group
of the crystal” [38, p. 20]. Basically, Neumann’s principle poses a lower limit on the
symmetry elements of the physical property, which may have more symmetry elements
than the crystal it belongs to [38, pp. 20-21]. In the case of the conductivity tensor o
this means, that according to the symmetry elements of a crystal, certain elements o;;
must have the value 0. However, it may still turn out that further elements are equal to
0.

Tensors representing physical properties are written out using a set of mutual perpen-
dicular axes which are related to the crystallographic lattice directions according to a
set of conventions [38, p. 282]. For this thesis, two crystal structures are relevant: the
monoclinid’] crystal structure, in which in addition to the main diagonal, also the element
0, is not 0

Oz 0 0
o =0 o, 0|, (2.31)

mono
0w 0 o0,

and the orthorombic crystal structure, that retains only the elements on the main diagonal,
all off-diagonal elements are zero due to symmetry

Ogz O 0
T o= 0 ow 0 |. (2.32)
0 0 o,

For a cubic crystal, this reduces further, as all elements on the main diagonal are equal
[38, p. 23;[55]. One should therefore speak of an isotropic crystal. The resistivity tensor
p is given by the matrix inverse of the conductivity tensor. While in principle, there is
no relevant difference between reporting the resistivity or the conductivity of a material,
resistivities are used in this thesis to facilitate comparison with the available literature.

Since the conductivity tensor g, and thus also the resistivity tensor p, is symmetric,
it is possible to find a coordinate system K’, such that the tensor p’ becomes diagonal

[38, pp.195-196; [54; 56, pp.218-220]. These axes are also called the main axes and
the elements on the main diagonal, the main resistivities. While this seems to be very
useful at first glance, this transformation does not reduce the number of free parameters.
Instead of the off-diagonal elements, now the numbers (or rather angles) pertaining to

the transformation from the coordinate system K to the coordinate system K’ have to
be found [54].

3There are two different indexing conventions for the monoclinic system. In the one used here, the
off-diagonal element is o, following [38]. In the one used elsewhere in the literature, e.g. [55], the
off-diagonal element is 0.

10
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2.3. The Wasscher Transformation

The so called Wasscher transformation(] can be used to transform a given anisotropic
sample into an equivalent isotropic sample [30} [32; B8, p. 201]. The equivalent isotropic
sample is the image of the Wasscher transformation with isotropic resistivity. Furthermore,
if a resistance R is measured on the anisotropic sample in an arbitrary contact (or in
the case of a four-tip STM: tip) configuration, then the same resistance R is obtained
under the Wasscher transformation, if both the contact configuration and the sample are
transformed. This is achieved by the coordinate transformation [29

=z p—_m, Y=y p—_y, J =22 (2.33)
\ 5 \ 5 \ 5

This assumes a diagonal resistivity tensor p. However, as noted in the previous section,
p can always be diagonalized. The parameter p , used in Eq. (2.33) is given by the
geometric mean of components of the resistivity [29, 30|

P =/ PzPypz- (2.34)

The electrical field is given by E = —V®(z,y, z). The electrical potential ®(z,y, 2)
is required to be identical in corresponding points, i.e., ®(z',y/, z') = ®(z,y, z). By the
chain rule, the components of E after the transformation are [29]

0%(z,y, 2') p 0®(z,y,2) p
g =_CY.2)__ [PIRY.Z) _ [P g
e oz’ Pz Oz s

0d(z',y', ') \F 0%(z,y, 2) p
E/ —__"\"rIgr /) _ _ [T\ fE7 235
y oy’ Py oy Py Y ( )
g 22@.2) [P 9%wy.z) [P
z 82’ Pz 62 Pz =

Furthermore, the transformation is constructed such that the same current flows through
corresponding surface elements. Therefore, the current densities j of the sample and its
equivalent isotropic sample are not the same. For the y component of the current density,
it holds that [29)

Jydzdz = j,da'dz’. (2.36)

=2
. pe .
Jy =1/ j 2.37
Y PPz Yy ( )

follows. Similar results can be obtained for the other two components of ;' [29]:

a2 72
./ P . P
Jz = 4 JzX,  J, = . 2.38
‘ PyP= ’ ? Pz Py ‘ ( )

4While the transformation is associated with Wasscher’s name in the literature, see e.g. Ref. [32],
Wasscher himself cites van der Pauw [29]. However, this transformation can be found in the literature
even earlier, e.g. [38, p. 201].

With Eq. (2.33)

11
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z anisotropic i equivalent

sample isotropic sample

Py I'i=1vp/p _

_— P
p. y >V

I Px I'
y y
X X

F1G. 2.4.: Wasscher transformation after [30]. If p; < p, the length [; is compressed, if p; > p,
the length /; is stretched.

Substituting Eq. (2.35)), (2.37), and (2.38)) into Ohm’s law [29; [38, pp. 205-214]

E, =pzjza
Ey =pyjy, (2.39)
Ez zpzjza

P [pyp: . P2PyPs . P
E, = ps ;',/ ;2 Jo =/ ) f’ﬁJLZ\/g 2+ = Pl
E, =pjy, (2.40)
E, =pj.

yields

Thus, the image of the Wasscher transformation indeed has an isotropic resistivity.
Now, the second property of the Wasscher transformation, the invariance of the resis-
tance R, will be demonstrated for the case of a simple contact geometry: Figure[2.4 shows
a drawing of a cuboid, whose sides are normal to one of the coordinate axes. Applying the
Wasscher transformation to this cuboid then compresses or stretches its lengths according

to
l; __ZM / —'o_i, 2.41
F; ( )

with ¢ € {z,y,2z}. Now contacts are applied to the side surfaces at y = 0 and y =
ly, covering the complete surfaces. Once voltages are applied to the two surfaces, a
homogeneous current density j, will low through sample. The contact resistance is
neglected in these considerations. The total current is related to the current density j,
flowing through a given cross section of the sample by

le plz
I= / jydadz = jylols. (2.42)
0 0
The current
ol )
I'= /0 /0 jida'dy = L, (2.43)

flows through the equivalent isotropic sample. With Eq. 2.37, it follows directly, that

I' =1, since
52
FUL = 1/p”p Gy Ly /% - 121/% = jylals. (2.44)

12
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The same voltage is applied to both the sample and its equivalent isotropic sample.
Moreover, as noted above, it is part of the definition of the Wasscher transformation,
that the potentials at corresponding points are the same, e.g. V(I,) = V(I;). Hence, for
the case of a uniform current density arising from a voltage applied to two contacts on
opposing sides of a cuboid,

R =R (2.45)

is obtained. It should be noted, that due to the construction of the Wasscher transfor-
mation, the same result can be obtained for the case of an arbitrary tip configuration on
the surface of an anisotropic sample.

2.3.1. Example: Derivation of an equation for R, on an
anisotropic sample

In the following, as an example, the Wasscher transformation is applied to find an
expression of the resistance of an arbitrary tip geometry on an anisotropic bulk sample.
First, Eq. is rewritten to apply it to the equivalent isotropic sample. Recall from
section 2.1], that the current flows between the tips 1 and 4. As the tips are placed on
the surface of the bulk sample, at z = 0, Eq. can be rewritten as

0 1 1
Ra.rb = ﬂ -

2 \ (@ — 22+ (s — )2 /(b — 24)? + (¥ — v)?
1 1
- + . (2.46)
Vb — 22+ Wh— 102 /(@ — 2)? + (v — vh)?

Now, the coordinate transformations [29, 30] [c.f. Eq. (2.33)]

; Ui = Uiy % (2.47)

are applied. Note, z; and y, are the z and y coordinates of the four tips. This yields
after some trivial rearranging

T), = Tp,

bl‘,?

p 1 1

W\ Ve — 2P+ - (o2 - 205 + e - )R
1 1

B 20z 2P + 2Pz 2P

\/(xg—zl) ;+(y3—y1) i \/(033—1'4) ;+(y3—y4) a

(2.48)

Thus, by applying the following substitutions

L, =1l = li\/? and P = p= /DxPyPz, (2.49)

13
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(a) (®)

Vs Vs .
Be 3 o C 103
Py
s s 102
Px s Lot —— 3D square
AI:r I. -D & 0 2D square
E 10° —-- 3D line
It v, Vs T 10-1p——"" /7 ] 2D line
S p S (s T
A B C D 10-2
1073

1072 107! 100 10! 102
PylPx
F1G. 2.5.: (a) Tip positions for the square and in-line measurement on an anisotropic sample.

The current injection tips are aligned with ps., such that the resistances R, are
measured. (b) Sensitivity of the resistance ratio on the anisotropy A = pyy/pze.

the Wasscher transformation can be used to apply equations calculated for isotropic
samples to anisotropic samples.

2.4. Anisotropy and resistance

As discussed in the previous section, the Wasscher transformation can be used to derive
equations for anisotropic samples from known equations for isotropic samples (see also

Refs. [30, [32]). Rewriting equations Eq. (2.7), ([2.10), ([2.14), and (2.15) yields for bulk
samples (3D)

R, =YPwP= (in-line) (2.50)

2ms
V Pzl zz ]-
R, = Poabez 4 _ (square) (2.51)
T8 1 4 Bzz

Pyy

and thin-film samples (2D)
v Pzx In(2
R, pr+n() (in-line) (2.52)
m
R, = VPazbuy 1) (1 + pm) (square), (2.53)

2wt Pyy

where the p; are the elements on the main diagonal of the resistivity tensor [30} [32].
The index z of the resistance illustrates that the measured resistance now depends on
the alignment of the tip configuration with directions of the main resistivities. For the
resistance R,, the corresponding tip configuration are shown in Fig. [2.5(a). As the index
z already implies, another set of equations can be found for current flowing in the y-
direction (and in principle, also for current flowing in the z-direction.) The equations for
R, can readily be retrieved, by exchanging p,, with py,.

14
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4 anisotropic

sample

X

F1G. 2.6.: Sketch of a thin anisotropic sample, which is aligned with the main directions of the
anisotropy.

Using Eq. (2.50)), (2.51), (2.52) or (2.53)), the surface anisotropy

A="Pw (2.54)
Pyy

is determined. From measurements of R, and R,, A is found by considering the ratio
R,/R,. For the geometries discussed above, one obtains

% =, /% (in-line) (2.55)
J1+22 —1

By V- T (square) (2.56)

Ry [148=—1

for a bulk sample, and
=1 (in-line) (2.57)
In (1+ 22)

= fz=L square 2.58
ln(l+%) (square) (2.58)

fl& Pl

for the case of a thin sheet [30,32]. Using the equations above [except for Eq. (2.57)], the
anisotropy A can be found by solving for py,/py,. As shown in Fig. R.5(b), the sensitivity
of the ratio R,/R, on the anisotropy depends on the tip configuration. It is clearly
advantageous to measure the anisotropy A using the square tip geometry. Methods
to disentangle all three components of the resistivity tensor from measurements of the
resistance are addressed in the following section.

2.4.1. Sheet resistivity of anisotropic samples

As discussed in section [2.1.2], for thin, isotropic sheet samples, the resistivity is normally
expressed by the sheet resistivity:

Rs=" (2.59)
with the bulk resistivity p and the sheet thickness ¢. In the anisotropic case, an equivalent

definition has to be found. Assuming that the sample is oriented as depicted in Fig [2.6]
i.e., the three main resistivities are aligned with the coordinate axes. This also implies

15
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that the sample material must be of orthorombic or higher symmetry. In this case, the
average sheet resistivity Rg ave can then be found using the Wasscher transformation [30]:

by replacing p with p = /p.p,p, and ¢ with ¢’ = t1/p./p, see section and Eq. (2.49).
Then

Dlw

v/ PzPyPz (\/3 pzpypz) v/ PzPyPz (2.60)

Rs’avg = = =

typ:lp  WPe tv/p-
VPzby (2.61)

RS,avg = n .

Van der Pauw found a more general expression for Rg, ave, without assuming that the
sample and the main resistivity directions are aligned [29]. Van der Pauw’s result for
Rg avg simplifies to the one presented here, if the sample is aligned with the main resistivity
directions.

2.4.2. Van-der-Pauw equation for anisotropic samples

As discussed in section 2.1.2.T], according to van der Pauw,
Ryt t
1=exp (—W) +exp (—ﬂ'Ry> (2.62)
p p

holds for thin, isotropic samples [46], 47]. Using the Wasscher transformation and replacing
p with p = pp,p, and t with ¢’ = t4/p,/p, as was done in the previous section,
Eq. (2.62) can also be applied to thin, anistropic samples. For convenience, the Wasscher
transformation [30] is applied only to the argument of the exponential function.

/ R;,;t 2/ P th 2 T T
Rt Betelp | Rtyp Rt R (2.63)
p Y PaPyPx ( W) 2 /PPy Rs avg
Thus, the van-der-Pauw-equation
R, R,
l=exp|—7 +exp|—7 . 2.64
P < RS,avg) P ( RS,an) ( )

can also be applied to anisotropic samples. See also [57-59).

Due to Eq. , the modified van-der-Pauw method proposed by Thorsteinsson et al.
[51] will also yield Rsave on thin anisotropic samples, when the tips are placed along a
line of mirror symmetry. However, it should be noted that the Wasscher transformation
may also change the isoerror curves computed in Ref. [51]. Therefore, a reevaluation of
the optimal symmetry line for the measurement might be necessary. Furthermore, due
to the electric anisotropy, the mirror symmetries of the samples might be reduced, e.g.
the diagonals of a square sample are no longer mirror planes, if the edges of the sample
are aligned with the two main resistivity directions.
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2.5. Methods for disentangling the elements of the
resistivity tensor

At first glance, it seems that with Eq. and (considering that equations for
R, can be obtained by exchanging = and y), there should be sufficient information to
disentangle all three components of the resistivity tensor. However, it is not possible to
solve for pyz, pyy, and p,. using these expressions for R, and R,: The two measurements
of R, (or R,), one in the linear configuration and one in the square configuration, are
not independent (see [A on page 115). Therefore, methods presented in the literature to
disentangle all three components of the resistivity tensor rely on resistance measurements
on at least two different samples. In principle, a number of long bars of the material
under study cut in low index directions could be prepared. On each of these samples,
one of the diagonal components of p can be measured [29]. For an example, see Ref. [60].
Airapetyants etal. first suggested to measure the three components of the resistivity
tensor using the four-probe method in a linear tip configuration [61]. They suggest
three measurements on two different (orthogonal) crystal surfaces to obtain all three
components. The tips must be aligned with the main directions of the resistivity tensor
p [61].

Using the formulas presented in section 2.4, a method to measure the three components
on the main diagonal of p can be devised. However, on a three-dimensional sample,
measurements on two different samples are necessary: Either two different crystal surfaces
are measured (as presented in Ref. [61]), or measurements on 3D and on a 2D sample
are combined [32]. The equations presented in section are not linearly independent
(as long as multiple measurements on the same crystallographic facet are considered).
Thus, performing multiple measurements in the square and the in-line geometry on
the same surface of a 3D sample only yields the ratio of the two in-plane components
of the resistivity tensor p. In chapter [f] of the present thesis, a measurement method

using eq. (square ‘geometry on a bulk sample) and a linear, distance dependent
measurement on a thin flake is introduced.

In the literature, two different methods to disentangle the elements of the resistivity
tensor for finite samples have been presented:

1. the Bierwagen-Simon method for thin flake samples [59], and
2. the Montgomery method for 3D cuboid samples [62].
The Montgomery method was recently rewritten by Dos Santos et al. [63] as Montgomery

relied on cumbersome graphical solutions of the equations. The Bierwagen-Simon method
is employed in chapter [7] as an alternative method to the one presented in chapter [6]

2.5.1. Bierwagen-Simon method

For the Bierwagen-Simon method [59], a thin rectangular sample is prepared. The
contacts (red) are placed in the corners, as displayed in Fig. 2.7(a). R, and R, are the
resistances measured along the z and y side of the sample, respectively.

17



2. Resistance and resistivity

(a) AV, (b) Pz
[® [ ]|
Py AV,
Px
AV,
Py I,
L, by
Px
AV,
I, R
@ (] L,
L,

F1G. 2.7.: (a) Sketch of a thin rectangular sample for the Bierwagen-Simon method. The
locations of the contacts are indicated with red circles. The sketch shows the mea-
surement of the resistance R,; after [59, Fig. 1]. (b) Sketch of a cuboid sample for
the Montgomery method. The six contacts necessary to measure R;, Ry, and R,
are indicated in red. The contacts on the bottom surface of the sample are indicated
in a light red. After [63, Fig. 1].

The measurement of the anisotropy is based on an equation for R, first published by
Simon [64] for a slightly different geometry. For the resistance R, it holds thatf]

R, =° VPl : (2.65)
Ty [(Qn + 1) sinh (77 zzég (2n + 1))]

under the assumption, that the principle axes of the resistivities align with the sample
edges [64]. Using the shorthand

2

_~ @)2 —a()
A= ( 2) = (2.66)

one can write [59]

o [(2n +1)sinh ( A In(2n+ 1))} -

- (2.67)
Y, [(2n + 1) sinh (\/A_efrﬂ(zn + 1))]

By _
R

The anisotropy A is obtained by solving Eq. (2.67) numerically for A.g and then using
Eq. 2.66|

Once the average sheet resistivity Rgave has been measured using the van-der-Pauw
method (Eq. (2.64)), the two in-plane components of the resistivity tensor can then be
calculated according to [59]
b= YRR VAT wd B YERLVA (2.68)
®Note, there is a misprint in Eq. (10) and (11) in Ref. [59]: L, and L, were swapped.
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2.5. Methods for disentangling the elements of the resistivity tensor

2.5.2. Montgomery method

Montgomery proposed a widely used method to obtain the resistivities of an anisotropic
sample [62]. The contacts are again placed in the corners of the sample. To obtain
all three resistivities, either a second sample has to be measured, or the first sample
is contacted both on the top and the bottom surface. The analysis uses the Wasscher
transformation [30] to apply solutions for the potential of an isotropic sample from an
accompanying theoretical paper [65] to the anisotropic sample under study. In the original
method, the equations by Logan etal. [65] are solved graphically [62].

Dos Santos et al. published a modified version of the Montgomery method, where the
equations are solved analytically [63]. Note that in Refs. [62, (63, 65] and in the relevant
sections of [32], primed dimensions describe the anisotropic sample and unprimed the
equivalent isotropic sample. In the present thesis, however, the Wasscher’s nomenclature is
used: The primed dimensions describe the equivalent isotropic sample. Ref. [63] provides
the appropriate procedures to find the p, and p, of a thin sample and, in addition, p,
for a bulk sample. Thus, the Montgomery method could be applied to a rectangular 2D
sample instead of the Bierwagen-Simon method.

In all cases, a relationship between the R,/R, and L; /L is used in the analysis:

sinh (7r Ly )
R L,
Rizl =7U . (2-69)
Z  ginh (nﬁ)

Already Montgomery observed, that this relationship is only weakly dependent on the
thickness [62]. For the mean resistivity

p=H,E'R, = HE'R, (2.70)

holds [63]. E’ is an effective thickness of the equivalent isotropic sample and depends on
the electrostatic potential [62] |63, 65]. If the thickness I/ is small, E’ can be replaced by
I, for thicker samples, E’ is also dependent on the lateral sample dimensions [62]. Thus
one obtains R,/R, = H,/H,. With
1 4 & 2
— == : (2.71)
Hy 7.5 (2n 4 1)sinh (77(2n + 1)%)

[63], one obtains

. . L
R, > 5(2n + 1) sinh <7r(2n + 1)7;) -
R, % ,(2n + 1) sinh (7r(2n + 1)%)

Eq. (2.69) is recovered, when terminating the series after n = 0. On the other hand,
using the Wasscher transformation L] = L;4/p;/p one finds

L, Ly/% L, p,

e LIV _ A (2.73)
: . VA .
Ly Lo/ Lav/pe

Thus, also Eq. (2.67) is recovered. More importantly, Eq. (2.67)) can also be applied when
bulk samples are considered.
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2. Resistance and resistivity

2.6. Correction Factors

With some important exceptions, the previous sections of the present chapter dealt with
geometric (configuration) factors relating the measured resistance to the resistivity. In
this section, the effects of finite sample sizes are discussed. On finite samples, in contrast
to the (semi-) infinite samples discussed above, parts of the current pathways are missing
at the sample edge, changing the measured resistance R. Alternatively, a conductive
sample edge can create new current pathways. Correction factors can then be used to
calculate the correct resistivity p. Note, in some cases, both the configuration factor
and the correction factor are included in the same calculation. This must be taken into
account when applying specific correction factors from the literature.
As an example, consider a linear equidistant tip setup on a bulk sample [41], p. 7]

p = 2rsRF, (2.74)

and recall that for a semi-infinite bulk sample, this equation [see Eq. ] was presented
without the factor F'. This already highlights an important constraint for the correction
factors: They have to attain the value F' = 1, when distance between the tips and the
boundary is large. The correction factor F' can be calculated for different geometries, e.g.
the tips are placed parallel to a non conductive boundary. If the correction factor F' in
Eq. also includes the geometric factor, p = F'R would result. In some instances,
correction factors are published in this form. Note also: As the potential of a point source
is different in the 2D case compared to the 3D case, for 2D samples separate correction
factors have to be calculated [37].

A summary of some relevant correction factors can be found in the review by Miccoli
etal. [32] and the book by Schroder [41, Ch. 1]. Derivations of correction factors using the
method of image charges are given in Refs. [28] and [39]. A derivation of the correction
factor for in-line contacts on a thin sample is given by Weller [66]. For the latter case,
Albers et al. obtained a closed analytical expression, which will be used in the following
section [67].

The material used for experiments in this thesis, a-BisBr,, tends to form long rectan-
gular flakes (see chapter [ for details): Perloff solved this problem for thin sheets using
conformal mapping [45]. For 3D cuboid samples Yamashita etal. calculated correction
factors for the in-line geometry [68] and for the square or rectangular geometry [69, [70].

Correction factors can also be used to show that a cumbersome correction of measure-
ment results is not needed on a given sample, if the difference between corrected and
uncorrected results would be smaller than the measurement error.

2.6.1. Equidistant, linear tip placement on a sample of finite
thickness

For the resistance of a thin sample measured with a linear, equidistant contact setup,

Albers et al. derived
sinh (¢
R=L1n (()) , (2.75)
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2.6. Correction Factors

(a) (b) .

— Fiin
100 Fiin2p
Ft,lin
IV, V3 Iz % 3D
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t]
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t/s

F1G. 2.8.: (a) Four tips placed in a line with equal inter-tip distances s on a sample with a finite
thickness ¢ and an insulating bottom surface. (b) The corresponding correction factor
F; 1in has three distinct regions: the 2D region where the sample can be approximated
as a 2D sheet, the 3D region where no correction of the bulk measurement is necessary,
and an intermediate region in between.

with the sample thickness ¢t. The tip placement is illustrated in Fig. (a). This only
holds, when the bottom layer is insulating [67]. Note, also in this case the authors did
not calculate a correction factor per se, but rather a new relation between R and p that
takes into account the complete layout of the problem. Rewriting for p yields:

R
n (sinh(i) )
When equating the coefficients of Eq. (2.76) and (2.74), a correction factor can be ob-
tained:

Fin= —— <~ (2.77)

See also [41], p. 8].
When considering small thicknesses ¢, sinh can be expanded as sinh(z) =~ z [71, p. 85].
Thus, F; 1n reduces to

t

Filin 20 ® ———. 2.
EEETYO) (2.78)
Plugging this result into Eq. (2.74), one finds [41], p. 9; 67]
p=—"_tR. (2.79)

In(2)

This recovers Eq. (2.15)), that was introduced at the beginning of this chapter for an
equidistant, linear tip geometry on a 2D sample.
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2. Resistance and resistivity

The plot of Fijy, in Fig. (b) can be separated into three different regions. The
boundaries between the different regions are set according to the permitted deviation of a
chosen approximation from Fi ji,. At small t/s, the approximation F} yin, op in Eq. is
used. On the other hand, at large values of ¢/s, the correction factor Fi i, is approximated
as 1.

For small ¢/s, the used approximation of sinh is applicable until ¢/s =~ 0.5, considering
a deviation of 5% between Fi ji, op and Fi i, permissible. By this simple argument, one
can conclude, that in the case of an linear, equidistant measurement, a sample can be
described as a 2D object, as long as t < s/2 holds. Thus, in a transport measurement a
two-dimensional behavior is not (or not necessarily) an intrinsic property of the sample,
but also depends on the ratio of the inter-tip distance s to the sample thickness ¢. When
considering large values of t/s, one finds ¢/s & 2.7 for F} i, if a deviation of 5 % between
1 and F,yy, is allowed. Therefore, if ¢ < 2.7s, the correction factor Fj i, needs to be
applied.

Consequently, for a sample of finite thickness ¢, there are three distinct regions: the 2D
regime (¢ < s/2), the 3D regime (¢ > 2.7s), and an intermediate regime (s/2 > ¢ < 2.7s).
These three regions are also displayed in Fig. 2.8(b). If one requires a smaller deviation
than 5%, the boundary for the 2D regime moves to smaller values of ¢/s, whereas the
boundary of the 3D regime moves to larger values of ¢/s. This can be easily verified in

the plot in Fig. 2.§(b).

2.6.2. Rectangular tip geometry next to an insulating boundary

A number of correction factors are derived for the present thesis, which could not be
found in the literature. The correction factors describe the rectangular tip configuration
adjacent to an insulating boundary or, in one case, a rectangular tip configuration placed
on a sample of finite thickness. The need for these specific correction factors arose during
the measurement of anisotropy using a-Bi,Br, (see section [6.4.3). For the measurement,
the tips were placed in a square in the middle of a flake. Due to the anisotropy of the
sample, the Wasscher transformation [30] transforms this square into a rectangle. As a
basis the treatment using the method of image currents by Valdes was used [2§].

Here and in the following, s always refers to the distance between the two current
injection contacts; v refers to the distance between a given current injection tip and a
voltage probing tip. All correction factors calculated in the following, apply to a finite
bulk sample. If the measurements were carried out on a thin 2D sample instead, similar
correction factors could be calculated using the In(r) potential. The rectangular tip
configuration on an infinitely large bulk sample was presented in section 2.1.1.1] at the
beginning of this chapter.

2.6.2.1. Current injection tips perpendicular to an insulting boundary

First, the case of current injected perpendicular to a non-conductive boundary is consid-
ered. The measurement geometry is depicted in Fig. 2.9(a). A side-view of the tips next
to the boundary is depicted in Fig. 2.9(b). As the boundary is non-conductive, the signs
of the image tips are the same as the signs of the object tips.

To start with, the potentials under the voltage probing tips 2 and 3 are calculated.
The first two terms in both formulas represent the case of an infinitely large square as
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2.6. Correction Factors
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F1G. 2.9.: The correction factor F),. (a) Top-view of the rectangle of tips on the surface, with
the non conductive boundary indicated by the vertical line. The mirrored contacts
are depicted in gray. (b) Side view. As the two voltage probing tips are behind the
current injection tips, only the latter are visible. (c) Plot of F'| for different aspect
ratios s/v.

discussed in section R.T.1.11

ol (1 1 1

V= (2.80)
2r (v ViRt \/vz (21 + s)? \/v2+4s+l)
ol 1 1 1 1
v, =PL - 1 : 2.81
YT |\ Voir s w \/'v2+ \/'v2 (21 +v)? (251
The voltage difference reads:
I [2 2 1 1
AV =L |Z_
(v ViZts? \/U2 + (21 + )2 \/v2+4(s+l \/1)2

(2.82)

The first two terms correspond to the solution for an infinite sample. Solving for p and
rearranging to separate the solution for an infinite sample yields:

27 Rv 1

(2.83)

P 2
2= 1+ s2 1+ p) L 2 L + = - -
2 T e \WUHH)? 02422 /0?4 (24s)?

The second fraction can then be identified as the correction factor F'|

! 1
F, (f, -) - . (2.84)
1 1 1 _ 2
v Qe <\/1+4< e Vel ¢1+<2é+%>2)
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2. Resistance and resistivity

Figure 2.9(c) depicts F, for different aspect ratios s/v as a function of the distance to
the boundary {. Note, that local minimum around !/v = 0.4 decreases with the aspect
ratio. For large aspect ratios, the local minimum becomes a saddle point. If the aspect
ratio is smaller than 1, the local minimum becomes sharper. Furthermore, F', becomes
larger than 1, if the contacts are too close to the boundary.

2.6.2.2. Current injection parallel to an insulating boundary

(a) F) © 10 ' ' — i
Vzl S V3
v v
I{':IIZ ]
1 1 0.9
I l
S 0.8 .
(b) v, 1 &
\%
o7r /00 s/v=0.5 1
— slv=1
0.6 slv=2
—-= §/v=35
107! 100 10!

Iv

F1G. 2.10.: The correction factor Fj. (a) Top-view of the rectangle of tips on the surface, with
the non conductive boundary indicated by the vertical line. The mirrored contacts
are depicted in gray. (b) Side view of the rectangle. In this projection, only two
tips are visible. (c) Plot of F) for different aspect ratios s/v. .

Next, the case of current flowing parallel to the boundary is treated. Figure m(a)
illustrates the tip placement next to the boundary. A side-view of the tips close to the
boundary of the sample is depicted in Fig. (b) Again, the potentials below the
voltage probing tips are calculated first:

ol [1 1 1 1
Vo= - — - + 2.85
27 \w V2 + §2 \/52 +(240v)2 Y + 21 ( )
ol 1 1 1 1
Ve =2 _ - _ + 2.86
2 Ton Viz+s2 v v+2 5% + (20 4 v)? ( )
Hence, the voltage drop
av=PL(L__ 1 ! 1 (2.87)

- — — +
T \v Vo242 \/32+(v+2[)2 v+ 2l

is calculated. This result is similar to Eq. (2.82)). Therefore, following the treatment in
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2.6. Correction Factors

n=-3 n=-2n=-1 n=0 n=+1 n=+2n=+3
I+ oI VsI' b oI roor
[ ] [ ] [ ] v [ ] L] [
S
[ ] L] [ v L] [ ] [ ]
I I- I- VoI~ I- I- I-
1,1
vy v,
‘ 31+2v I 31+2v
3l+v | 3l+v
514+2v I 514+2v
51+3v ! 51+3v

F1ac. 2.11.: Sketch of image currents for two parallel boundaries with equal distance [. The
current is injected parallel to the non-conductive boundary. Below, the distances
of the nth order based on the order (n — 1) is shown. E.g. fromn=-1,n=2is
calculated.

the previous section, the correction factor Fj is then found immediately

E (S,l> = ! (2.88)

1+ —— ﬁ -
Ve G

In Fig. c) the dependence of Fj on [/v for different aspect ratios s/v is plotted.
In contrast to F', discussed above, the Fj for the different aspect ratio are similar.

2.6.2.3. Current injection parallel to two insulating boundaries

For better understanding of the measurement geometry, the second boundary, opposite
from first, also has to be taken into account. This leads to an infinite amount of reflections,
and, therefore, image current sources. The most straightforward way to deal with this
situation is to find a series describing the contributions of all image currents, as is done
in the following section for a sample of finite thickness. In the present case, however,
there was no obvious way of writing down such a series.

As a simple solution, all terms up to the third order are calculated. During the
computation of F', the convergence of the terms is monitored. If necessary, more terms
can be calculated. Figure 2.11] shows a sketch of the tip placement in the center of the
sample. The distances of the nth image to the (n+ 1)st mirror is also indicated, allowing
the calculation of terms until n = £3. The individual terms are given in the following.
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2. Resistance and resistivity
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F1G. 2.12.: The correction factor F| 1oqg for three different aspect ratios s /v. For each aspect
ratio, F)iong involving terms until the positive first order (corresponding to Fj,
solid), the negative first order (dash-dotted), the second order (dashed), and the
third order (dotted) are plotted. The aspect ratios 1 and 2 are shifted upwards by
0.4 and 0.8, respectively.
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6Sic! Since V5 # V!, Vo cannot be written as a series.
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+ 3, are given (compare also Fig. 2.11)).
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2.6. Correction Factors

Thus, the inverse of the correction factor Fjjong is

s 1 2 2
Fl ( ) —1+ -
[|;long 1 23 2
Ly U 6 ek
1
; = (2.89)
3—|—4 / 1—|—4 (§)2+(4L+1)2

L2 2
- 2
340 (2) 4 6L +3p
Plots of Fj jong are shown in Fig. 2.12] for three different aspect ratios. The positive first
order corresponds to the correction factor Fj. For small [/v ignoring the higher order
contributions will induce a major error. The largest contribution stems from the negative
first order. For I/v > 1, however, the deviation of F) iong from Fj becomes smaller than

a few percent. Thus, calculating the terms until the 3rd order seems to be sufficient for
most practical purposes.

2.6.3. Rectangular tip geometry on a laterally infinite sample of
finite thickness

Finally, the correction factor F; to account for the finite thickness of the sample is derived.
The calculations are based on cases 6 and 7 in Ref. [28]. The situation is sketched in
Fig. [2.13|(c) (side-view) and Fig. [2.13(d) (top-view).

As already noted in the previous section, due to the two parallel mirror planes, there is
an infinite number of mirror images both below and above the sample. Figure[2.13|(a) only
shows the first order. The images above the sample surface are numbered with n € Z.
The images below the sample surface are numbered with n € Z¢; n = 0 corresponds to
the formula for an infinitely thick sample. To begin, the first few orders of the V; are

calculated:
I 1 1
Vo= < - ) 2.90

2 oam \Vo2 Vol s2 (2.90)

1L L - ! (2.91)
2m \ o2+ (12t o+ 82+ (10 2t)2
vt 2 ! - . (2.92)
2\ R+ (=1-202  (fo2 82+ (<1202
vz Pl 1 1 (2.93)
2 v? + (2 2t)2 \/qﬁ + 524 (2-2t)2
V2= Ll L L (2.94)
2m \ o2 + (=2 2t)2 \/v2 + 524 (=2-2t)2
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2. Resistance and resistivity
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F1G. 2.13.: The correction factor F; for a rectangular tip configuration. (a) Side-view drawing
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of a square tip geometry on a finitely thick sample. The voltage probing tips are
placed on the top surface behind the current injection tips. (b) Top-view drawing
of the same tip geometry. (c) Plot of F; for different aspect ratios s/v. The dots
indicate numerical values for a square on a thin sample given by Uhlir [39], showing
excellent agreement with the values calculated here for s/v = 1. (d) Convergence
of the infinite series, needed to evaluate F| numerically. The plot shows F} for
different parameters depending on N, after which the summation is terminated.
The plot is normalized to F; (%, %, N =1000), after which the series has converged
sufficiently.



2.6. Correction Factors

From this, two series can be found: as can be seen from section 2.1.1.7], V3* = —V3*, and
AV = 2V, (compare section note this does not hold for all correction factors).
Thus, one can write down two series, one based on the first term of the parenthesis above,
and the other one on the second term. Thus, the series I; corresponds to the potential
due to the source tip (I7) and all its images and the series I; corresponds to the drain
tip () and all its images.

ol &
A Jor (2nt)?
ol & 2
e (2nt)?

5L (2.95)

I

(2.96)

Noticing (+n)2 = (—n)? and then taking the difference of I; and I, the voltage difference

pl <2 2 ) & 2 2
avo P2 2\, _ (2.97)
2r [\v Vo2 + 2 ,;1 \/v2 + (2nt)2 \/1)2 + 52+ (2nt)?

is found. The correction factor thus reads

F’tz

(2.98)

1+ 21 o] 1 _ 1
paRvore) n=L\ Vo2 @nt)? yfoRs2+(2nt)?

Figure [2.13|(c) shows plots of the correction factor F;, again for different aspect ratios.
As was already observed for F) in section [2.6.2.2, F; is rather similar for different aspect
ratios [/v. In this case, however, the correction factor in fact converges to 0 for small
t/v. There is no straightforward limit of Eq. for small t/v, as was the case for
F}jin (compare section [2.6.1). Therefore, the 2D limit of Eq. was not calculated.
However, in a double logarithmic scale, F; is similar to Fi j,, thus a 2D limit of F; is
expected to exist. The change from the intermediate regime to the 3D regime at large
t/v is now dependent on the aspect ratio s/v of the rectangle. Evaluating F; when s = v,
excellent numerical agreement with values published by Uhlir for a square on a finite
sample was obtained [39].

Due to the infinite series in Eq. , the question arises, at which N the summation
can be interrupted when F; is evaluated. To aide in the selection of IV, the convergence
of Eq. is analyzed in Fig. 2.13|(d). The correction factor F; is calculated for a few
combinations of s/v and t/v as a function of the summation limit N. The plot shows
F.(N) normalized to F;(1000). Obviously, for smaller ¢/v, the number of summations
N has to be larger in order to achieve a reasonable small error. A standard value of
N = 1000 is selected, as it is deemed sufficient for all practical purposes. Comparing
Fig. [2.13(d) with Fig. there appears to be a significant difference in the convergence
behavior of Fjjjon; and F;. Equation is similar to expressions for the correction
factor Fi iy (c.f. section using a series [28, [66]. For small ¢/s, this series is known
to converge very slowly [66]. In Eq. (Fj,1ong), however, only every other term is the
square root of two distances along orthogonal directions. Thus, the convergence behavior

of Eq. (2.89) can be expected to differ from Eq. (2.98).
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2. Resistance and resistivity
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F1G. 2.14.: A rectangular flake with four tips in an arbitrary position. The origin of the
coordinate system is in the center of the flake. After [45, Fig. 1].

2.6.4. Cuboid and rectangular samples

Due to its crystal structure, a-BisBr, tends to form long rectangular flakes. To describe
these flakes two different correction factors can be combined, one for thin flakes [45] and
another one for rectangular cuboid samples.

2.6.4.1. Correction factor for 2D rectangular samples

Perloff derived a correction factor for an arbitrary tip geometry on a rectangular conductive
sheet with insulating edges using conformal mapping [45]. Consequently, the Jacobi
elliptic functions sn, cn, and dn E] [71] are needed to evaluate this correction factor. The
correction factor is given by

b— 47
In (g222) +1In (352)
p =ktR. (2.100)

with (2.99)

Thus, this correction factor also includes the geometrical factor. This offers the great
advantage that the tips can be placed anywhere on the rectangular sample. An example
for this tip placement is given in Fig. 2.14] note the choice of origin for the coordinate
system. One only has to choose tip 1 and 4 as the current injection tips. The «; and S;
are given by:

oy = (vg —v4)? + (ug — ug) B1=(vs —v1)" + (u3 — u1)

oy = (Vg 4 v4)? + (ug — ug)? B2 = (vs+v1)* + (uz — ug)?
a3 = (v2 — 1) + (up — up)? Bs = (v3 — va)® + (us — ug)?
ay = (v +v1)% + (ug — uy)? By = (v3+v1)? + (ug — ug)?

"When computing the correction factor, it is advisable to verify the output of the Jacobi elliptic functions
first!
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2.7. Permutation of tips

The parameters v; and w; are calculated by first solving [45]

K1l-m) 2b
—_—_ = 2.101
K(m) a ( )
numerically, where K(m) is the complete elliptic integral of the first kind [71], and a and
b are the width and the length of the flake, respectively. Compare also Fig. [2.14 With
the known parameter m, the normalized coordinates can be computed [45]

7 :2K(m)%, Y = 2K(m)%b/2. (2.102)
Now, the values of u; and v; can finally be computed:
sn(z’,m) -dn(y’,1 —m
u(z,y) = (2 ) - dn( ) 5 (2.103)
(en(y’, 1 —m))” + m(sn(z/,m) - sn(y’, 1 —m))
o(z,y) = cn(z’,m) - dn(z',m) - en(y’, 1 — m) - cn(y’, 1 — m) (2.104)

(en(y',1— m))2 + m (sn(z’,m) - sn(y’, 1 — m))2 '

2.6.4.2. Correction factors for 3D cuboid samples

Yamashita et al. derived a correction factor and equations for the potential in a cuboid
with an in-line tip geometry. The two voltage probing tips are placed between the current
injection tips. The correction factor can be found in Ref. [6§].

Additionally Yamashita derived also a correction factor for a rectangular tip placement
[69, 70]. The most readable print can be found in Ref. [70]. Note the choice of coordinate
system for this correction factor. For thin samples, numerical evaluation of this correction
factor yields the same result as Eq. for 2D sample. This can be used to analyze, if
a given combination of sample and tip configuration can be approximated as a 2D sample.
This is especially useful, when a target sample thickness for exfoliation has to be selected.

The numerical evaluation of the correction factor is a somewhat difficult task. Depend-
ing on the input parameters, the convergence can be slow. Moreover, in some situations,
NANs can turn up in some of the intermediate results, poisoning the complete result and
hindering the evaluation of higher terms in the infinite sums. This problem can be solved
by storing intermediate results in 128 bit float variables.

2.7. Permutation of tips

As will be discussed in detail the following section, the four-tip STM allows to use each
individual tip both as a current injection tip and a voltage probing tip. Consequently, for
a fixed but arbitrary contact geometry, there are 4! = 24 different resistances, that can be
measured, by permuting the current and voltage contacts, without changing the physical
position of the tips. The majority of these resistances, however, are not independent and
do not yield any more information on the sample. Exchanging the two current injection
tips, will only reverse the direction of current flow and thus the sign of the resistance.
Similarly, interchanging the voltage probing tips will change the direction of the voltage
drop and thus also the sign of the resistance. This already excludes the majority of the
permutations, leaving six different tip configurations [72, [73].
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2. Resistance and resistivity

The reciprocity theorem for linear passive electrical networks provides a further reduc-
tion in the number of different resistances that can be measured by changing the roles of
the tips [36, [74; 75, pp. 148-153]. This theorem states, that in a passive, linear network,
the points of observation and the points of excitation are interchangeable without chang-
ing the ratio of excitation to observation, as long as one of these is a voltage and the
other a current [75, pp. 148-153]. This means in the case of a four-probe measurement,
that the current injection tips can be exchanged with the voltage probing tips without
changing the measured resistance. See also [42, pp. 33-36]. Thus, there are only three
different resistances, that can be measured in a four probe transport measurement.

Rymaszewski gives a complete theory for finite thin film samples, linking the three
resistances measurable in an arbitrary tip configuration [73]. The calculations are based
on the method of conformal mapping. This method allows to calculate the correction
factor for the given tip placement on a finite 2D sample from measurements of the
resistivity in all three configurations [73]. Furthermore, there are some proofs in the
literature showing a relation between these three resistances such that there are only two
independent resistances that can be measured: [36, 72, [76], and [42, pp. 33-36]. Worledge
alleges that “it is easy to show, that”

RIII = RI — RH. (2.105)

for the 2D case [72].

In the following, Eq. shall be proven both for the 2D and the 3D case using
Eq. and (2.2). The three configurations of the tips are shown in Fig. Note,
the actual tip placements are arbitrary with arbitrary inter-tip distances a to f. The
three configurations refer only to the different tip permutations.

For configuration I, the voltage drop Vo — V3 is proportional to

Vo — V3 xIn(a) — In(c) — [In(d) — In(d)] = In (ZZ) (2.106)

The voltage drops for the other two configurations can be found in the same manner.
Thus, in the 2D case, Eq. (2.11)) yields the resistances

p ad

R =—1In|— 2.107

12D =5 (cb) ’ ( )
p ef

=—1In|-— d 2.1
Ruop o I (bc) , an (2.108)
Ruon == 1n (%4 (2.109)
2D =5 ef ) :
Configuration I Configuration II Configuration III

F1a. 2.15.: Sketch for diagonal current injection.
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2.7. Permutation of tips

Now, the difference Ry — Ry can be calculated:

P (M (- (€
Fizo = Bnao T ont ln(cb) 27t ln(bc) 27t 1n(bc)

= 52 (In(ad) ~ In(ch) - [n(ef) — Inbc)] )

= 2L7;t In (Z‘Jf) , (2.110)

Thus, the proposition in Eq. (2.105)) is obviously proven for infinitely large, isotropic,
two-dimensional sheets.

Similarly, using Eq. (2.2), the resistances in the 3D case can be calculated:

_p (L 1 1 1)
Riap =o (a tomy 7o) (2.111)
p (1 1 1 1
== (242 —-2-Z 2.112
RII,SD om (e + f b c , and ( )
1 1 1 1
RIII,3D =72l;_ (a + g - g - f) . (2113)

d b ¢ 2r\e f b ¢
_p(r 1 1 1 gr 1 1 1
“o2r\a'd b ¢ e f b ¢
p (1 1 1 1
— 4 - 2.114
2w(a+d e f) ( )

Thus, the proposition in Eq. (2.105|) is proven for the case of an isotropic, semi-infinite
bulk sample, as well.

Since these proofs do not rely on any specific tip geometry, Eq. is also valid
for anisotropic samples. It is obviously valid for the equivalent isotropic sample with
resistance p and with inter-tip distances a’ to f’. Rewriting o’ using Eq. (2.33)), however,
is not as simple as presented in section 2.3} First, the inter-tip distances have to be
separated into their  and y components:

a= <Zz> : (2.115)

with a = y/a,% + a,2. Then a’ can be expressed as

d =\Jara? = /a;%” + ayQ%. (2.116)

Similar expressions can be obtained for ¥’ to f’, which then could be used to write down
Eq. (2.105) explicitly for anisotropic samples.
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2. Resistance and resistivity

Lastly, the case of finite samples will be discussed. As stated in section 2.6.1] in
the limit of a thin enough sample with insulating top and bottom surfaces, the sample
can be described as two dimensional for a transport experiment in a linear, equidistant
tip configuration. While this limit cannot be written down explicitly for the case of a
rectangular tip configuration (see section [2.6.3), it seems reasonable to assume that this
2D limit exists in general. Indeed, it can be written down if a square tip configuration on
a sample of finite thickness is considered [39]. Thus, the proposition Eq. has been
proven to be correct for both the limit of an infinitely thick sample and for thin sample.
Therefore, the proposition is expected to be valid in general for samples of thickness ¢
with insulating top and bottom surfaces. An explicit proof, however, would require to
derive the correction factor F; for the configurations I, II, and III.

As was already alluded to above, for two-dimensional samples, that are bound by a
simple closed Jordan curve and that have an insulating boundary, Rymaszewski derived
a complete theory using conformal mapping [73]. The explicit purpose of this theory is
to obtain the correction factors for a given thin sample from a series of measurements.
However, in Ref [73], no general proof of Eq. is given. Also, the expressions that
are derived in Ref. [73] are cumbersome to use except for specific sample geometries. In
the case of finite bulk samples, such a general theory was not found in the literature. If
necessary, the validity of Eq. can be checked by calculating the relevant correction
factors.
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3. Measuring resistances with a
four-tip STM

While the previous chapter dealt with the relationship of the four-probe resistance to the
(anisotropic) resistivity, this chapter shall discuss the actual measurement of resistances
using a four-tip scanning tunneling microscope (four-tip STM).

3.1. The four-tip STM

A four-tip STM [24], 40, [77] integrates four individual scanning tunneling microscopes
(STM) [25, 26}, [78] into a single unit. STMs have been in use in surface science for four
decades, for a complete introduction refer to Ref. [79,[80]. In principle, a four-tip STM
can still provide access to most single tip STM techniques, that are known from the
literature, such as constant height, and constant current topography, scanning tunneling
spectroscopy (STS) etc. However, the main focus of a four-tip STM is the measurement of
electrical transport data, using the STM tips to inject currents and measure voltages [40].
For these measurement, the tips are placed in hard (i.e. ohmic) contact on the sample
surface, using the tip configurations discussed in the previous chapter. Furthermore,
while scanning tunneling potentiometry [81] can be implemented in a single tip STM (e.g.
[82]), a four-tip STM allows to apply the transport field with contacts created in situ [83)].
Therefore, also the hardware and software of a four-tip STM are adapted to this goal.
Thus, the main purpose of a four-tip STM is to combine a nano-prober with an STM.

Figure B.1|(a) displays a cross section of a four-tip STM used for this work. While there
are multiple different designs of four-tip STMSs, this drawing still highlights the main
design features 24, 40, (77, 184]:

o Each tip is mounted in one corner of the instrument on its own piezo motors for
coarse and fine motion.

o The tips are mounted with an angle ~ 45° with respect to the sample surface.

o A visual light microscope or scanning electron microscope (SEM) is mounted with
its optical axis normal to the sample surface to facilitate tip positioning.

Figure B.1(b) illustrates another main feature of a four-tip STM: to enable the transport
experiments, current can be injected through each tip. Conversely, also the voltage can
be measured at each tip. In the four-tip STM used in this work, this was achieved
using special amplifiers: to measure currents, a biased preamplifier is used; a voltage
follower measures the voltages. The room temperature four-tip STM used for most of
the transport measurements is presented in more detail in Refs. [77; 44, pp. 34-50; 42;
43, pp. 3-5].
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F1G. 3.1.: (a) A sketch illustrating the operational principle of a four-tip STM. Modified
from (b) Drawing showing the different resistance configurations, that can be
measured. The gray boxes symbolize the biased preamplifiers/voltage followers. The
electronics are set up to measure the resistance Ri324 (The first two indices indicate
the current-injection tips). (c) View of the four tips through the optical microscope.
The tips are arranged in a square on a sample.

As tips, standard electro-chemically etched tungsten tips are used [85; 79, pp. 344-346;
pp. 50-51]. In contrast to tips for standard single tip STM, the tips are etched to
be longer to ensure that the sample is contacted with the tip apex and not with its
shaft [44, pp. 10-11, pp. 27-30]. For some measurements, also commercial platin iridium
tips by Unisoku [P-100PtIr(S)] are used. In the measurements, however, no appreciable
difference between the Pt/Ir and the W tips is observed. Both kinds of tips can be seen
in the optical micrograph displayed in Fig. [3.1(c): Tips 1 and 2 are PtIr-tips, whereas
tips 3 and 4 are W-tips.

One main difference between a four-tip STM and a conventional single-tip STM are the
electronics for generating the tunneling voltage Vi.s and measuring the tunnel current
I;. The four-tip STM is operated by modified Createc hardware and software. The
STM controller supplies the digital-to-analogue (DAC) and analogue-to-digital (ADC)
converters necessary for each tip. The feedback-loops are run with a single digital signal
processor (DSP). Due to the limited amount of Input-Output channels available with
the single DSP, the DACs for the tunneling voltages Vii.s have only 16 bit, all other
ADCs and DACs have 20 bit. The Createc electronics features two ADC inputs per tip,
numbered from 0 to 7. The even numbered ADCs are used for measuring the current.
The odd numbered ADCs can be used for to measure the voltage, however, if the gain set
on the DLPCA-200 is known, the signal recorded by the even numbered ADCs can also
be used for the voltage measurement []] For each tip, there are two ADC inputs, one for

IThe voltage read at the even numbered ADCs is automatically multiplied by the gain set on the
DLCPA-200 to recover the measured current in ampere.
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3.1. The four-tip STM

the current (even numbered) and one for the voltage (odd numbered). See also Refs. [42,
pp- 8-10; |44, p.37-39).

In a single-tip STM, the voltage source for biasing (Viias) either sample or tip is usually
placed on one side of the tunneling junction and the (ideal) ampere meter to measure the
tunneling current I; on the other. In principle, both the voltage source and the ampere
meter can be placed on the same side of the tunnel junction without any issue. However,
in an actual STM, due to the small current of typically a few 10 pA to nA, the tunneling
current I is usually measured with a transimpedance amplifier. A transimpedance
amplifier outputs a voltage V;, that is proportional to the input current. This voltage is
usually measured with respect to ground [34, pp. 504-508; [79, pp. 313-314; [80, pp. 86-88].
However, if the transimpedance amplifier is on bias potential (i.e. it is placed on the
same side as the voltage source) as is the case here, its output voltage is in fact V; + Vijas,
from which W.s has to subtracted [84]. In a single-tip STM, this complication is easily
avoided. Of course, this complication can be avoided in a four-tip STM as well, but this
sacrifices the ability to select the tunneling setpoint and the Vj,s for each tip individually.
Furthermore, by adding a voltage measurement circuit, the transport measurements can
also be carried out with the STM hardware and electronics [84]. This eliminates a large
number of possible errors when setting up a transport measurement. The electronics will
be addressed in more detail in the following section.

3.1.1. The Black Box

The Black Boxes are the current and voltage amplifiers of the four-tip STM used in this
work. They are used both for STM measurements and for transport experiments. The
Black Boxes expose one triaxial socket one side, used to connect each Black Box to its
respective tip. On the other side, they feature four sockets for the measurement signal,
the bias voltage to apply, a digital control signal, and the power supply. A standard
Black Box has two different modes of operation: the voltage-probe mode and the current-
probe mode. Simplified circuit diagrams showing the main components of both modes
are displayed in Fig. B.2] Switching between the two modes is done with two relays:
one at the triaxail socket, choosing which part of the circuitry the tip is connected to,
and a second relay, choosing what the output of the Black Box is connected to. For
current measurements, the Black Boxes use the variable gain transimpedance amplifier
DLPCA-200, produced by Femto [86]. Voltages are measured with a voltage follower.
The measurement software switches the operating mode and the gain of the DLPCA-200
using the digital connection. The digital control signal uses four bits, one for change
from current probe mode into voltage probe mode, three for setting the gain of the
Femto DLPCA-200. These control bits of each tip are represented as nibbles of a 32-bit
control word, that is saved during the four-probe transport measurement. Thus, the use
of the tips can be reconstructed from the data. However, in voltage probe mode, the
measured voltage is read in using the same ADC as the current and thus stored in the
same data channel as the current. To recover the voltage, the current amplification set
at the DLPCA-200 needs to be known.
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F1c. 3.2.: Simplified circuit diagrams of the Black Box for (a) the voltage-probe mode, and (b)
the current-probe mode.

3.1.1.1. Voltage-probe mode

In the voltage-probe mode, the tip (via the central conductor of the triaxial cable) is
connected to the input of a voltage follower. For the voltage follower, an operational
amplifier with a very high input resistance is used. The output voltage of the voltage
follower is also connected to the inner shield of the triaxial cable (guard) to reduce the
influence of the capacitance between the central conductor and ground. The other relevant
part of the circuitry is a non-inverting amplifier [34, pp. 132-135]. Using the jumper P2,
the gain 1 or 100 can be chosen. A simplified circuit diagram is shown in Fig. B.2{(a).

3.1.1.2. Current-probe mode

A simplified circuit diagram of the current-probe mode is shown in Fig. B.2(b): When
the Black Box is set to current-probe mode, the tip (via the center conductor of the
triaxial cable) is connected to the input of the DLPCA-200 [inverting input in equiv-
alent circuit in Fig. B.2(b)]. The ground input (non-inverting input) of the DLCPA-
200 is connected to the bias voltage. Thus, the DLPCA-200 outputs V; + Vias, with
V; o« I;. A voltage difference amplifier then removes Vs from the output voltage of
the DLPCA-200 by analogue subtraction. The inner shield (guard) of the triaxial ca-
ble is connected to the output of the voltage follower, whose input is also connected to
the bias voltage Viias. Thus, the guard of the triaxial cable is kept at W5, reducing
the influence of parasitic capacitances (e.g. the capacitance of the cables themselves)
[87, pp. 352-353]. The current-probe mode mode is used for current injection during
transport measurements and also for STM and STP measurements. According to mea-
surements by Timofey Balashov, modulating the voltage applied to the bias voltage
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3.2. Calibration measurement electronics

input of the Black Box would give rise to a resonance like behavior of the measured
current, even at low modulation frequencies (~ 100Hz). Therefore, all measurements
were taken as quasi-dc measurements using long times (¢ ~ 10s) for the voltage ramps

(see section [3.3)).

3.1.2. The four-tip STMs used in this thesis

For the work presented in this thesis, the two four-tip STMs of PGI-3 at the Forschungszen-
trum Jilich GmbH were used. Furthermore, the Scienta-Omicron four-probe STM of the
Oak Ridge National Laboratory, Tennessee, USA, was used. At the latter instrument,
however, mainly single tip measurements were performed.

The first Jiilich four-tip STM used here is operated at room temperature and uses
an optical microscope for tip positioning. The instrument is presented in more detail in
Refs. [77; |42, pp. 8-12; 44 p. 35-53].

The second system used in Jiilich features an STM of slightly different design, which,
nevertheless follows the principles outlined above. The key features of this instrument,
however, are a cryostat, enabling operation at 77K and 4K, and a scanning electron
microscope (SEM) with electrostatic lenses. SEM images are recorded using the sample
current as signal (c. f. Ref. [88, p. 233]). Therefore, the SEM cannot be used when a
tip is in hard contact. Due to the bandwidth of the transimpedance amplifier, using the
sample current for images also limits the SEM scan speed. Furthermore, the shadow of
the tips cannot be used as an aid during approach, c.f. Ref. [89, pp. 26-27 & pp. 44-45 ].
The low-temperature four-tip STM is introduced in more detail in Ref. [90, pp. 45-68].

3.2. Calibration measurement electronics

In principle, two components of the four-tip STM electronics need to be calibrated: the
amplifiers and the ADCs and DACS of the control electronics. Calibration procedures are
given in appendix All ADCs and the bias DACs have two parameters, that
can be adjusted in the measurement software: the gain, g, and the offset, o. During data
analysis of a four-probe transport measurement, the resistance is found from a linear fit
of the measured current and voltage drop [compare Fig. B.3(e)]. Both of these quantities
are critically influenced by the gain of the ADCs. The offset merely shifts the y-intercept
of the fit. The ADC-calibration is applied by the STM software during the measurement.
Consequently, applying a correction to the data after the measurement is difficult.

For four-probe resistance measurements, the ADCs of the STM electronics have to be
calibrated. Calibrating the even numbered ADCs used to measure the current removes
them as a source of systematic error of the current measurement. Furthermore, uncal-
ibrated ADC offsets may create spurious dc-current signal even when 0V are applied
between the current injection tips. For the four-probe measurement, the voltage difference
AV is calculated. Uncalibrated ADCs can drastically alter the measured voltage drop,
consequently an accurate calibration of the gain is critical for a reliable measurement
of the resistance. The odd numbered ADCs need to be calibrated, if they are used to
read in the voltage measurement signals. The bias DACs can also be calibrated; however,
as the injection voltage does not enter into the four-probe resistance, this calibration
is not necessary. Nevertheless, it is still advantageous to calibrate the bias DACs, as
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3. Measuring resistances with a four-tip STM

uncalibrated DACs can cause spurious currents when nominally 0V is applied between
the current injection tips. Furthermore, calibrated bias DACs are needed for two-probe
measurements. Both the DACs and the ADCs were calibrated using two Keithley-2000
61/2 digit digital multimeters. In principle, a calibrated DAC can be used as a voltage
source for the ADC calibration | Nevertheless, it is advisable to verify the input voltage
with a multimeter.

Furthermore, also the voltage measured with the voltage-probe mode of the Black
Box has to be calibrated. Correct calibration of the voltage measurement is of special
importance when the non-inverting amplifier (see Fig. is used, as this amplifier is
rather sensitive to the tolerances of the individual resistors. A difference in gain between
the two voltage-probing Black Boxes can easily induce a spurious voltage drop. This
is illustrated in Fig. 3.3(d), where the voltage drop AV is plotted before (orange line)
and after (blue dots) applying the calibration to the measurement data. The amplifier
is used, if a highly conductive sample is measured. In most practical cases, the injected
current cannot be increased substantially, as high currents might damage the sample.
Consequently, the actual voltage drop across the voltage-probing tips is small and a
spurious voltage drop due to a missing calibration can easily cover the actual voltage drop.
To calibrate a Black Box, a known voltage is applied to the triaxial tip input of the Black
Box, using a coaxial to triaxial adapter, that drops the inner shield. The corresponding
output voltage is then measured. The correction of the voltage measurement has to be
applied during data analysis. The different gains of the Black Boxes prohibit a differential
read in of the voltage drop (see [44, p. 92]). Instead, both voltage signals are read into
two different ADCs. After applying the voltage correction to the data, the voltage drop
is computed. As disadvantage the noise of both ADCs enters into the measurement.

In principle, also the current-probe mode of the Black Box could be calibrated. In
this work, the gain of the current measurement was not calibrated. The DLPCA-200
transimpedance amplifier has a gain accuracy of 1% [86]. In most practical cases, the
uncertainty of the measurement result created by this gain accuracy is negligible (see
below). Furthermore, in contrast to the measurement of the voltage drop, the difference of
the two measured currents is not used in the final result. Thus, minor differences in gain
between the two current measuring Black Boxes cannot create a spurious measurement
signal. The offset of the black-box in current probe mode can be easily included into the
calibration of the ADCs. To this end, the tunnel junction is replaced by a 1 G2 resistor,
and a VI curve is measured. The offset of the respective ADC is adjusted such that
I =0nA at Vs = 0V. This procedure requires a calibrated bias DAC.

An STP measurement uses a feedback loop to set Vi;as, such that no current is flowing
over the tunnel junction. If I; = 0, then V.5 compensates the surface potential ® and thus
® = Vyias- It is therefore obvious, that a good calibration of the bias DACs is imperative.
In this case, not only the gain, but also the offset is important. The bias circuitry of
the Black Box can create a further bias offset in the range of a few mV. If deemed
necessary, this last offset can first be measured using another Black Box in voltage-probe
mode and corrected by adjusting the offset of the relevant DAC. For four-tip transport
measurements, correcting this bias offset can be omitted.

20nly the eight bias DACs can be calibrated. The bias DACs have only 16 bits. In order to reduce noise,
it is advisable to use one of the other DACs (e.g. the X1 output; 20 bits) for the ADC calibration.
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3.3. Measurement of resistances with the four-tip STM

In order to measure a four-probe resistance, the tips are first approached to the sample
and placed in a specific configuration (see previous chapter). To avoid an accidental
tip crash, large lateral movements are done a few z coarse steps away from tunneling
contact. In the next step, the tips are approached to tunneling contact. For approach
and subsequent tunneling, reasonable tunneling parameters for the material should be set
(e.g. I ~ 100 pA; Vias ~ —0.3V for a-BigBry). No voltage is applied to the sample; the
sample is grounded for approach and tunneling. During this process, small positioning
errors can be corrected using coarse motion with small sawtooth amplitudes, or using
the fine motion piezo drives. Once a tip is in tunneling contact, one should refrain from
executing coarse motion steps with any other tip. In principle, the electronics controlling
the four-tip STM allow to place all four tips in tunneling contact at the same time. Care
should be taken when then bringing the tips successively into hard contact, as establishing
hard contact with the first tip can radically alter the potential underneath the tunneling
tips. Thus, it is advisable to set a slightly different V},;,5 at each tip and also set Vias =0V,
once hard contact has been established. The last step also prevents very high currents
from occurring when the second tip is contacted. To establish hard contact, after placing
the tip in tunneling contact, it is recommended to wait until the effect of piezo creep
has subsided. Then, using the z-limiter function, the tip is retracted (not more than
a few nm). Next, the current set-point is changed to a few hundred mA, consequently
the feedback controller sets z-piezo position to the maximum extension permitted by
the z-limiter f] afterwards, the gain of the DLPCA-200 is set to 106 VA ™! (or similar).
The tip is approached to the sample surface in small steps using the z-limiter until
the measured current changes noticeably. On most samples, the current from the tip to
ground of I ~ 0.1 A can be considered to indicate a sufficiently low contact resistance. If
the sample-ground contact is very insulating, a noticeable change in the tip current may
only be observable once a second tip is placed in hard contact. Once all tips are in hard
contact, the quality of the tip-sample contacts may be improved by pressing more with
the z-limiter. A detailed contacting procedure used for the measurements on a-Bi,Br,
is given in appendix

When in hard contact, switching the gain of the DLPCA-200 or switching a Black
Box to voltage probe mode may cause a voltage pulse, that can change the tip-sample
contact. Therefore, switching the Black Boxes should be avoided as much as possible.
However, as some measurements require different tip configurations (see section and
establishing hard contact is a rather time consuming procedure, the Black Boxes need
to be switched in hard contact. In this case, the Black Boxes are switched sequentially,
while the software also allows to switch all Black Boxes at the same time. Furthermore,
for switching Vii.s = 0V should be set at every tip.

After having established satisfactory contacts and having removed the ground connec-
tion of the sample, the Black Boxes are switched to the desired mode (see above) and
the transport data are recorded. The two-probe measurement consisting of the measured
current and the injection voltage clearly indicates the contact quality. On a-BiyBry, the
two-probe measurement needs to exhibit a linear IV-curve and a resistance of a few

3This is sometimes referred to as “disabling the feedback loop”. While it is true, that the feedback
no longer directly changes the z-position, the feedback loop is still necessary to keep the tip at the
z-piezo extension required by the z-limiter.
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3. Measuring resistances with a four-tip STM

F1G. 3.3.: Example of a four-probe in-line transport experiment. (a) The symmetric voltage
ramps at the current injection tips, with visible plateaus. (b) The two measured
currents. Due to voltage dependent contact resistances, the maximum current is
higher in the second half of the four-probe measurement. (c) The two measured
voltages, without the voltage calibration of the Black Boxes. (d) The voltage drop
with (blue points) and without calibration (orange line). Displaying the calibrated
voltage drop as points makes the noise close to the peaks more obvious. (e) The
result of the four-probe measurement. (f) The two-probe resistance. The IV-curve
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3.4. Asymmetry of four-probe measurements
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F1c. 3.4.: Asymmetry of four-probe resistance measurements. (a) Resistor chain model for
the four-probe experiment. (b) Simulation of a symmetric four-probe experiment
with Ry = Ry = 8502, Ry = R3 = 1502. Note, that V. = 0V for the complete
simulation. (b) Simulation of a symmetric four-probe experiment with R; = 11002,
Ry = 60012, and Ry = R3 = 150Q. Now, V5, V;, and V3 are positive, when Vj is
also positive and vice versa.

10k€). During a transport experiment, an anti-symmetric voltage ramp is applied to the
two current injection tips, see Fig. (a). This voltage ramp features distinct plateaus,
allowing for a measurement in steady-state conditions [44, pp. 87-88]. A standard ramp
has a length of 10 000 points, while each plateau is 100 points wide. For analysis, the data
points measured on the plateaus is extracted. The measurement time for the complete
ramp is typically set tot =5 ... 60s. If the measurement time is insufficient, the influence
of parasitic capacitances becomes significant. In the example in Fig. t = 10s was set.
Thus, the effect of parasitic capacitances and the bad frequency response of the Black
Boxes can be neglected. When the contact resistances are highly asymmetric, also two
asymmetric voltage ramps can be chosen. A slight case of of asymmetry can be seen in
the example transport measurement shown in Fig. 3.3 and will be discussed below in
more detail.

3.4. Asymmetry of four-probe measurements

In a simple model, a four-probe measurement can be thought of as a chain of resistors,
such a displayed in Fig. [3.4(a). For an in-line tip configuration, the contact V. would
correspond to a fifth tip, placed in the center of the tip configuration. For a symmetric
configuration, with R; = Ry, and Ry = Rj, the central voltage is always V, = 0, as long
as it holds V; = —V,. Consequently, if an anti-symmetrical voltage ramp is applied to the
current injection contacts V; and Vj, then V5 > 0 when also V; > 0. This is demonstrated
by the simulation shown in Fig. B.4(b).
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3. Measuring resistances with a four-tip STM

This behavior, however, is not observed in the measurement data [see Fig. B.3(c)]. Ob-
viously, the four-probe experiment cannot be simulated as a symmetric chain of resistors.
From experimental experience [e.g. Fig.[3.3(e) and (f)], the two-probe resistance is made
up almost completely of the two contact resistances. Since the current injection contacts
are formed by pressing the tips into the sample, it is obvious that these tip-sample con-
tacts are not well defined. In addition, in this example the Rsp only makes up ~ 5% of
the total resistance. Thus, a small difference between R; and R, suffices to create an
asymmetric situation. This behavior can also be demonstrated by a simulation: In the
simulation shown in Fig. 3.4(c), an asymmetric chain with R; = 11001, R, = 600,
and R, = Ry = 1502 was modeled. The two voltages V2 and V3 show qualitatively
similar behavior as the voltages measured in the experiment [Fig. B.3|c)]. Note, in order
to make all voltages visible in the plot, the differences of the resistors was exaggerated.
Furthermore, the contact resistances are weakly voltage dependent and depend on the
polarity. This can be seen both in the non-linearity of the two-probe measurement dis-
played in Fig. 3.3(f) and from the different maximum currents in the two halves of probe
measurement [Fig. 3.3(b)]. Depending on the tip-sample contacts, the asymmetry can
become more pronounced. The range of the voltage measurement is 0.1V, when the
100 times amplification of the Black Box is used. If necessary, the asymmetry of the
contact resistances may be counteracted by making the voltage ramp asymmetric. The
asymmetric voltage ramp is created by setting different scaling factors for the voltages
applied to the two current injection tips. Thus, voltage ramps in Fig,. (a) would have
different heights.

3.5. Uncertainties in the resistance measurements

While the calibration of the voltage measurement discussed above removes one main
source of uncertainty, there are other sources of uncertainty, that will be discussed briefly.
The DLPCA-200 has a gain accuracy of £1 % [86]. Thus, the current measurement has
a systematic uncertainty of the same amount. Furthermore, there is random noise in the
measurement electronics. The latter uncertainty can easily be captured by repeating a
transport experiment and then calculating the averages. A main source of uncertainty
is related to the placement of the tips: the tip-placement error. With a simple estimate,
it can be shown, that the tip-placement error is the leading source of uncertainty. For
example, for a linear tip configuration on a bulk sample with the inter-tip distance
s = 20um, one can estimate a relative error of the resistance R of up to 20% when
assuming an uncertainty of 1pm for the positioning [43, pp. 12-13]. These estimates
indicate an upper limit of the measurement uncertainty.
The tip-placement error is due to two factors:

1. the resolution of the microscope, and
2. a difficulty in identifying the actual contacting point of a tip.

The resolution of the optical microscope is ~ 1 um. In principle, this can be improved by
using an SEM. However, the SEM installed in the low temperature system also comes
with some disadvantages, such as not being able to image while the tips are in hard
contact, since the sample current is used for imaging. The second factor contributing to
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3.5. Uncertainties in the resistance measurements

the tip placement error, is a difficulty in actually ascertaining the point of contact of a
tip. As can be seen in Fig (c), even at their apex, the tips have a finite width. While
a better resolution of the microscope might reduce this uncertainty, the possibilities of
reducing this source of uncertainty are limited. The actual point of contact cannot be
seen with the microscope. Furthermore, successive attempts of establishing hard contact
will tend to bend the tips. This bending will move the point of contact outwards along
the tip axis, compare also [43, pp. 29-31].

Instead of trying to improve upon the analytical treatment of the tip-placement error
by Leis [43, pp. 12-13], a different approach to estimate the measurement uncertainty
will be introduced: A numeric approach, the Monte-Carlo propagation of uncertainty, is
applied to the problem [91]. As the name suggests, for each quantity entering into an
equation, a distribution is assumed and a number of random samples are drawn from
it. In this case, the normal distribution is used. For standard deviation of the normal
distribution, the estimated error is used. For example, for a tip placed at the coordinates
z = (20+ 1) ym, N samples are drawn from a normal distribution with mean z = 20 um
and standard deviation s = 1um. Figure B.5(a) displays such a distribution. For each set
of samples, the equation is solved, yielding a new distribution, from which the mean and
standard deviation can then be calculated. The resulting distribution for the example of
a resistance is shown in Fig. 3.5(b). The Monte-Carlo propagation of uncertainty does
not require the equations to be solved analytically. Instead, for each set of samples, the
equation can also be solved numerically, provided that sufficient computation time and
power is given. All computations in this thesis were done with N = 10000 000.

As an example for this method, the resistance of linear measurements on a 3D and
a 2D sample are simulated. Figure B.5{(c) and (e) show the dependence of the average
resistance R on the inter-dip distance d, if an error of s = 1um is assumed. An isotropic
resistivity of p = 1Qcm and a thickness of the 2D layer of t = 10nm was used. The
resistances were computed using Eq. and (2.11), with the tips being placed in an
in-line configuration. Note, that as expected from the discussions in section 2.1], the
resistance Rsp of the bulk sample Fig. (e) decreases ox d~! whereas the Rop remains
constant. There is a small Ryp for d < 5um. At these small distances between the
individual tips, the measurement can no longer be assumed to be equidistant, due to
the uncertainty of 1um. Figure 3.5(d) and (f) display the relative uncertainties. As
expected, the relative uncertainties decrease with d. For the bulk sample, the relative
uncertainty for d > 5 um is more than 1, thus it is not advisable to measure at these small
distances without considerably reducing the tip-placement error. The relative uncertainty
calculated using the method by Leis [43, p. 12] [red dots in Fig. B.5(d) and (f)] is almost
always larger than the relative uncertainties obtained from the Monte-Carlo method.
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F1G. 3.5.: Monte-Carlo propagation of uncertainty for linear measurements on a 2D sheet and
a 3D bulk sample with p = 1Qcm, ¢t = 10nm, and N = 10000000. (a) Example
of the distribution of for the = coordinate of one tip. (b) Resulting distribution for
Rop. (c) Calculated resistance Rop for a 2D sample. (d) Resulting relative errors:
The black dots are the obtained from the Monte-Carlo calculation, the red dots are
calculated from the estimation in [43, p. 12]. (e) Calculated resistance Rsp for a
bulk sample. (f) Resulting relative errors: The black dots are the obtained from
the Monte-Carlo calculation, the red dots are calculated from the estimation in [43|
p. 12].
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4. The higher-order topological
insulator a-BiyBr,

Bismuth halogenides (BiyX4, X = Br, I) are a new family of topological materials. BiyBr,
and Biyl, crystallize in similar structures consisting of isolated Bi,X,-chains, which are
bonded by van-der-Waals forces, forming layers and finally the crystals. The known
stable polymorphs Bi,Br, and Bigl, crystallize in the same, monoclinic space group C2/m
[12H14, |92, [93]. However, the stacking order is specific to the individual phases. While
a-Bi Bry [12], a-Bily, and S-Bisly [13, 92] have been synthesized, 5-BisBr, has not been
observed [14]

The bulk a-Bi,Br, crystal used in this thesis were grown by Yugi Zhang and Zhiwesi
Wang. Bulk crystals can be grown by various methods from solid or solid and gaseous
precursors [12, [13, [17, [18, 22, 94]. Furthermore, a-Bi,Br, nanowires were grown on TiSe,
by epitaxy [95) 96]. Furthermore, the structurally rather similar BiyI, was grown on a
SiC-substrate by epitaxy [97].

4.1. A brief introduction to topological insulators

A topological classification of matter rests on the observation that insulators behave
similarly, even though the properties of their electronic band structures can be rather
different. Indeed, vacuum can be described as an insulator with a band gap Eg, a
conduction band (electrons), and a valence band (positrons) [8]. A counter example to
such topological trivial insulators is the integer quantum Hall effect. In the quantum Hall
state, a two-dimensional electron gas is placed in an external magnetic field. Due to this
external magnetic field, the electrons occupy quantized energy levels, the Landau levels.
Similar to an insulator, in the quantum Hall state, an energy gap separates the highest
occupied from the lowest unoccupied states. Nevertheless, applying an electric field leads
to an electric current with the conductivity

(4.1)

where N is an integer and Rx = h/e? is the von-Klitzing constant, which is the ratio
of the elementary charge e and Planck’s constant h, two exact natural constants in the
International System of Units [98, p. 454]. Thus, the quantum Hall effect is an example
of a state of matter which exhibits a band gap and electric conductivity at the same time.
Consequently, the integer quantum Hall effect can be described as a different, topological
nontrivial state of matter [g].

To classify the topological properties of matter, topological invariants are used. The
first topological invariant is the Chern number n € Z, which remains constant while the
Hamiltonian describing the band structure is varied, as long as the band gap is not closed
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F1G. 4.1.: Simplified Band structures of (topological) insulators. The gray, filled paraboloids
represent the bulk bands. (a) The band structure of a trivial insulator. (b) The band
structure of a 2D quantum spin hall (QSH) insulator with the two one-dimensional,
helical edge states. The colors (red and dark blue ) indicate the spin polarization of
the two edge states. (c) The band structure of a 3D topological insulator. The blue
cone indicates the topological surface state. (d) Band structure of a higher-order
topological insulator with a gapped topological surface state and one-dimensional
hinge states (red lines).

[8]. The vacuum is topologically trivial and thus it has the Chern number n = 0. In
contrast, a quantum Hall state is topologically not trivial (n = 1). Consequently, at the
boundary of the quantum Hall state with the vacuum, the band gap has to be closed.
The closed band gap at the boundary is the origin of the topologically protected edge
states. For the presence of these edge states at the boundary of the quantum Hall state,
there is an intuitive explanation. Due to the applied magnetic field, the electrons in a
quantum hall state move in quantized, circular orbits. At the boundary, these circular
cannot be completed. Thus, the electrons move on along the edge on (in the simplest
case) connected semicircles, each individual semicircle terminating at the boundary [§].

Spin-orbit coupling (SOC) may also lead to a different topological class of band struc-
tures [8]. If a band inversion is present, SOC causes the quantum spin Hall (QSH) effect.
SOC can also give rise to the band inversion, e.g. in a-Bi Br, [23, [99, [100]. The QSH
effect is similar to the quantum Hall effect in that an applied electric field leads to spin po-
larized currents with up and down spin electrons flowing in opposite directions. However,
the SOC effectively takes over the role of the applied magnetic field [§8]. This effect is
time-reversal invariant and can no longer be described with the Chern number n. Instead,
the Z, invariant with v =0 or v = 1 is used [8, [9]. As summarized in Ref. [§], there are
different approaches to calculating the Z, invariant from a band structure, obtained from
DFT calculations.

Figure illustrates the band structures of different insulators. In Fig. [4.1j(a) the
standard band structure of an insulator is displayed. The top of the valence band is
separated from the top of the conduction band by the band gap E,. Close to the band
gap, the bands can be approximated by parabolas.

In addition to the bulk bands, a quantum spin hall 2D (QSH) insulator also hosts
two topologically protected edge states. Its band structure is depicted in Fig. [.I(b). A
QSH insulator is characterized by » = 1. In real space, a QSH insulator consists of a
finite, insulating 2D sheet, with the two counter propagating edge states located on its
boundaries. A QSH insulator can e.g. be realized as HgTe-quantum wells or monolayers
of WTe,, featuring a quantized conductance given by 1/Rx [8, [10, [101].
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4.2. Crystal structure of a-Bi Bry

A three-dimensional topological insulator can fall into one of multiple categories. It is
characterized by four topological Z, invariants (vo;v1vevs) [8, [11]. A strong topological
insulator (STI) hosts topologically protected surface states on all of its surfaces. Thus,
on all surfaces, the band structure of an STI is represented by Fig. d.1](c). The linear
dispersion relation is characteristic of the surface states of a 3D topological insulator.
Because of its linearity, this feature of the band structure is also called a Dirac cone. In
Fig. 4.1](c) the blue filled area represents the cone, which is rotationally symmetric about
its central axis. STIs are characterized by vy = 1 [11]. Weak topological insulators (WTTI)
are rather similar to STIs. However, the topologically protected surface states are present
only on some specific surfaces. WTIs have vy = 0, while at least one v; =1 (1 = 1,2, 3).
A WTI can be visualized as a stack of QSH insulators [11]. An example of such a WTI
is ﬂ-BI'4I4 [17]

Higher-order topological insulators (HOTT) combine the topologically protected surface
states present on some surfaces known from WTIs with gapped surface states on other
surfaces and one-dimensional hinge states [102, [103]. A HOTI is a generalized topological
crystalline insulator (T'CI) [104]. The band structure of a TCI is classified as topologically
trivial or non-trivial due to the crystals symmetries in addition to time reversal symmetry
[104]. The hinge states of a HOTT are reminiscent of the edge states on a QSH insulator.
A HOTI, however, hosts these hinge states only where two specific surfaces meet [102].
Figure [4.1(d) presents the band structure of a HOTI with the bulk band gap (gray), the
gapped topological surface states (blue) and the one-dimensional hinge states (red and
dark blue lines) [22].

As already touched upon, in the QSH effect, spin up and spin down electrons will flow
in opposite directions in an applied field. Thus, one hallmark property of the topological
edge and surface states is the spin-momentum locking [105]. As the name implies, spin-
momentum locking links the direction of movement of an electron in a topological edge
or surface state to its spin. Edge states that feature spin momentum locking and that
allow transport in both directions along a boundary are referred to as helical edge states.
Consequently, a scattering from one edge state to the other in Fig. [1.(b) necessitates
an additional change of spin. When using a ferromagnetic tip for one voltage-probing
contact in a four-probe measurement, this leads to the spin voltage, an additional voltage
offset [106]. In an ultra thin (a few nm) STI, the scattering between the top and bottom
surface states becomes dominant, lifting the spin-momentum locking [107]. Furthermore,
transport through topological edge and surface states is ballistic [8, [10].

4.2. Crystal structure of a-Bi;Br,

a-BiBr, crystallizes in a base-centered monoclinic structure with space group C2/m
[12]. The lattice constants are a = 1.3064nm, b = 0.4338nm, ¢ = 2.0061 nm, and
<ac = B = 107.42° [12]. Figure [.2(a) shows an atomic model of a-Bi,Br, projected
along the b axis. The unit cell is indicated with a black parallelogram. a-Bi,Br, has two
cleavage surfaces [22], the (100) and the (001) surfaces. The two planes are indicated
by the red and blue dashed lines, respectively. a-Bi Br, exhibits AB-type stacking along
the c-direction, with chains with S- and @-shaped cross sections stacked on top of each
other. Due to the AB stacking, the (001) surface can either consist of an A or of a B
layer. In the projection of Fig. f.2)(a), the layers are distinguished by the topmost Br
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O Bi o Br

F1G. 4.2.: Atomic crystal models of a-Bi Bry . (a) A side-view of the unit cell, projected
along b-direction. The AB stacking is clearly visible. The unit cell is indicated by
the black parallelogram. The two cleavage surfaces are indicated using red and blue
dashed lines. This side view of the unit cell also corresponds to the (010) surface.
(b) Top-view of (001) surface. Due to the AB stacking, there are two (00 1) surfaces
per unit cell, that differ in whether the top-most Br atom is left or right of the Bi
atom. In this case, the (001)B surface is depicted. The lower Br is indicated by a
smaller size. For clarity, only the topmost atoms are shown. (c) Side-view of a single
chain, projected along the g* direction.

atom placed either to left (A) or to the right (B) of the Bi atom [20, [108]. The side-view
of the unit cell [Fig. {.2{(a)] also corresponds to a model of the (010) surface. This surface
cuts through the chains and is consequently impossible to access via cleaving.

Figure b) displays a top-view of the (001)B surface. The model is projected along
its surface normal, the reciprocal lattice vector ¢*. The projected bulk unit cell is indicated
by the black parallelogram, the lower Br atoms are indicated by a smaller diameter. Two
neighboring chains are shifted by b/2 with respect to each other. This can be clearly
seen in the rectangular surface unit cell spanned by the lattice vectors a and b. In the
top-view, (001)A surface would be distinguished from the (00 1)B surface by the upper
Br atoms lying on the other (i.e. the right) side of the Bi atoms.

The single chain depicted in Fig. c) illustrates the internal structure of the chains;
the model is projected along the reciprocal lattice vector a*, which is also the surface
normal of the a-BiyBr,(100). The outer Bi atoms (Bix) are bonded to a central chain of
(Bij,) atoms. In between two neighboring outer Bi atoms, there are two Br atoms. The
Bi, atoms are coordinated similarly to Bi atoms in elemental bismuth. The Bi,, atoms,
in contrast, are coordinated as is to be expected from atoms with five ligands and a pair
of free electrons [12]. All intra-chain bonds are of the van-der-Waals type. Consequently,
unlike in other well known van-der-Waals materials such as WTe, and MoS, , ,
a-Bi,Br, features two van-der-Waals gaps. These two van-der-Waals gaps correspond to
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4.3. Electronic structure of a-Bi,Bry

the two cleavage surfaces, indicated in Fig. (a). Due to this crystal structure, a-Bi Br,
is classified as a quasi one-dimensional crystal.

On the o-BiyBr,(001), a step encompasses an integer number of monolayers. A mono-
layer consists of an individual A or B layer. The height of the unit cell is h = csin(8) =
1.91nm. Thus, a monolayer step is h/2 = 0.96 nm high. This height also corresponds to
the change from an A to a B surface, or vice versa.

The two modifications of Bisl,, a-Bisl, and $5-Bigly, have similar crystal structures 13|
15, 92]. Atomic models of a-Bi,l, and 3-Bi,], are displayed in appendix [D on page 123
They both feature similar chains with slightly different bond lengths and bond angles [13].
In the case of 8-Bisl, the stacking order is AA. The stacking order of a-Big, is AA’: the
vertical stacking is the same as AA stacking, however, every second layer is shifted by a
distance of b/2 in b-direction [13],[17]. The mutual shifts of the adjacent chains in the plane
and the stacking of shifted layers then produces the AA’ stacking. 8-Biyl, is metastable
and will undergo a phase change to return to a-Bigl, at room temperature [15]. 5-Bi,Br,
is expected to feature AA stacking but has not been observed in experiment |14, [111].

4.3. Electronic structure of a-Bi,Br,

According to DFT calculations, the conduction band minimum is located at the L-point.
The valence band maximum is slightly offset from the L-point, on the I" to L path [22].
However, at the L-point, the gap is only slightly larger, as both the conduction band and
the valence band are almost flat on the I" to L path close to the L-point. DFT finds a
band gap at the L point to be E; = 0.18€V [22]. Experimentally, different methods have
been used to measure the bulk band gap, yielding a range of values from 0.2€V to 0.3eV
[20, [21, [96, [108, [112].

A single monolayer of a-Bi,Br, was predicted to be a QSH insulator [23, 99} [100]. Due
to the difference in electronegativity of bromine and bismuth, the energy of the Br-4p
orbitals is much lower than the energy of the Bi-6p orbitals. Thus, at the band gap,
the valence band and the conduction band consist of Bi-6p orbitals. Furthermore, due
to the Bi—Br bonds, Bi;,-6p orbitals and the Bie-6p orbitals differ slightly in energy.
Consequently, without SOC, the valence band is made up of Biy,-pi— orbitalsﬂ, while
the conduction consists of Bij,-p, + orbitals [23, [100]. The z-direction (as well as the
y-direction) lies in the plane spanned by the lattice vectors a and b, with the z-direction
normal to this plane. At the I'-pointf] these two orbitals are exchanged due the strong
spin-orbit coupling of Br yielding an inverted band gap. The corresponding topological
invariant is Zs = 1 [23].

When multiple layers are stacked, the inter-layer coupling can alter the electronic
properties. However, the band splitting depends on the strength of the hopping parameter,
which is larger for the out-of-plane p, orbitals than for the in-plane p, and p, orbitals.
Obviously, this hopping parameter is also larger for the Bi.-atoms than it is for the
Bij,-atoms. As indicated above, the low energy bands are predominantly made up of

1The plus refers to an inversion operation on two bonded Bi atoms in the chain, the minus refers to
a linear combination of bonding and anti-bonding orbitals, when inter-chain coupling is considered.
See Refs. [23,99).

2Ref. [23] treats only a monolayer, with the fundamental band gap at the T-point. Note also a different
nomenclature in Refs. (22} 23, [99].
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p; bands. Thus, the edge states of a monolayer of a-BiyBr,, resting on a bulk a-Bi,Bry,
are mostly unaffected. Therefore, bulk a-Bi,Br, can act as a substrate for monolayer
a-BigBry [99, [100]. From this, it could be expected, that the topological properties of a
stack of n monolayers is not affected by n. This, however, is not the case. Zhou etal.
predict a bilayer to be a trivial insulator and a triple layer to be a non-trivial insulator;
correlated with the number of band inversions [99]. While the behavior of a-Bi,Br, is in
fact even more involved, this is also the basis of the higher-order topological insulator
properties of bulk a-BiyBr,.

Bulk o-BiyBr, is a HOTI with the topological invariants Zs 524 = {0,0,0,2} [ﬂ [103].
Figure [4.3 illustrates how the stacking of a-Bi,Br, monolayers builds up a higher-order
topological insulator. Panels (a) to (d) show two neighboring stacks, that are one to four
monolayers high. The stacks rest on a further monolayer of a-BiyBr, that symbolizes a
bulk a-BisBr, substrate. As discussed above, using a-BiyBr, as substrate will not cause a
major change in the properties of an a-Bi,Br, monolayer [99]. The two neighboring stacks
give an insight into the location of edge or hinge states at a trench on the o-Bi,Br,(001),
formed by two parallel steps. Since a monolayer of a-Bi,Br, is a QSH insulator, each
stack presents an edge state on both sides. This is illustrated in Fig. .3(a). When two
monolayers are stacked in c-direction, they form two different angles at their ends as
shown in Fig. [4.3(b): one angle is obtuse (left side of the stack), while on the other side
there is a reflex angle. Thus, the protruding ends of the chains separate the two edge
states on the right side. On the left side, there are no such protruding ends. Therefore,
the two edge states on the left side of the stack hybridize (indicated by the orange ellipse)
[20, [22, [100, [108]. This hybridization forms a gap in the Dirac cone. For reasons that
will become clear when more layers are stacked, the two remaining edge states on the
right side of the stacks are referred to as hinge states. If another layer is added to the
stacks, the pattern formed by the hybridizing edge states is different, see Fig. 4.3{(c).
Now, edge states on both sides of the stacks hybridize, leaving one hinge state on the top
left and one hinge state on the bottom right. This also explains the name hinge state,
as the remaining gapless states are located at the hinge between the top and the side
surface of the stacks. If four monolayers are stacked on top of each other, both hinge
states are located at the top and bottom of the same side of the stack. This is shown in
Fig. 1.3(d).

In general, a stack of an even number of monolayers will feature two hinge states, both
located at the same side of the stack, one at the top, the other at the bottom. A stack of
an odd number of monolayers will feature two hinge states on opposite sides, one at the
top, the other at the bottom [20] 22}, [100| [108]. For an even number of layers, the top
monolayer (or equivalently, the bottom monolayer) determines which side of the stack
the hinge states are on. If, as is the case in Fig. [£.3(d), the top monolayer is a B layer,
then the hinge states are on the right of the stack, when looking along the lattice vector
b. If the top monolayer were an A layer, both hinge states would be located on the left
side of the stack when looking along the lattice vector b. For an odd number of layers,
the same reasoning applies. To assign the labels top and bottom unambiguously, the top
surface is defined to be a (00 1) surface. Correspondingly, the bottom surface is a (001)
surface, see also Ref. [100].

3The topological invariants depend on the space group of the crystal [113| [114]. The three weak indices
v; (i=1,2,3) are all zero [103].
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F1G. 4.3.: Formation of the hinge states observable at a trench on the o-Bi,Br, (001) surface.

and (100) side surfaces are indicated in panel (c). Adapted and modified from from

(a) single monolayer stacks. (b) Two monolayer stacks. (¢) Three monolayer stacks.
(d) Four monolayer stacks. Especially (c) and (d) illustrate how the hybridization of
the edge states of the individual QSH layers leads to the formation of hinge states
where the {100} and {001} surfaces meet. The (001) top surface and the (100)
Ref. [31].
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Consequently, on the (100) and the (001) surface, different surface band gaps can
be observed. Since there are no surface states on a-BiyBry(001), the bulk band is
observed with angle-resolved photoemission spectroscopy (ARPES) [21) [22] and STS [20,
108]. This finding is also consistent with a monolayer of a-Bi Br, being a QSH insulator,
as the @-BiyBry(001) forms the interior of this QSH insulator. Meanwhile, on the a-
Bi,Br,(100) surface, there is a gapped topological protected surface state resulting from
the hybridization. Thus, using ARPES, a much smaller band gap of 40 meV (compared
to the bulk band gap of ~ 300meV) was observed on the a-BiyBr,(100) surface [22].

The QSH edge state of a single monolayer of a-BiyBr, is also present on the a-
Bi,Br,(010) surface. The pristine (010) surface does not exhibit any large kinks, which
would lead to the pattern of hybridizing surface states on the a-BiyBr,(100) surface.
Therefore, it is predicted to host a non-trivial surface state, protected by a two-fold
rotation symmetry [20, 22] 100, [103]. However, due to the experimental challenge in
preparing samples showing the «-Bi,Br,(010) surface, the topological surface state has
not been observed in the literature. Indeed, in the available literature the (002) surface
is preferred [20, 96} [108] [112], with only a few studies also investigating the (10 0) surface
(21}, 22].

In the literature, the presence of the edge/hinge states on the a-BiyBr,(0 0 1) surface was
detected by ST'S [20, (96}, [108, [112] and ARPES [18, 22]. In all these cases, additional DFT
simulations were performed in order to attribute the measured features to topological
surface, edge, or hinge states. In one instance, the edge states on a 1nm step were
observed even at room temperature [20]. The gapped topological surface states on the
o-Bi,Bry(1 00) surface were also observed by ARPES [22]. Shubnikov-de Haas oscillations
observed during transport experiments were interpreted as evidence of the presence of
surface states [115], [116]. Similarly, Aharonov-Bohm oscillations were observed on a-
Bi Br, with an even number of layers. This is an additional experimental indication of
the presence of hinge states on these flakes [108§].

4.4. Preparation of exfoliated Bi,Br, flakes

Since the introduction of mechanical exfoliation to prepare single monolayers of graphite
(graphene) and other strongly layered materials [110], mechanical exfoliation and stacking
of 2D monolayers has become a standard procedure for the preparation of these materials.
Stacking of exfoliated monolayers of different van-der-Waals materials allows to assemble
heterostructures from materials with widely different lattice constants, without being
limited by the lattice mismatch [117]. To assemble a van-der-Waals heterostructure, first
the required (mono-) layers are exfoliated on some intermediate substrate, e.g. SiOs.
On these intermediate substrates, flakes of desired shape and thickness can be identified.
Then, the heterostructure is stacked step by step using a dedicated set of micropositioniers
and a light microscope. The flakes are picked up using a polymer stamp [117].

At PGI-3, a glovebox is available for the exfoliation and stacking of sensitive 2D
materials. Inside the glovebox, an Ar atmosphere is maintained. The partial pressures of
O, and H,0O are kept below 5 ppm. Sensitive samples are transferred to the STM using a
vacuum suitcase.

While in this thesis, no a-Bi Br, heterostructures are stacked, this transfer procedure
can still be useful. The a-BiyBr,, flakes can be exfoliated on SiO, substrate, providing
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4.4. Preparation of exfoliated Bi,Br, flakes

F1G. 4.4.: (a) Sample holder with a silicon sample and an attached tape with BiyBr, flakes.
(b) BiBr, flakes exfoliated onto SiO, inside the glovebox. (c) Flakes exfoliated in
vacuo onto a SOI substrate, due to the inferior optical contrast, arrows point out
the flakes. (d) STM topography of a flake with polymer remnants from transfer
inside the glovebox. (e) STM topography of a flake exfoliated in vacuo, showing the
parallel steps typical for a-Bi,Br,(001) with flat terraces in between.

excellent optical contrast. The flakes were subsequently transferred to the measurement
substrate [Si(111) or H-terminated silicon-on-insulator (SOI)]. This procedure also
allows to position a marker flake (e.g. a thick graphite flake). A marker flake simplifies
locating and approaching the a-Bi Br,-flake in the four-tip STM. However, the method
of transferring the flakes from an intermediate to the measurement substrate also has a
major drawback: The polymer leaves remnants on the flake surface. In order to obtain
clean surfaces for STM studies, a flip technique can be used: This technique requires
the use of at least two polymer stamps, that touch only a part of the flake surface. A
more detailed description can be found in Ref. [109]. In principle, polymer remnants on
flakes of more chemically inert materials can also be removed by mechanical or chemical
cleaning.

For this thesis, a different approach was developed. Exfoliation and thinning of a-
Bi Br, flakes is done in the glovebox using standard exfoliation techniques and Ultron
systems 1007R-6.0 dicing tape. In a final step, the tape containing the a-Bi Br, flakes is
attached to the measurement substrate, which is already mounted in the sample holder.
A photograph of the sample holder with the attached tape is shown in Fig. f.4((a). The
sample, while still covered with the tape, is then transferred to the four-tip STM through
air and mounted to the vacuum system. The free end of the tape is fixed to the chamber
wall. The tape is finally peeled off under vacuum conditions (p ~ 7 x 1075 Pa). On the
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4. The higher-order topological insulator a-Bi,Br,

substrate, an assortment of flakes of different sizes remain. A suitable flake can then be
selected using the optical microscope. The main drawback of this procedure is the limited
resolution of the optical microscope mounted to the STM. Figures d.4(b) and (c) show
Bi,Br, flakes on the standard SiO, substrate and the SOI substrate, respectively. Note,
the difference in optical contrast is both due to the different microscopes used inside the
glovebox [Fig. £.4(b)] and due to the different substrates.

The STM topography displayed in Fig. [4.4(d) shows the surface of a Bi,Br, flake con-
taminated with polymer remnants from the flake transfer discussed above. The polymer
leads to a very high surface roughness, the defining features of the a-Bi,Br,(001), the
long parallel step edges, cannot be recognized anymore. The flat surface in the bottom
right corner is the substrate. It is ~ 60 nm lower than the flake surface. In Fig. [f.4(e)
an STM topography of a Bi Br, flake after vacuum exfoliation is displayed. The surface
shows the distinctive long parallel steps, that have been observed before using various
methods [20, 21, [112]. The elongated steps form along the lattice vector b, that is, in chain
direction (c.f. Fig.[d.2). Step formation is favored along b-direction, as the van-der-Waals
forces binding the individual chains are much weaker than the covalent bonds linking the
atoms inside the chains.
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5. Shear-resistant topology in quasi
one-dimensional van-der-Waals
material BiyBr,

In this chapter, a new surface structure of the a-BiyBr,(001) is discussed. Atomically
resolved STM topography images show a mutual shift of s = b/3 for neighboring chains
instead of the shift of s = b/2 observed in the literature |20} 108, [112} [118]. On terraces
separated by a one monolayer high step, the AB stacking expected for a-BiyBr, is observed.
Scanning tunneling spectra indicate the presence of quantum spin Hall (QSH) edge states
at the monolayer step edges. This result is confirmed by DFT calculations, that find the
new structure to be a QSH insulator with the topological invariant Z, = 1.

5.1. Methods

The a-Bi,Br, single crystal, grown by the self-flux method [22], was glued to a standard
sample plate using conductive epoxy. The sample was then introduced into UHV, where
it was cleaved at room temperature using Kapton tape, which was peeled off along the
b direction. Experiments were carried out in the low-temperature four-tip scanning
tunneling microscope (STM) at the Oak Ridge National Laboratory at 4.7K using a
commercial Ptlr tip. Scanning tunneling spectroscopy (STS) was performed with a lock-
in amplifier, employing a modulation frequency f = 500 Hz and modulation amplitudes
Vinod = 10mV to 100 mV.

5.2. Results

5.2.1. Surface structure

Figure [p.1(a) shows an atomically resolved STM topography image of the Bi,Br,(001)
surface. It clearly exhibits parallel chains, running along the b axis (from top to bottom
in the image). The mutual alignment of the chains, however, does not correspond to
the one expected for the bulk terminated a-Bi,Br,(001) surface. The bulk terminated
a-BiBry(001) features parallel chains with each chain offset by s = b/2 with respect to
the adjacent chains. The atomic model in Fig. [5.1(b) illustrates this surface structure.
This surface was already observed in the literature on cleaved bulk samples [20] [108,
112, [118]. In contrast, in the present case, the mutual shift of the chain is s = b/3
between neighboring chains, according to the STM topography [Fig. [5.1f(a)]. This surface
structure is no longer spanned by the two surface lattice vectors g, and b,, but by new
lattice vectors a. and b]. Figure [p.1|c) shows an atomic model of the modified surface,
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F1G. 5.1.: (a) STM topography recorded at Iy = 0.4nA and Vi, = —0.4V. The atomic
model from (c) is superimposed on the chains, showing good agreement. The image
was upscaled using a linear interpolation. (b) Top-view of the bulk terminated a-
Bi,Br,(001)A surface. The lower Br atoms are indicated by smaller size. Neighboring
chains are shifted by s = b/2 with respect to each other. The rectangle shows the
projected monoclinic bulk unit cell (which equals the non-primitive centered surface
unit cell), the parallelogram is the primitive surface unit cell. (c¢) The experimentally
observed surface structure in which neighboring chains are shifted by b/3 against
each other. The primitive surface unit cell is shown. (d) Defines ¢, d, s, g, b, &,
al, and b. The panel further illustrates how the shear strain deforms the surface

unit cell. Adapted from Ref. [31).

obtained by rigidly shifting the chains. Hereafter, the new surface structure is referred
to a b/3 structure, while the commonly observed surface structure is
denoted by b/2.

The observed length of the surface lattice vectors can be extracted from Fig. a):

= (0.69+0.04) nm and ¥, = (0.45+0.03) nm with an angle ¢ = (101+£5)° between them;
the inter-chain distance is determined as d = (0.68 £ 0.04) nm. These values are averages
obtained from multiple STM topographs, including Figs. (a) and @ While the lattice
vector b, appears to be slightly larger than that of a-phase BiBr, (bs = 0.4338 nm ),
both still coincide within the experimental error of b, i.e. b, ~ bs. Figure [5.1(d) defines
the lattice vectors used here. Comparing the STM topography with a simulated STM
image from the literature and annotated STM topographies in Ref. allows
to identify the positions of the individual atoms: The large bright contrast separated in
the vertical direction by large dark contrasts originate from the top Bi atoms (green).
The zigzag pattern to the left of each vertical chain of Bi atoms are the topmost Br atoms
(blue). The lower lying Br atoms right of the Bi atoms cause a depression in the STM
topographies, compare also Refs. 118].

Scan distortions can be excluded as the origin of the new structure: First, before the
experiments on BiyBr,, the calibration of the STM was verified on the Au(111) surface.
Second, the fact that the structure is consistent both within one image and between
multiple scans of the same area rules out piezo creep and drift. Third, on terraces
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5.2. Results

F1c. 5.2.: (a) STM topography of a step edge on the Bi Br,(001) surface, acquired at I; =
0.1nA and Vi = —0.3 V. The image shows a one-monolayer step edge with atomic
resolution on both the upper and the lower terraces. (b) Line profile indicated by
the orange box in (a). (c) Upper and lower terraces of (a) with individually adjusted
contrast. Both terraces exhibit atomic resolution showing the b/3 structure. (d)
SEM micrograph showing six parallel steps (higher than a monolayer) as lines due
to the edge contrast. Panels (a) and (b) are adapted from Ref. [31].

separated by a monolayer step the same structure rotated by 180° is observed. The b/3
structure is either a surface reconstruction (which has not been observed on a-Bi Br(001)
[20, 108, [112, [118]) or derives from shear stress applied to the sample. The origin of the
b/3 structure is further discussed in section [p.3] Figure [5.1|(d) illustrates how the mutual
shift of s = b/2 deforms the surface unit cell.

The BiyBry(001) surface has multiple parallel steps, running in b, direction. Fig-
ure (a) shows a high resolution STM topography of such a step. According to the
height profile displayed in Fig. [5.2(b), the step height is (0.97 £0.05)nm. This step
height compares well to experimental step heights reported in the literature
118]. According to the crystal model, presented in section the height of the unit cell
is 1.9nm. Thus 0.96 nm corresponds to the height of a monolayer (c.f. section
. On a-BiyBry(001), the latter height also indicates a change from an A to a
B surface or vice versa, c.f. Fig. In the SEM micrograph displayed in Fig. [5.2(d),
six parallel step edges are visible due to the edge contrast created by secondary electrons
, pp. 212-214]. It seems unlikely that the pronounced edge contrast is caused by a
single monolayer high step. Instead, these steps are more than one monolayer high. This
is consistent with the observation that it is impossible to image the area using the STM.
Nevertheless, all steps are parallel, as expected from the quasi one-dimensional crystal
structure of a-Bi,Br,.

The STM topography [Fig. [5.2)(a)] also shows atomic resolution, which is, however,
invisible, due to the large contrast difference arising from the step. Therefore, the
two terraces are displayed separately with individually adjusted contrast in Fig,. (c)
However, from this image, the surfaces of both terraces cannot be identified unambiguously.
In order to identify the surface, it is necessary to analyze the vertical stacking of the
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5. Shear-resistant topology in quasi one-dimensional van-der-Waals material Bi,Br,

F1c. 5.3.: STM topographies of the lower terrace (a) and the upper terrrace (b) in Fig.
Both images were recorded at Iy = 0.1nA and Vi, = 0.4V. They were upscaled
using a linear interpolation. From the location of the dark contrast with in the
surface unit cells (parallelogram), the surface can be identified: The lower terrace
exposes an A surface, the upper terrace a B surface.

b/3 structure. Therefore, as on the b/2 structure [20], high resolution STM scans on the
upper and the lower terrace were obtained. Two of these scans are presented in Fig.
showing the upper and the lower terrace. Figure a) displays the lower terrace. The
surface unit cell is marked with a parallelogram that was placed by using the large, bright
contrasts as anchor points. In Fig. a), the dark contrast is located in the left half
of the parallelogram. As noted above, the large, bright contrasts are associated with
the surface Bi atoms. Therefore, the parallelogram is also overlaid on the atomic model,
using the Bi atoms as anchor points. The model shows, that the darker contrast in the
STM topography is caused by the lower surface Br atom, which is located left of the chain.
This arrangement of atoms (higher surface Br atom left and lower surface Br atom right
of the Bi atoms) is a hallmark of the a-Bi,Br,(001)A surface. The same parallelogram
is also placed on the large bright contrasts in Fig. @(b), showing the upper terrace.
Here, the dark contrast is located in the right half of the surface unit cell. Comparing
the topography to the atomic model indicates that the lower terrace exhibits a B surface.
Therefore, the b/3 structure also exhibits AB stacking. The observation of AB stacking
also excludes the possibility that the theoretical 8 polymorph of Bi,Br, was observed, as
f-Bi,Br, is expected to feature AA stacking [111].

The observed surface structure differs significantly from the structural properties of
a-Bi,Br, under hydrostatic pressure [111]. The corresponding triclinic unit cell observed
under these conditions is also clearly distinct from our observation of AB stacking [111].
Furthermore, the observation of a bulk band gap (see following section) disagrees with
the metallic/superconducting properties of a-Bi,Br, under hydrostatic pressure [111].

5.2.2. Electronic structure

Now, scanning tunneling spectrocopy (STS) data is used in order to analyze the electronic
properties of the b/3 structure. As already shown in section @, the bulk band gap of
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F1G. 5.4.: (a) Scanning tunneling spectrum of the b/3 surface with band gap E, measured at
Veet = 0.6V and It = 50pA. (b) Schematic band structure with topological gap
and edge states. Adapted from Ref. [31].

a-BiBr, can be observed on its (001) surface. The bulk band gapﬂ is estimated using
multiple spectra using the method described in Ref. [119]: The decadic logarithm of
the measured differential conductance dI/dV is plotted as shown in the lower panel of
Fig. [5.4(a). The plot shows three distinct ranges: the valence band at the left side, the
band gap, and the conduction band at the right side. The width of the band gap is
then extracted from the intersections of linear fits to the data in the three regions. In
the present case, a band gap of E, = (242 & 24) meV is obtained. Averaging results
from multiple spectra yields a bulk band gap of E, = (234 & 14) meV. The spectra are
shown in Fig. in the appendix. This result for E, falls into the range
Eg =200 ... 300meV reported in the literature for the b/2 structure using different
methods: By combining angle-resolved photoemission spectroscopy (ARPES) with the
deposition of K atoms on the surface, a band gap of E, = 300 meV was obtained. A further
ARPES study found E, = 230meV [112]. STS measurements on the a-BiyBr,(001) yield
E; = 260meV [20, [108] and E, ~ 200meV [112]. Furthermore, from a (not further
specified) optical measurement E, = 220 meV was obtained [96]. A schematic sketch of
the band structure is depicted in Fig,. b).

The QSH edge states shown in gray in Fig. [5.4(b) are now addressed. Figure [5.5(a)
shows a ~ 1nm deep trench, that formed by two parallel steps. A similar left step has
already been discussed above. The atomic model in Fig. (b) indicates symbolically the
location of the QSH edge states present at single monolayer steps on a-BigBry(001) [23,

ISTM/STS is a surface sensitive technique. Thus, in all cases, only the band gap at the surface can be
measured. In contrast to other surfaces of a-BiyBr,, however, there are no topologically protected

surface states on the a-BiyBr,(001) surface (c.f. section 4.3 on page 51)). Thus, in principle, the bulk
band gap is accessible at this surface.
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F1G. 5.5.: (a) STM topography of a ~ 1nm deep trench on the surface, bordered by two a-
Bi,Br, monolayer steps. (b) An atomic model of the trench with the edge states
indicated by the filled circles. Scanning tunneling spectra in (c) and (d) were recorded
on terraces right and left of the trench and directly at the two step edges. The filled
circles indicate the approximate positions where the spectra were measured. All
spectra are normalized to 1 at 0.3€V. Spectra at the step edges (orange and blue)
show metallic edge states instead of a band gap. Note that the band gaps in the
spectra from the terraces (green, yellow, and red) vary in width and alignment with
the Fermi level. This is explained with sample degradation, see main text for more
details. The spectra displayed in (c) and (d) were smoothed using a moving average
with a 14 meV window.

99]. See also section 4.3 and Fig. Figures [5.5c) and (d) display scanning tunneling
spectra taken at five different locations, indicated by numbers 1 to 5 and color-coded in
Fig. (a). The spectra recorded on the terraces (green, yellow, and red; or 1,3, and
5), exhibit a vanishing density of states caused by the bulk band gap. Spectrum no 2
(orange) and spectrum no 4 (blue) show a metallic state with a non vanishing density of
states inside the band gap. In the b/2 structure, such metallic states located at step edges
on the a-Bi,Br,(001) are explained by the presence of QSH edge states [20, 23], 96, (99,
108]. Thus, the non-vanishing density of states inside the band gap can be interpreted as
evidence of the presence of edge states. To support this interpretation, DFT calculations
are needed as discussed below.

The spectra 1, 3, and 5 recorded on the three terraces Fig. a) differ somewhat in
width and position of the bulk band gap. This effect can be attributed to an accumulation
of adsorbates on the surface during the measurement (five days). The accumulation lead

to a disordered surface and an eventual closing of the bulk band gap observed at the
surface.
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F1G. 5.6.: Evolution of the inverted band gap E; as a function of the inter-chain distance d
and the lattice constant bs. The dashed lines are a guide for the eyes. The DFT
calculations were performed by Minggian Zheng and Jin-Jian Zhou. (a) Dependence
of Eg on the inter-chain distance d, when fixing b = 0.4338 nm. The inverted band
gap decreases, until it closes at d = 0.66 nm and then transitions to a trivial gap.
(b) Fixing d = 0.6532nm and increasing the lattice vector bs enhances the inverted
band gap. (c) The same applies if the ratio bs/d = 0.664 is kept constant. Adapted
from Ref. [31].

Using DFT calculations, the topological properties of the b/3 structure can be analyzed
and its band structure can be compared to that of the /2 (a-BiyBr,). DFT calculations
of a monolayer of the b/3 structure were done by Minggian Zheng and Jin-Jian Zhou,
numerical details are given in Ref. [31]. Since it is not possible to relax the b/3 structure,
crystallographic data for the bulk of a-Bi,Br, [12] and the surface structure presented here
were combined. The inter-chain distance d’ and the length of the surface lattice vector b,
that were determined from the experiment, are somewhat larger than the values given in
the literature for the b/2 structure [12]. The influence of these parameters on the topology
of the b/3 structure will now be studied. As discussed in section the van-der-Waals
interaction between neighboring chains is closely related to the inverted band structure
of a-BiyBr,. Therefore, the impact of the inter-chain distance d’ on the band structure
was analyzed using DFT simulations. First, the dependence of the inverted band gap E,
on the inter-chain distance d’ is considered. Figure [5.6(a) illustrates, how the inverted
band gap closes at d = 0.66 nm, and then opens again as a trivial band gap. For this
calculation, bs = 0.4338 nm was kept fixed. The experimentally obtained inter-chain
distance d’ = (0.68 & 0.04) nm is larger than the threshold d' = 0.66 nm. Thus, at first
glance, the DFT calculations appear to contradict the previous conclusion that the b/3
structure is a QSH insulator. This conclusion was drawn on the basis of the spectroscopic
results. Note, however, that due to its measurement uncertainty, d’ = (0.68 +0.04) nm is
still compatible with the calculated threshold. In addition, also the lattice vector b, was
observed to be larger than the corresponding lattice vector of the b/2 structure. Thus,
as a second step, the influence of b, on the band gap was analyzed.

As shown in Fig. [p.6|(b), increasing b, enhances the inverted band gap. This effect stabi-
lizes the QSH properties of the b/3 structure and counteracts the effect of the inter-chain
distance d'. For the calculation, the inter-chain distance was fixed at d = 0.6532nm, i.e.,
the value for the b/2 structure (calculated from the bulk a-Bi Br, lattice parameters [12]).

In the two cases above, one of the parameters was fixed to its respective value in the
b/2 structure, while the other was varied. This contradicts the experimental observations.
To explore the parameter space further, the ratio was fixed to bs/d = 0.664, based on the
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F1G. 5.7.: Band inversion in the b/2-structure and the b/3-structure. The DFT calculations
were performed by Minggian Zheng and Jin-Jian Zhou. (a) and (b) show the Bijy-py
and Biex-p, projected orbital character of the conduction and the valence bands
around the Y point (a) without and (b) with spin orbit coupling (SOC) for the b/2
structure, see [23]. (c) Shows the 2D Brillouin zone of the b/2-structure. (d) and (e)
show the same projected orbital character of the bands around the Y point for the
b/3 structure. (d) and (e) were calculated using the lattice constants indicated in
the main text. For both structures, SOC exchanges the two orbitals leading to an
exchange of parity, which makes both the b/2 (b) and the b/3 (e) structure a QSH
insulator. (f) Shows the 2D Brillouin zone of the b/3-structure. Panels (a), (b), (d),
and (e) are adapted from Ref. [31].

experimental observation that b,/d’ = 0.662.The results of these calculations, shown in
Fig. [b.6|(c) indicate that the effect of increasing b, is stronger than the effect of increasing
d. The band gap remains inverted over the complete range. Thus, the b/3 structure
remains a QSH insulator, even if the mutual shift of /3 should lead to a stronger repulsion
between Br atoms and thus a larger inter-chain distance d’'.

As noted above, the limit d = 0.66 nm still lies within the uncertainty of experimentally
obtained d' = (0.68+0.04) nm. Increasing the length of the lattice vector b, entails stretch-
ing the covalent bonds of the Bi;Br, chains. While stretching the van-der-Waals bonds
connecting the individual chains appears to be plausible due to the weaker interaction,
increasing the bond lengths of the Bi—Br and Bi—Bi bonds of the chains can be considered
as less plausible. However, both b, = (0.45 + 0.03) nm and d’ = (0.68 £ 0.04) nm contain
the limit within their experimental uncertainty.

From the structures represented in Fig. [5.6(c), the best agreement to the experimentally
derived values a, = (0.69 + 0.04) nm, b, = (0.45 & 0.03) nm, d’ = (0.68 & 0.04) nm, and
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F1G. 5.8.: Total energy per unit cell relative to the b/2 structure as a function of the shift
s = —d' cot(¢’) (plotted in units of b) between neighboring chains, where d is the
inter-chain distance. ¢’ is the angle between the constant unit cell vector ¥, and
the changing o/, associated with s. The DFT calculations are performed by Tobias
Wichmann. Adapted from Ref. [31].

¢' = (101 £5)°) is found for the fifth data point form the left. The calculated parameters
are a; . = 0.6959nm, b, . = 0.4512nm, d; = 0.6795nm, ¢, = 102.48° and a band gap of
E, . = 80meV. The calculated band gap is thus much smaller than the experimentally
obtained E, = (234 + 14) meV. As noted above, the experimental result falls within the
range of the measured band gaps for the b/2 structure, but is slightly smaller than the
band gap obtained by STS measurements on the b/2 structure yielding E, = 260 meV
[20, [108]. This indicates that the b/3 structure is closer than the b/2 structure to the
transition to a trivial band gap. To demonstrate that the selected set of parameters
indeed represents a QSH insulator, the band inversion due to the spin orbit coupling
(SOCQ) is shown in Fig. For comparison, also the band inversion for the b/2 structure
is shown. As introduced in section SOC exchanges the Biy,-p, and Bie-p, orbitals at
the fundamental band gap [23, 99, [100]. In both the b/2 structure and the b/3 structure,
the band gap is located at the Y point. Figure[p.7(a) and (b) show the Bii,-p, and Biex-p,
orbital projected character of bands without and with SOC for the b/2, respectively. As
noted above, SOC exchanges the two orbitals, leading to a change of parity at the Y
point. Thus, the b/2 structure is a QSH insulator [23, 99, [100]. In Fig. [5.7(d) and (e),
the same orbital projected character for the b/3 structure is displayed. Here as well, SOC
exchanges the two orbitals leading to a non-trivial band gap. Consequently, also the b/3
structure is a QSH insulator with Zy = 1.

5.3. Origin of the b/3 structure

The b/3 structure has not been reported in the literature before. In this section, its origin
will be discussed. It is well known, that STM only allows access to the sample surface.
Consequently, it cannot be determined, whether the b/3 structure is also present in the
bulk of the sample. From Fig. and Fig. 5.3, the b/3 is present on the two adjacent
surface terraces that were observed here. Thus, at least the two upper monolayers are in
the b/3 structure. Alternatively, the b/3 structure could represent a surface reconstruction.
However, a surface reconstruction of a-BiyBr, has not been observed in the literature. A
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change from the b/2 to the b/3 structure, that coincides with a step edge seems to be
unlikely.

Based on additional DFT calculations carried out by Tobias Wichmann (numerical
details are given in Ref. [31]), a surface reconstruction can also be ruled out. The total
energy per unit cell AFE;,; was calculated as function of the shift s, with AFE;,; = 0eV
corresponding to the b/2 structure. The atom positions were not relaxed during the
simulation. Figure [5.8 displays the resulting dependence of AF;, on s in units of b.
Obviously, the b/2 structure (s = b/2 and ¢ = 107.8°) corresponds to an energetic
minimum. The energy AE;, increases monotonically, when the shift s is decreased.
Thus, the DFT calculation suggests, that the b/3 structure does not represent a local
energy minimum. As the calculation assumes rigid chains and an experimental inter-
chain distance of d = 0.677nm, the effect of small relaxations of the atom positions
are not included. In principle, such relaxation could stabilize the b/3 structure. At
s = b/3, the total energy is AE;,, = 250 meV. To stabilize the b/3 structure as a surface
reconstruction, the value would have to be offset by the relaxation of atomic positions.
This seems unlikely. Thus, the DFT calculation supports the earlier conclusion that the
b/3 structure is not the result of a surface reconstruction. Note, for symmetry reasons,
the function AE;y has to be periodic: AFE;(s) = AFi(s —b). This can be understood
by considering the application of a mutual shift of b. Shifting the neighboring chains by
b starting from the b/2 structure, yields the b/2 structure again. Starting from the b/2
structure, the b/2 structure is obtained again by shifting the neighboring chains by s = b.

A different explanation of the origin of the b/3 is strain. The quasi one-dimensional
crystal structure should, in principle, allow the chains to glide past each other, if an
external force is applied. External shear stress could, therefore, be the origin of the
b/3 structure. In conventional two-dimensional van-der-Waals materials, a glide shift of
planes due to external stress can significantly alter the electronic structure [120]. Due to
the second van-der-Waals gap in a quasi-one dimensional van-der-Waals material, glide
shifts of the chains are easily conceivable. The shear strain 7 is denoted by [121, p. 245]

ox

where dz is the displacement due to the shear stress and [ is the size of the body, the
stress is applied to. The strain due to the mutual shift of two neighboring chains is

y= 2d . (5.2)

Due to the periodicity of AFE;., the maximum shear strain is found at s = 0 (¢ = 90°)
with v = 33 %. If the stress causes a shift of s > b, the chains can no longer spontaneously
relax into their original positions. Instead, they relax into the closest minimum of the
potential approximated by AFE,. Therefore, a shift of s > b/2 will cause a plastic
deformation of the crystal. Due to a lack of an external reference, it is not possible to
discern such a large plastic deformation in the microscopic measurements presented here.
Only a mutual shift of 0 < s < b/2 between two neighboring chains can be observed. In
principle, there is no reason for the strain to lock at any given value of s, e.g., s =1/3
(corresponding to the b/3 structure and v ~ 7.5%) for the b/3 structure. However, small
relaxations of the internal chain structure can make certain values of s metastable. In
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contrast to the global energetic minimum required to stabilize a surface reconstruction,
even a minor release of energy could create a local minimum around s = b/3, thus
stabilizing the b/3 structure.

Explaining the origin of the b/3 structure using strain raises the question of how a stress
was applied to the crystal. There are four possible ways of applying stress to the sample.
First, during the handling of the sample, e.g., gluing it to the STM sample holder, the
strain could have been applied. In this case, the b/3 structure should be present in the
complete crystal. Second, cleaving the sample in UHV could have introduced the shear
strain: The sample was cleaved by peeling off a tape in b direction. A minor misalignment
might have applied stress to the crystal. Both of these cases should lead to a strain field
on macroscopic length scales. In the third case, however, stress could have been applied
by crystal inhomogeneities, e.g. domain boundaries. In this case, the stress would only
be applied locally. During the experiment, only the b/3 structure was observed. Only
a part of the crystal was accessible for the measurements, due to small flakes or “hairs”
preventing a successful approach of a tunneling tip on other parts of the sample. The
fourth possibility is thermal stress. This, however, seems unlikely, as STM measurements
of the b/2 structure [20] were obtained at similar temperatures. Moreover, there is no
obvious reason why cleaving at low temperature (as done in [20]) should stabilize the b/2
structure.

5.4. Résumé

In the present chapter, a new structure of a-Bi,Br, observed at the surface is reported. In
this structure, there is a mutual shift of the quasi one-dimensional chains of b/3, instead of
b/2. Based on the experimental data and the DFT calculations, a surface reconstruction
is excluded. The b/3 structure is attributed to shear strain instead. The quasi one-
dimensional van-der-Waals crystal structure allows neighboring chains to glide past each
other. Thus a shear stress can modify the structure of the individual monolayers without
changing the AB stacking. At step edges on the surface, states with a non-vanishing
DOS inside the band gap were observed by STS. Since the b/2 structure is a QSH
insulator, these metallic states are attributed to the QSH edge states. Furthermore, a
DFT calculation confirms that the b/3 structure is a QSH insulator: Spin orbit coupling
creates an inverted band gap at the Y point, which leads to a change of parity of the
conduction and valence bands. Thus, the b/3 structure has the topological invariant
Zs = 1. In summary, the /2 and the b/3 structures support almost identical electronic
properties, although the DFT calculations indicate, that the b/3 structure is closer than
the b/2 structure to the transition to a trivial topology. This is different from 2D van-
der-Waals materials, where a change in the stacking can drastically alter the electronic
properties [120} 122].

Results and analysis presented here are largely published in Ref. [31].
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6. Disentangling the anisotropic
resistivity tensor of the topological
insulator a-Bi,yBr,

a-Bi Br, crystallizes in a highly anisotropic crystal structure featuring covalently bonded
chains running in b direction and two van-der-Waals gaps. See also section for a
more detailed description. The question of the electrical anisotropy of a-BiyBr, was first
raised directly after its discovery [12]. However, at the time, it was only possible to
measure the resistance of a-BiyBr, crystals along their long axis which coincides with
the crystallographic b axis [12]. While a-Bi,Br, was reevaluated multiple times over the
years [21, (94} 115, [123], the question of its electrical anisotropy was never tackled.

In order to separate the components of the resistivity tensor p, first the ratio of the

surface components is determined using resistance measurements in a square geometry
on a bulk sample. In a second step, the magnitude of the component py, is found from
measurements on a long, thin flake. In a third step, the three components are calculated
from the resistance measurements on the bulk sample.

6.1. The resistivity tensor of a-Bi,Br,

The resistivity tensor of a material does not only depend on material properties such as
symmetries, but also on the coordinate system chosen. Therefore, there are conventions
for the coordinate systems used when reporting tensors that describe physical properties
[38, p. 282]. In the present case, all measurements were performed on the a-BiyBry(001).
The selected coordinate system coincides with the crystallographic spanning the surface.
As discussed in section , the a-BiyBry(001) surface is spanned by the bulk lattice
vectors @ and b, which are orthogonal. The chains run along the b-direction. The
coordinate system is chosen so that z is parallel to a and y is parallel to b. As described
in section [2.4] the resistance measured in a square configuration depends on the direction
of current flow. In the following, the tips are placed in a square configuration on the
a-Bi,Br,(001) surface, the sides of the square are oriented along the a- and b-directions.
Thus, if the current injection tips are placed in corners adjacent the side running in
a-direction, the measured resistance will be referred to as R,. Similarly, if the current
injection tips are placed in corners with an adjacent edge running in b-direction, the
four-point resistance R}, is measured. As a third direction of the coordinate system,
the surface normal ¢* is selected. For convenience, this direction will be referred to as
z-direction. The coordinate system is illustrated in Fig. [6.1[a).
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PN

A X
o0 o9 o0 o0 o0
B e S e X'

F1a. 6.1.: (a) Relation ship between the crystallographic coordinate system and the g, b, z
system. (b) Coordinate system K (black) and the coordinate system K’ (red),
with the axes z/, and 2/, in which the conductivity tensor is diagonal. The angle ¢
corresponds to the rotation needed to diagonalise o.

In this coordinate system, the conductivity tensor of a-Bi,Br, is given by [38, Chap-
ter 11; [54} [55]
O 0 0q
g = 0 Opp 0 . (61)

Oz 0 o0

Compare also section 2.2} In the following, the contribution of the off-diagonal element
04 to the four-probe resistance measurements in a-BiyBr, will be discussed. First ¢ is
diagonalized by rotation around the b axis. In a second step, the magnitudes of different
components of ¢ are discussed.

6.1.1. Diagonalization of the resistivity tensor

As already noted in section the conductivity tensor ¢ and thus also the resistivity
tensor p is symmetric. Therefore, it is possible to find a coordinate system K, such that
the tensor ¢’ becomes diagonal [54; 138, pp. 195-196; 56|, pp. 218-220].

While this seems to be very useful at first glance, this transformation does not reduce
the number of free parameters. Instead of the off-diagonal elements, now the numbers
(or rather angles) pertaining to the transformation from the coordinate system K to
the coordinate system K’ have to be found. Furthermore, in most cases only certain
crystallographic surfaces are accessible experimentally (e.g. low index cleavage planes).
When measuring on such a plane, it is useful to write the resistivity tensor in a coordinate
system particular to this surface, see also Ref. [124]. Thus, measuring the components of
o’ is not straightforward.
~ For monoclinic materials, ¢ can be diagonalised by rotating around the crystallographic
y axis [124] by using the rotation matrix

cos(¢) 0 —sin(9)

R=[ o 1 o |. (6.2)
sin(¢) 0 cos(¢)

Figure [6.1|(b) illustrates the relation between the coordinate system K and K’. The
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6.1. The resistivity tensor of a-BiyBr,

conductivity tensor in the coordinate system K’ is

gl — RgR_l
Uaa+°'zz+(Ua&70ﬂ)2cos(2¢)72gaz sin(24) 0 Oaz COS(2¢) + (UZZ - Uaa) COS(¢) Sln(¢)
= 0 Obb 0
02z €08(20) + (04, — Tan) cos(@) sin(¢) 0 ”“’L”Z”(”"_”a“);°s(z¢)+2”“ sin(2¢)

(6.3)

Finding the root of the off-diagonal element yields the angle of rotation ¢ necessary to
diagonalize o
1 204, >
= —Zarctan [ —2 ). A4
o) 5 arctan (Uzz o (6.4)

Thus, the diagonal tensor reads

Gaa—0za+1/ (Caa—02z) +402, 0 0

2

g’ = 0 Obb 0 . (65)
0 0 Caa—0zz—Y/ (Uaa—azz)2+4a§z

2

See also appendix

6.1.2. Contribution of the off-diagonal element

The relative sizes of the elements of o will be estimated based on the crystal structure
of a-Bi,Br,. As a simple qualitative estimate, the strength of the bonds is taken as an
indication of the conductivity in a certain direction. The strength of the van-der-Waals
interaction is assumed to be correlated with the size of the van-der-Waals gap. As already
discussed in section the atomic chains in b-direction are covalently bonded, thus the
highest conductivity is expected along the b-direction. Note, however, that o, has no
effect on the off-diagonal element. Along the a-direction the atomic chains are bonded
by weaker van-der-Waals forces, giving rise to a lower expected conductivity 0., < opp.
This is also true for the z-direction. However, in z-direction, the inter-chain distance is
larger (0.48 nm, while in g-direction, the inter-chain distance is 0.44nm) [12]. In addition,
due to the monoclinic crystal structure (c.f. Figld.2)), the chains stacked on top of each
other in z-direction, are shifted slightly. It is therefore reasonable to assume that there
is a greater overlap of the wave functions in the a-direction, which in turn leads to
higher conductivity in z-direction. This conclusion is further substantiated by results of
theoretical calculations showing that at the fundamental band gap, the lowest conduction
band is mostly made up of Biy,-p, orbitals [23, 99, [100] (see also section 4.3)). These are
oriented in the ab plane and stem from the inner Bi atoms. Consequently, their inter-layer
coupling is small. As a result, 0,, < 0., is expected. As a quantitative estimate, o, is
assumed to be one order of magnitude smaller than o,,.

The magnitude of the off-diagonal element o,, is considered. Based on the diagonal
tensor ¢’, an upper limit for o,, is derived. If 0,, < 0a, is assumed, then o%; becomes
negative for certain values of 0,,. As 0}, describes a current flowing in 2’ direction, 0%, < 0
would be associated with a negative resistance. A positive resistance is related to the
Joule heat dissipated by the conductor [125 p. 109]. Negative resistances are forbidden
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for passive electronic devices due to the first law [126, pp. 74-75] of thermodynamics:
A negative resistance of a passive electronic device would violate the conservation of

energyll]
Therefore, the roots of

2
, Oaa — Ozz — \/(Uaa - Uzz) + 4ng

043 = 5 (6.6)

represent an upper limit. These roots are 0y, = +1/02.0.. Neglecting the negative
root, the maximum value of o,, for given 0., and o,, is thus

Oazmax — V Oaa0zz- (67)

When 0,, is assumed to be an order of magnitude higher than o,,, the upper limit of
Cazpax < 3.2 0, Tesults. Substituting Eq. into Eq. yields

Omax = 1a,rcta,n (2”awam> . (6.8)
2 Ozz — Oaa
Thus, |@max| = 17.5° results. The |@max| decreases when the ratio of the conductivities
Oaa/04; increases. For example, in the case of 0,, = 1000, the upper limit for the
off-diagonal element becomes 0., < 100,,. And hence, |¢ma.x| = 5.7° is obtained.
According to Eq. (6.4), the angle ¢ is a measure of the contribution of the off-diagonal
element 0,, to electrical transport through a monoclinic crystal in the ac plane. For
¢ = 0° the coordinate systems K and K’ are identical and the resistivity tensor p is
already diagonal. In this case, measuring the components of p is greatly simplified, since

only the elements on the main diagonal need to be determined. In general, however,
the angle ¢ is unknown and a surface, on which the components of p’ can be measured

directly, is difficult to prepare.

Using the upper limit for o,,, the systematic error that is introduced, when o,, is
neglected, is calculated. As long as the underlying assumption 0., > 0,, holds, this
systematic error is related to cos(¢max). The cosine cos(4) gives the projection of the
coordinate axes of K’ onto the axes of K.Thus, assuming o,, = 100,,, the maximum
systematic error is estimated to be 1 —cos(17.5°) = 0.05. If the conductivity 0., becomes
even larger, the systematic error will decrease. Since the present thesis constitutes the
first measurement of the anisotropy of a-BisBr,, this systematic error of up to 5% is
deemed acceptable. Thus, the off-diagonal element is neglected in the measurements
presented here.

When neglecting the off-diagonal element o,,, the conductivity tensor becomes

Oaa O 0
g = 0 Obb 0 . (69)
0 0 0y

The resistivity tensor is the inverse of the conductivity tensor. For a diagonal tensor T,
the elements of its inverse I are given by I;; = 1 /T;. Consequently, the resistivity tensor

INegative resistances can be realized using active components, see [34, pp. 380-382].
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is

Paa 0 O
p=10 pp O]. (6.10)
a 0 0 pgm

In the following, the elements of this tensor are to be measured. To simplify the nomen-
clature, the second, redundant index will be dropped hereafter.

6.2. Method to disentangle the diagonal components of
the resistivity tensor

For this thesis, the following method was developed, in order to disentangle the three
elements on the main diagonal of the resistivity tensor of a-BiyBr,. To measure all three
diagonal components of the resistivity tensor, two different measurements are combined:

1. Measurements on a 3D crystal in a square geometry with current injected along
the two orthogonal directions @ and b, and

2. In-line measurements on exfoliated Bi,Br,-flakes, i.e. measurements on a rectangular
cuboid with uniform current density.

The second step resembles a measurement on a sample that is cut in a low index direction,
compare also 29, 60].

6.2.1. Determination of the anisotropy A (Square Measurement)

On the bulk sample, the tips were placed in a square geometry, with the sides of the
square aligned with the lattice vectors a and b. As discussed in section [2.4] the resistance
of a square measurement of a square tip geometry on a bulk sample is given by Eq. .
Rewriting for the new coordinate system yields

\/PbPz 1
quuare,b = Pop l—— (611)

s N

when the current is injected along b direction [30, 32]. Rsquare, is Obtained by exchanging

b and a in Eq. (6.11)).

From Ryquare,b 80d Rsquareb, the surface anisotropy

Pa
A== 6.12
Pb ( )

can be obtained by solving

/ Pa __
quuare,a _ 1 + Pb 1 (613)

quuare,b 1/1 + % -1
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F1G. 6.2.: Linear, distance-dependent measurement on a long, thin flake (gray area). The
current is injected using the two outer tips (Tips 1 and 3) while the voltage drop is
measured using the inner tips 2 and 4.

[30, 32] numerically for the anisotropy A = p./pp. See also section
6.2.2. Determination of the resistivity p, (Linear Measurement)

In the second step, a single element of the resistivity tensor, py, is measured. The data
is aquired on thin, long flakes. a-Bi Br, tends to form elongated flakes; the long edge of
these flakes is parallel to the b-direction [108].

As shown in Fig. current is injected at the opposing short edges of the flake. In the
center region of the flake, there will be uniform current flow in b-direction. As Fig. [6.2]
further shows, the two voltage probing tips are placed at the middle of the flake. From
a measurement of R depending on the inter-tip distance s, the resistivity p, can be
extracted by using a linear fit described by

R =%s = fs, (6.14)

where w is the flake width and ¢ is its thickness.
6.2.3. Determination of p, and p,

Solving Eq. (6.11)), an equation for p, can be derived. Rewriting for Rsqyare, and some
trivial rearranging results in

212
(RsquareaTs)” =papa (1 \/1+_A> . (6.15)

With

(1_\/11+A> = \/12+A+1-|1-A= 1iA((1+A)‘2V1+A+1) (6.16)

L (vizA-1)’ (6.17)

1+ A4

and p, = Apy, the resistivity p, is thus given by

_ (l%square,aﬂrs)2 . (1 + A)
A- (\/1+A_1)2-pb

(6.18)

This now expresses p, in terms of the anisotropy A and the resistivity p,, that were
measured before.
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(@) Conductive epoxy (©) free layer

BigBrg
.Insulating epoxy ‘
Si: 70 nm; 7.5 ... 11.5 Qcm
Si02: 145 nm

Handle wafer

(d)

)] BigBry flakes

S S —
Si: 55nm; 1 ... 10 Qcm

SiO2: 145 nm

Handle wafer

F1G. 6.3.: (a) Sample structure for bulk measurements (not to scale) at room temperature. (b)
Sample structure for flake measurements (not to scale). (c¢) Optical micrograph of
the bulk sample after completion of the measurements under ambient conditions.
The crystal has an elongated shape due to its quasi one-dimensional structure. This
structure is also the origin of the horizontal lines on the surface. Very typical for
a-BiyBr, are layers that are still partially attached to the sample but do not lie flat
on the surface. Such a layer is visible at the top as a dark contrast. At the lower
left, there is a small rough area, that was not cleaved. (d) SEM micrograph of the
flake sample after completion of the measurement. Note the random distribution of
flakes due to exfoliation.

With known A and py,, the resistivities p, and p, can be easily calculated. Thus, the
elements on the main diagonal of p have been disentangled. For computations using the

Wasscher transformation (c.f. section [2.3), the mean resistivity

P =+/PaPvPs (6.19)

is also needed. By substituting Eq. (6.18) p can be computed directly from A, py,, and
the inter-tip distance s:

(quuare,aﬂ's)2 * (]- + A)
(Viva-1)’

P =</PaPbPs = 3 Pv : (6.20)

6.3. Samples

As noted above, two different samples were needed to measure the three components of
the resistivity tensor, a bulk sample and a sample of exfoliated flakes. As substrates,
silicon-on-insulator (SOI) substrates were used. The SOI substrates were cleaned by a
wet etching process (RCA /hydrofluoric acid), leaving a hydrogen terminated surface. The
bulk Bi,Br, crystal (0.5 mm x 3.6 mm x 0.1 mm) was glued to the SOI substrate, using
insulating epoxy (EPO-TEK® 323LP). To establish a conductive connection between
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the crystal and ground via the device layer of the SOI substrate for tunneling, two
drops of conductive epoxy (EPO-TEK® H20E) were applied on both ends of the crystal
[Fig. [6.3(a)]. In this configuration, the insulating epoxy between these contacts prevents
current from flowing from the BiyBr, crystal to the substrate. The sample was then
inserted into the UHV chamber and cleaved using Kapton tape before insertion into the
STM. Figure [6.3(c) shows an optical microscope image of the sample after cleaving under
ambient conditions.

The flakes were exfoliated from the same a-Bi Br, bulk crystal also used for the bulk
sample using the technique detailed in section After thinning the flakes
down by multiple cleaving steps inside the glovebox, the tape was placed onto a separate
SOI substrate and left in place. The sample was transported through air and introduced
to the UHV chamber. The tape was then peeled off under UHV conditions to expose
the exfoliated flakes. A cross section of the second sample is shown in Fig. [6.3(b).
Similar to the insulating epoxy of the bulk sample, the thin, highly insulating device
layer of the SOI prevents the substrate from contributing significantly to the measured
resistance. Figure [6.3(d) displays an SEM image of the flake sample after conclusion
of the measurement. The flakes are distributed randomly on the surface. Their long
axes, however, tend to be aligned with each other. This alignment corresponds to the
alignment of the bulk crystal, from which the flakes were exfoliated.

6.4. Results

6.4.1. Sizes of the relevant flakes

Before the results of the transport measurements are presented, the sizes of the flakes
used for the measurements are determined. The necessary measurements were obtained
as the last step, as sample had to be transferred through air to an ambient atomic force
microscope (AFM) and a scanning electron microscope (SEM). In order to determine the
flake sizes, two different instruments were used; an SEM (Zeiss Sigma 500 with Gemini
column) to find the lateral flake sizes (I and w) and an ambient AFM (Brucker Inova)
for the flake thicknesses . To accurately image the large heights, tapping mode AFM
was used. To remove the effect of piezo creep, the forward (FWD) and backward (BWD)
scan directions were averaged.

For the measurements, four flakes were used: flakes A, B, C, and D. Figure depicts
flakes A and B. The flake heights were extracted from height profiles of the AFM scan
depicted in Fig. [6.4(a). The overview image [Fig[6.4(c)] and the SEM scan [Fig[6.4(d)]
show significant damage to flake A sustained due to a transient over current event while

TAB. 6.1.: Sizes of the flakes used for the measurements.

- w (um) ! (pm) t (um)

Flake A 6.540.1 59.0+0.5 0.64+0.04
Flake B 3.840.1 59.5+05 0.57+0.03
Flake C  2.64+0.1 555405 0.6440.04
Flake D 16.040.2 55.0+05 1.13+0.06
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F1G. 6.4.: (a) AFM topograpy of a part of flakes A and B. (b) From the height profiles, the flake
height are determined to be tpjake A = (0.64+0.04) um and tpiake B = (0.57+0.03) pm.
To minimize errors due to feedback overshoot, both the forward and the backward
scanning direction are used. (c) AFM topography showing an overview of both flakes.
The brightness represents the topographical height, with lower areas displayed as
dark. (d) SEM micrographs of flakes A and B. flake A (upper) and flake B (lower).
Flake A exhibits considerable damage caused by a transient high current event during
contacting.

contacting. The high current destroyed a portion of the flake. The holes go down to the
substrate level. Flake C is depicted in Fig.

Figure depicts flake D. Flake D was used to measure the bulk anisotropy at 77 K
in lieu of the bulk sample (see below for details). In the electron micrograph [Fig. [6.6(c)],
a number of flakes are visible, peeling off from the surface and covering flake D. These
flakes were already present during the measurements at low temperature, however, in the
SEM micrographs taken after removing the sample from the UHV chamber, the flakes
peeling off cover a larger part of flake D. While these flakes did prevent access to parts
of flake D in the STM, they have considerably shifted after removing the sample from
the vacuum system. These flakes also limited the area accessible to the AFM, thus the
AFM topography in Fig. [6.6((a) corresponds to the top right corner of panel (c).

7



6. Disentangling the anisotropic resistivity tensor of the topological insulator «-Bi,Br,
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F1G. 6.5.: (a) AFM topograpy of a part of flake C. (b) From the height profiles, the thickness
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of flake C is determined: ¢ = (0.64 & 0.04) ym. To minimize errors due to feedback
overshoot, both the forward and the backward scanning direction are used. (c)
Overview AFM topography showing the complete flake. The brightness represents
the topographical height, with lower areas displayed as dark. (d) SEM micrograph
of flake C.



6.4. Results

—— BWD
—— FWD |

F1G. 6.6.: (a) AFM topograpy of a part of flake D; the flakes hanging above flake D [see panel
(c)] prohibited a more complete AFM scan of flake D. The brightness represents the
topographical height, with lower areas displayed as dark. (b) From the height profiles,
the flake height are determined to be ¢ = (1.13 £ 0.06) ym. To minimize errors due
to feedback overshoot, both the forward and the backward scanning direction are
used. (c¢) SEM micrographs of flake D.
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o 7

F1aG. 6.7.: Photomicrograph of the bulk sample. The tips are placed in a square configuration.
The horizontal lines indicated by the arrows result from step edges or small sections
of the crystal peeling off, and are oriented along b-direction. They were used to align
the square. For convenience, this image, presented already in Fig. B.]] is repeated
here.

6.4.2. Room Temperature
6.4.2.1. Bulk measurements

For the transport measurements on the bulk sample, the tips were placed in a square
with side-length s = 10 um. Such a square placement of the tips is shown in Fig.[6.7, The
square is oriented with one edge parallel to the parallel lines visible on the surface (pointed
out by the arrows), which correspond to large step edges, compare also Fig. [6.3(c). Due
to the quasi one-dimensional crystal structure of Bi Br,, the step edges are parallel to
the the lattice vector b [20, [21].

The distance s = 10 um is chosen as a compromise between two confounding factors:

1. According to Eq. (6.11)) the resistance decreases with increasing s leading to a worse
signal-to-noise ratio for large values of s.

2. Conversely, decreasing s leads to a greater influence of positioning errors, a major
source of measurement uncertainty, as explained below.

Table[6.2)lists the resistances measured in five different transport experiments. Between
these measurements, the tips were repositioned and reconditioned on stainless steel/gold
as needed. The equivalent resistances (c.f. section were averaged. The four-point
resistance with current injection along the chain direction Rsquare,p is ~ 20 times smaller
than the resistance Rsquare,» Perpendicular to the chain direction. Using Eq. (6.13), the

TAB. 6.2.: Measurement data of five measurements to determine the anisotropy of the o-
Bi,Br,(001) surface at room temperature. The anisotropy A = p,/p, obtained
using Eq. (6.13)) is also given.

No quuare,a (Q) quuare, b (Q) A

1 1572 £ 0.3 84 £02 5.7
2 163.5 = 0.5 72 £04 64
3 108.15 + 0.03 4.79+0.02 64
4 1889 + 0.2 54 £02 84
5 1739 + 1.8 105 £0.7 54
Avg 158 +13 72 £1.0 6.4+0.5
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F1G. 6.8.: Histogram of A obtained from the Monte-Carlo propagation of uncertainty. The
mean of 6.4 is indicated by the red line. The gray background indicates the range
of A+ op with op =1.4.

anisotropy A = p,/pp is calculated, it is also listed in Tab. The average anisotropy
is A=6.4+£0.5.

The resistances listed in Tab. show also uncertainties. These uncertainties are
related to the performance of the electronics, the noise in the current and voltage mea-
surements, the tip-sample contacts etc. Therefore, this type of error is called electrical
error. The uncertainties are calculated as the standard error of the mean: The resistance
given in each individual cell is calculated first by averaging multiple repetitions of the
same measurement (giving the average and the standard error of the mean) and then
averaging the equivalent resistances. It is evident, that these uncertainties cannot explain
the spread of the resistances between different measurement series. Accordingly, for the
averages given in the last line of Tab. [6.2] the standard error of the mean was employed.
The uncertainties listed in Tab. [.2] only describe this electrical error. Obviously, the
uncertainties cannot explain the deviations between the individual measurements.

A source of measurement uncertainty, that is not contained within the error bars given
in Tab. [6.2)is the tip-placement error. The origin of the tip-placement error was already
addressed in section [3.5 on page 44, A major source of this error is the resolution of the
optical microscope, which is 1 um. Since Eq. has to be solved numerically for A,
the standard Gaussian propagation of uncertainty cannot be applied. Therefore, to gain
insight into the tip-placement error, a Monte-Carlo propagation of uncertainty is applied
[91]. The Monte-Carlo propagation of uncertainty was likewise introduced in section
where it was used to calculate relative errors for the linear, equidistant tip configuration.

For the Monte-Carlo propagation of uncertainty, N = 10000000 samples of the resis-
tances R, and Ry, were computed. The tips were placed in a square with s = 10um. To
each x and y positions N samples from a normal distribution with a standard deviation
of 1um were added. This standard deviation is based on the experimental error of 1um.
To compute the resistances, Eq. was used. Eq. describes the resistance
measured in an arbitrary tip configuration on an anisotropic bulk sample. In addition to
the tip positions also the resistivities are required to compute the resistance R. Therefore,
the disentangled elements resistivity tensor at room temperature, p., pp, and p, given in

Eq. (6.22)), were plugged into Eq. (2.48).
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Using Eq. , Ryquare,n and Roquare,b are calculated for each set of samples. Then the
anisotropy A for each set of samples could be calculated by solving Eq. numerically.
A histogram of the anisotropy obtained is plotted in Fig. From this distribution,
A = 6.3+ 1.4 results. This uncertainty is almost three times larger than the experimental
uncertainty +0.5. At the distance s = 10 um, the Monte-Carlo simulation finds a long
tail for the anisotropy A. The long tail originates from very small values of Rsqyaren, due
to small inter-tip distances. These small inter-tip distances, and corresponding small
resistances Rsquareb, are, however, unlikely to occur during the experiment, as small
inter-tip distances are avoided to prevent tip crashes. Furthermore, as discussed in
section 3.5}, the point of contact will tend to move outwards. Therefore, modeling the
tip-placement error with circular Gaussian distributions does not completely capture the
true tip-placement error as observed during the experiments. Nevertheless, the naive
simulation of the tip-placement error allows the conclusion that it can cause significantly
larger uncertainties than the electrical errors listed in Tab.

6.4.2.2. Linear measurements

From the available flakes [c.f. Fig.[6.3(d)], the long thin flakes A, B, and C were selected
for the measurement. As described in section [6.2.2), the four-point resistances R of the
flakes were measured as a function of the inner tip distance s. Figure [6.9(a), (b), and
(c) depict the resulting curves for the three flakes. The resistance-distance curves do not
exhibit any turn-off points that would indicate a strong deviation from uniform current
flow. Flake C is depicted during the measurement in Fig. [6.9(d); the inter-tip distances
s were measured using the optical microscope of the four tip STM. The uncertainty in
inter-tip distance s results form the resolution of the optical microscope. An additional
source of uncertainty is the width of the tips and the difficulty in identifying the point
of contact. This is the tip-placement error discussed above. The measured data is fitted
with a linear function according to Eq. (6.14). To account for the uncertainty in inter-tip
distance s, the data were fitted using an orthogonal distance regression algorithm [127].
The resulting fit parameter f is given in the keys in Fig.

From the fit, p, was extracted, based on the assumption that the current flows in
b-direction with a uniform current density close to the flake center. Using Eq. , Ob
is given by

po = ftw. (6.21)

As explained in detail in section the flake sizes were measured at ambient conditions

TAB. 6.3.: Disentangled resistivities and the anisotropy A, = p,/py, for three different BiyBr,
flakes, and their averages at room temperature.

o (mQem) p, (mQem) p, (Qem) A, p (Qcm)

Flake A 14.4+0.8 93+ 9 7T+2 460 0.20
Flake B 9.2+0.6 599+ 6 10£3 1100 0.18
Flake C 6.9+0.5 4+ 5 14+4 2000 0.16

Avg 10 £3 65+ 15 11+3 1300 0.18
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F1G. 6.9.: (a), (b), (c) show transport data on the long, thin a-Bi,Br, flakes A, B, and C. The
resistance is plotted as function of the distance s between the two voltage probing
tips. The data was fitted with R = f - s (red lines). (d) Flake C during measurement.
The outlines of the the tips are highlighted by dashed lines.

once the electrical measurements were completed. For these measurements, an SEM and
an ambient AFM were used. Table [6.3] lists the resistivities py, of three different flakes.

The resistivity p, shows a large spread. While the flakes were all exfoliated at the same
time from the same crystal, minor differences in doping are conceivable. Moreover, during
the room temperature measurements, the light of the optical microscope was kept on.
In principle, minor changes in the intensity of the light source could induce a variation
of the carrier density. However, as will be shown below, the spread of py, is also present
in the low temperature data taken without light. An alternative explanation is a small
gating effect due to the SOI substrate.
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6.4.2.3. Calculation of the resistivity tensor

Using the previous results, the missing elements of the resistivity tensor, p, and p,, can
now be computed as described in section P is calculated directly from Eq. (6.12)).
For p,, Eq. with Rsquarea = (158 £13) Q is used. The results are tabled in Tab.
The table also gives the average resistivity p computed using Eq. and the anisotropy
A, = pz/ Pb.

Note that the large spread of p, and p, is induced by the spread of p,. Keeping in
mind that according to Eq. pz < 1/p, and A, o< 1/pE, the large discrepancies in
pz and A, can be easily understood. On the other hand p oc ¢/p,. Correspondingly, the
spread of p is much smaller. In summary, the resistivity tensor of a-Bi Bry is

(65 £ 15) mQ cm 0 0
p_ = 0 (10 £3)mQcm 0 (6.22)
=R 0 0 (11 +3)Qcm

at room temperature (RT). The average resistivity is ppr = 180 m<2 cm.

With p, and py, the sheet resistivity Rgav, of the a-Bi,Br, flakes can be calculated
using Eq. (2.61). Rsave then facilitates a retroactive justification of the chosen SOI
substrate. According to Eq. (2.12)), the (isotropic) SOI substrate (¢ = 55nm, p > 1Qcm)
has a sheet resistivity of Rsgor > 0.18 MQ2 0=, Conversely, the sheet resistivity of the
a-Bi,Br, (¢ = 0.6pum) is Rs opi,pr, = 410Q07. Thus, Rssor/Rspipr, & 430. While
this ratio does not necessarily hold for the ratio of currents, it is a strong indication
that the current density inside the a-Bi Br,-flakes dominates the current density flowing
through the substrate.

Furthermore, the disentangled resistivity tensor allows to revisit the discussion on the
contribution of the off-diagonal element o,,. The off-diagonal element o,, was neglected
in the analysis of the measurement data. Therefore, the results cannot serve as experi-
mental verification of the initial assumption, that o,, could be neglected. Nevertheless,
a contradiction between the initial assumptions would point to a significant flaw in the
reasoning. Initially it was assumed that o, was an order of magnitude larger than o,.
From the results, the ratio ¢,/0, ~ 170 is found.

6.4.3. Low temperature transport on flakes

Low-temperature transport data was obtained by Serhii Kovalchuk using the methods
developed at room temperature. The analysis was done by Jonathan Karl Hofmann.

Measurements at 77 K were obtained on the flake sample, also used at room temperature.
The flakes B and C were measured again. Furthermore, a new flake, flake D, was used.
The sample was transferred to the low temperature STM using a vacuum suitcase at
pressures no higher than ~ 1 x 107°Pa. As the low temperature STM was not baked
prior to the measurements, its base pressure was ~ 2 x 1077 Pa.

Note, at 77K, also the surface anisotropy A was measured on a flake. This is possible
due to the extremely high resistivity of a-BiyBr, in the z-direction. Furthermore, the
SEM installed in the low temperature four-tip STM enabled a smaller inter-tip distance of
s = 5um. The micrograph in Fig. shows the flake during measurement. According
to the Wasscher transformation, for each anisotropic flake, there exists an equivalent
isotropic flake whose dimensions are scaled by a factor of 1/p;/p (c.f. section . In the
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case of the Bi,Br, flakes, during the transformation the thickness is stretched, while both
directions on the flake surface are compressed.

The influence of the flake boundaries on the measurement results can be judged using
the correction factors derived in section While the tips are placed in a
square on the flake surface, the Wasscher transformation will transform the square into
a rectangle. This rectangle then has the edge lengths

si=s Pa and s =5,/ 6.23
V7 b > (6.23)

As is shown in Fig. the edges of the square are aligned with the lattice directions a
and b, which themselves are aligned with the flake edges [108].

To evaluate the correction factors F| [Eq. (2.84)], F| [Eq. (2:88)], and F; [Eq. (2.98)]
numerically, the components of the resistivity tensor need to be known. In order to
proceed with the analysis, the results for room temperature given in Eq. are used.
From Tab. [6.1} flake D has the dimensions ¢ = 1.13um, / = 55um, and w = 16um. The
distance from the current injection tips to the nearest flake boundary was d, = 6um.
For the resistance measurements, a square with s = 5um was used. Applying the
Wasscher transformation [Eq. ] gives the distances on the equivalent isotropic flake:
w' =9.29um, I’ = 31.9um, ¢ = 8.54ym, s, =2.90um, s; = 1.14pm, and d, = 3.49um.

First, the correction of Rsquare,a is considered. Due to the high aspect ratio of the flake,
the influence of the flake boundary parallel to the lattice vector a is neglected. The
injection of current along the lattice vector a is described by the correction factors F';
and F; with s = s}, and v = s;. The distance between the current injection tips is given
by v, the distance between a current injection tip to a neighboring voltage probing tip
by s. Thus, the aspect ratio of the square is s,/s; ~ 2.5. With d./s, ~ 1.2, Fig.
indicates that the contribution of the higher order terms in Fjjong [Eq. (2:89)] can be
neglected. The correction factors are then

F| =0.984 (6.24)
F, = 0.996 (6.25)
F, F, = 0.980. (6.26)

F1ac. 6.10.: SEM micrograph of the square tip configuration on flake D. The dimensions of the
square, s, and sp, and its distance from the flake boundary d, are indicated. These
parameters are needed for the evaluation of the correction factors. The contrast of
the SEM image was inverted for better visibility.
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TAB. 6.4.: Measurement data to determine the anisotropy of the a-BiyBr,(001) surface at 77 K.
The calculated anisotropy A = p,/pp, calculated using Eq. (6.13) is also given.

No quuare,a (Q) quuare,b (Q) A

1 806.3 +0.5 49 £5 5.3

2 829 £2 57.0 £0.1 5.3

3 840 £2 63.0 £0.3 4.6

Avg 825 +10 57 £5 50 £0.3

These results show, that for current along the lattice vector a the flake can be treated as
an infinite 3D object. Additionally, the tips are far enough from the edge, that within
the measurement error, a correction for this edge is not necessary.

Second, the correction of Rsquareb is considered. In this case, the correction factors Fj
and F; are to be computed. With s = s}, and v = s, the correction factors evaluate to

Fj =0.973 (6.27)
F, = 0.987 (6.28)
FF, = 0.961. (6.29)

Thus, during the measurement of Rsquare,n a11d Rsquare,b, flake D can be considered to be
an infinitely large 3D sample, within the measurement error.

6.4.3.1. Square measurements

The resistances measured in a square with s = 5um are listed in Tab. [6.4 As described
above, the measurements were obtained on flake D, which is large enough to behave like
an infinite bulk sample at the used inter-tip distance. From the resistances, the anisotropy
can be calculated using Eq. as discussed above. At 77K, the surface anisotropy is
A=50+0.3

6.4.3.2. Linear measurements

Similar to the room temperature measurements, distance dependent measurements of the
resistance of long, thin flakes were carried out. Figure[6.11j(a) and (b) display the distance
dependence of R on the inter-tip distance s for flakes B and C. As noted in section [6.4.1]
flake A while measuring additional data at room temperature. An SEM micrograph of
flake B during measurement is presented in Figl6.1](c). Since the SEM offers a much
better resolution, the uncertainty of s is much lower than it was for the RT measurements.
During the analysis of the resistance data for flake C [depicted in Fig. [.11|(b)], the two

TAB. 6.5.: Disentangled resistivities of BiyBr, and the anisotropy 4, = p,/pp at 77 K.

pp (mQem) p, (mNem) p, (Nem) A,  p(Qem)

Flake B 19+1 93+ 7 51+ 12 2800 0.45
Flake C 9.7+£08 48+ 5 99+24 10300 0.36
Avg 141+01 71+ 7 75+ 18 6500 0.40
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F1G. 6.11.: (a) and (b) show transport data on the long, thin a-Bi Br, flakes B, and C. The
resistance is plotted as function of the distance s between the two voltage probing
tips. (c) A flake during measurement. Note the superior resolution of the SEM
compared to Fig. d). The contrast of the SEM image was inverted for better
visibility.

outliers were neglected. These outliers are probably the result of a bad contact with one
of the voltage probing tips, leading to high noise in the four-probe measurement. Due to
severe degradation of the tips, recording further data points on flake C was not possible.
Removing the sample from the cryostat, however, would have lead to an accumulation
of adsorbants on the flake surfaces. Experience shows that the adsorbants themselves
also prohibit good ohmic contact for current injection. The resulting resistivities p;, are
tabled in Tab. Also at 77K, there is a large difference on the resistivities of flakes B
and C. In fact, compared to the room temperature results listed in Tab. [6.2] p, of flake
B doubles, while for flake C it only increases by a factor of ~ 1.4.

6.4.3.3. Calculation of resistivity tensor

The diagonal elements of the resistivity tensor at 77 K are now calculated from A and
pp as outlined in section Relative to the room temperature values, p;, increases by
40 % and p, increases substantially (by a factor of seven) at 77 K. Correspondingly, the
vertical anisotropy increases to A, = 6500. The values calculated for flakes A and B are
given in Tab. From the averages, the resistivity tensor at 77K is

(T1£7)mQcm 0 0
p__ = 0 (14.1£0.1) mQ cm 0 . (6.30)
=T 0 0 (75 + 18) Qcm

The average resistivity is pr7x = 400 m2 cm.
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6.5. Discussion

As expected from the crystal structure (c.f. Fig. the resistivity pp, describing elec-
trical current flow in b-direction, is the smallest of the measured resistivities. In the
literature, multiple measurements of the resistivity of a-BiyBr, can be found. However,
not all experimental descriptions offer sufficient details to allow a proper identification
of the measured components of p. Nevertheless, since a-Bi,Br, tends to form elongated

crystals along the b-direction, it can be assumed that p, was measured in all of these
studies. The values obtained for py, at room temperature are 13mQ cm [94], 60 m cm
[21], 35 ... 59mQcm [115]. The present value p, = 10m€ cm agrees reasonably with
[94] and is considerably lower than the values reported in [21] and [115]. However, it is
known that the resistivities can vary from sample to sample. For instance for two samples
measured in [115] the resistivities differ by 68 %.

The values for p;, obtained on different flakes stemming from the same a-Bi,Br, crystal
given in Tab. deviate up to 40 % from the average. These variation of the resistivities
can be attributed to a different density of defects for the different samples. The flakes with
the lowest defect density are the ones with the lowest resistivity p,. A difference between
the measurements presented here and the measurements in the literature is the distance
over which the four-point measurements are performed. In the literature, distances in
the millimeter range are used, whereas here, the distances are in the um range. Larger
fluctuations of the defect density on small length scales can explain the relatively large
differences between the measured resistivities for different flakes (see Tab. and [6.5).

From the literature, the resistivity at 77K increases by a factor of ~ 2 [12, 21}, 94,
115], which is also supported by a measurement of the resistance [128]. Only the result
in Ref. [94] is quite different, with a decrease of the resistivity from room temperature to
77K. In the present thesis, an increase by a factor of 1.4 was observed.

All previous measurements of the resistivity of a-BiyBr, samples were limited to p,. In
this work, all three components on the main diagonal were measured. By measuring the
four-point resistances in a square configuration along the a-direction and b-direction, the
resistivity p, and correspondingly the lateral anisotropy A = p./p, = 6.4 £+ 0.5 at room
temperature and a somewhat smaller value of A = 5.0 & 0.3 at 77K were obtained.

For the conductivityf| o, it holds in general [121} p. 406]

0 = enpin + epip, (6.31)
where e is the elementary charge and n and p are the electron and hole densities, respec-
tively. The mobilities p, and p, are denoted by [121}, p. 406]

€Tn d
Yy = and p, =
m P m ’

E€Tp

(6.32)

with the mean relaxation time 7, describing the scattering of charge carriers, and the
effective mass m*. Since in a-Bi,Br, the Fermi level is close to the conduction band [20,
108, [115], the contribution of the holes to the conductivity can be neglected. The electron
density is a scalar, thus the measured anisotropies A and A, stem from the electron
mobility p, [59]. Both, the relaxation time 7 and the effective mass m* can contribute to

2To follow the convention of the literature, the conductivity is used here. For an diagonal resistivity
tensor, o; = 1/p;. Thus A = p,/p, = 0b/0a-
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the anisotropy of u, compare also Ref. [124] for an example in a different material of the
same space group. In the case of a-BiyBry, no measurements of 7 exist in the literature.
However, the different scatter mechanisms in a semiconductor are temperature dependent
[121} pp. 408-413]. Cooling the sample to 77K changed the measured anisotropies of the
conductivity (or resistivity). This observation indicates that the measured anisotropies
may be partly due to corresponding anisotropies of the relaxation time 7.

The anisotropy of the effective mass m* can be extracted from DFT calculations.
However, as the fundamental band gap is located at the boundary of the Brillouin zone,
the necessary k-paths are not included in the calculations in the literature [22, 99| [103,
111, [115]. Therefore, a phenomenological explanation of anisotropy using the crystal
structure of a-BiyBr, (c.f. Fig. is given. The in-plane anisotropy A of the resistivity
can be explained by a larger overlap of the wave functions, due to the covalent bonds,
in b-direction along the atomic rows than in a-direction, where weaker van-der-Waals
forces connect different rows. Since there are no measurements of the lateral anisotropy
of a-Bi,Br, available in the literature, the results are compared to other anisotropic 2D
materials. For thin flakes of black phosphorus, an in-plane anisotropy of 1.5 was measured
using two-probe measurements with lithographic contacts placed in a circle 30° apart
[129]. For the transition metal dichalcogenides 1T’-MoS, and 1T’-WTe, a dependence of
the two-point resistance on the direction of current flow with respect to crystallographic
axes was observed using similar setup of electrodes [130} 131]. For 1T’-MoS,, the ratio
between highest and lowest resistance is 1.8, which indicates a low anisotropy [130] The
in-plane anisotropy is lower in both of these materials as both materials consist of layers
that are internally bonded with covalent bonds. On the other hand, in 1T-WTe, a
surprisingly large ratio of the two-point resistances of ~ 10® was observed [131]. This
result indicates a strong in-plane anisotropy of 1T°-WTe,, even though the intra-layer
bonds of this material are covalent bonds. In principle, transport through the topological
hinge states, present at step edges on the (001) surface [20, 21}, [108], could contribute to
the anisotropy A observed here. However, transport in a-BiyBr, is bulk dominated until
below 20K [108, [115]. Consequently, the anisotropy A observed here is due to the bulk
transport properties of a-Bi,Bry.

Finally, the resistivity along the vertical direction p, was also disentangled. This
resistivity is much larger than the in-plane resistivities, with a room temperature value
of p, = 11Qcm, corresponding to an lateral anisotropy of A, = p,/p, = 1300 at room
temperature. The low temperature value is even much larger with a value of p, = 75Q cm,
corresponding to A, = 6500. As before, there are no measurements of p, or A, available
from the literature. Thus, a comparison to other layered van-der-Waals materials, where
anisotropies were measured between the base-plane and the c-axis, is drawn. For BiyTes,
an anisotropy of ~ 4 was obtained [132], while for SbyTes, anisotropies of 1.9 [133] and
2.3 [134] were measured. In the case of these two topological insulators, the anisotropy
is obviously much smaller than the A, = 1300, observed in a-BiBr,. In graphite, on the
other hand, there is a pronounced anisotropy between p,, measured in the basal plane and
pc [135H139]. At room temperature, p,/p. = 300 ... 600 has been measured for natural
single crystal graphite [136]. The difference between the in-plane anisotropy A and the
out-of-plane anisotropy A, is remarkably large. While the difference can be attributed
to the larger van-der-Waals gap in z-direction than in a-direction and to the fact that
the cross-section of two adjacent chains is larger in a-direction than in z-direction (c.f.

section 4.2 on page 49), a more thorough understanding is needed. While only a study
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of scattering of charge carriers in a-Bi Br, will shed some light on the influence of the
scattering time 7, DFT calculations can, even without supplying the anisotropy of the
effective mass, offer an explanation. As already noted in section a-Bi,Bry
exhibits a weak inter-layer coupling [99, 100]. The weak inter-layer coupling arises from
the fact that the lowest energy bands close the the fundamental band gap consist of Bi-p,
orbitals, that are oriented in the ab plane [23, 99]. In addition, at the fundamental band
gap, due to the band inversion, the lowest conduction band predominately consists of
Bij,-p,; orbitals, which belong to the two inner atoms of the BiyBr, chains [23], 99, 100].

See also Fig. [5.7(a) and (b) on page [64]

6.6. Résumé

A method to disentangle the three components on the main diagonal of the resistivity
tensor describing an anisotropic crystal was presented. The method involves two mea-
surements on a bulk sample in a square tip configuration and one distance-dependent
measurement on a long, thin flake in a linear configuration. The alignment of the square
with the two primary crystallographic axes spanning the investigated surface was known
from typical surface properties of the quasi one-dimensional crystal structure. In principle,
the method presented here can be extended for samples where this alignment is unknown,
e.g. by rotating the square tip configuration around its center [42] 140]. The ability to
evaluate data without relying on correction factors is the main advantage of the linear
distance dependent measurement used here.

This method was then applied to disentangle three principal resistivities of the HOTI
a-BiBry, under the assumption that the off-diagonal element of the resistivity tensor
only has a negligible impact on the resistances. Measurements were obtained at room
temperature and at 77 K using a four-tip STM. On the commonly used a-Bi,Br,(001)
surface, the resistivity at room temperature along the chain direction (py,) is 6.4 times
smaller than the resistivity perpendicular to the chain direction (p,), i.e. A= p./pp =
6.4 £ 0.5. At 77K, this anisotropy decreases to A = p,/p, = 5.0 £ 0.3. This decrease
of A may indicate, that the anisotropy is not only governed by the effective mass m*,
but also by an anistorpy scattering time scale 7. On the other hand, the resistivity p,
(normal to the (001) surface) is ~ 1300 times larger than py at room temperature, i.e.
A, = p./p» = 1300. At 77K, this anisotropy increases to A, ~ 6500. The notably larger
anisotropy A, can be attributed to the weak inter-layer coupling of a-Bi,Br, [99], which
is also evident in the larger van-der-Waals gap in z-direction.

Results and analysis presented here are to be published in Jonathan K. Hofmann*,
Serhii Kovalchuk*, et al., Disentangling three anisotropic resistivities of the topological
insulator o-BiyBr,, in preparation.

* These authors contributed equally.

90



7. Measuring the anisotropy of an
a-BiyBr, flake by the
Bierwagen-Simon method

In the previous chapter, the surface anisotropy A of a-BisBr, was determined from
measurements on the bulk crystal. A subsequent measurement of py, using a flake then
allowed for all three components on the main diagonal of p to be disentangled. However,
as shown in section there are multiple different measurements that, in
principle, lead to the same result. In the present chapter, the anisotropy A and the
two in-plane components p, and p,, are measured on thin flakes. For p,, the results for
Risquare,, measured on the bulk sample is reused.

7.1. Disentagling the three components of an
orthorombic resistivity tensor

To measure the anisotropy A = p./pp, a number of different approaches can be used:

o For rectangular flakes, the Bierwagen-Simon or the Montgomery method can be
used.

o Otherwise, the tips can be placed in a square on the 2D sample and Eq. (2.58)) can
be applied, see e.g. Refs. [32, [140].

While a measurement of the anisotropy A according to the Bierwagen-Simon method
is not exclusive to the 2D case, on a 2D sample, the same tip configuration can be used to
measure the average sheet resistivity Rg v, using the van-der-Pauw method. Therefore,
a thin sample is still required. To apply the Bierwagen-Simon method, the flake has to
be rectangular and the main resistivity directions need to be aligned with the flake edges.
This is the case for a-Bi,Br, [108], but not necessarily for other materials.

If the flake is not of rectangular shape, the tips can be placed on its surface in a square
geometry, and the anisotropy can be obtained from Eq. (2.58). The square formed by the
tips still needs to be aligned with the main resistivity directions. If those are unknown, the
square can be rotated around its center axis. This allows to extract both the anisotropy
A and the angle of the main resistivity direction with respect to an arbitrary point of
reference on the surface. If atomic resolution can be measured on the flake surface, using
the four-tip STM, in principle this angle can also be referenced a lattice direction [32,
140].

This method, however, has an additional requirement: The tips must be positioned
sufficiently distant from the sample edges to avoid the necessity for the application of
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7. Measuring the anisotropy of an a-Bi,Br, flake by the Bierwagen-Simon method

TAB. 7.1.: Measurement data of three measurements used to determine the anisotropy of a
ao-BiBr, flake using the Bierwagen-Simon method at room temperature. The
anisotropy A = p,/pp obtained using Eq. (2.67) is also given.

No R, (Q) Ry (Q) A Ry (£)  pave (mQem)
1 177.4+09 191.7+ 01 3.0 834 55+ 7
2 180.0+0.7 196 + 2 3.0 847 56+ 7
3 1639405 2260+ 0.1 2.8 876 58 £ 7
Avg 174 +£5 204 +11 29401 852413 56 + 7

correction factors (see below). While there is a large body of literature on correction
factors for different measurement geometries and sample shapes as elaborated in section [2.6]
(see also e.g. 28] 32, 137, 45]), the special case of an irregularly shaped flake is not found
in the literature: Correction factors are calculated only for highly symmetrical sample
shapes. Furthermore, most correction factors are calculated only for the isotropic case.
While correction factors can be easily applied to anisotropic samples using the Wasscher
transformation, this procedure requires knowledge of the value of the anisotropy A.
Therefore, some sort of self consistent solution would need to be implemented. Instead of
correction factors, also finite-element modeling (FEM) could be applied to the problem.
However, a fitting procedure of some sort would still be necessary.

Once the two lateral components of the resistivity (p, and p,) are known, the third
component (p,) can be measured. For this measurement, there are different methods, as
well:

1. p, can be measured on a bulk sample, showing the same crystallographic surface
as the flake sample, using e.g. a linear, equidistant tip configuration and Eq. .50

2. A thin flake sample showing a different crystallographic surface (e.g. the surfaces
is spanned by x and z) is prepared. Then the procedure described above is applied.

7.2. Results

From measurements of the resistance on flake E, the anisotropy can be found using the
Bierwagen-Simon method. Figure[7.1]depicts flake E. The optical micrograph [Fig. [7.1j(a)]
shows the sample during measurement, in Fig. [7.1[(b) an SEM micrograph is depicted.
Similar to flake A, also flake E was damaged by a transitory high current during contacting.
This accident prevented further measurements. The damage is also visible in the optical
microscope (compare appendix [G on page 129). Figure[7.1[a) depicts the flake prior to
sustaining the damage.

From the SEM micrograph the flake size w, = 57um and l;, = 32.5 um is determined.
Using these values, the anisotropy is calculated using Eq. (2.67). Figure [7.1(a) depicts
the flake before it was damaged.

A=P2_929+01. (7.1)
Pb
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(a)

(c) (d)
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Fia. 7.1.: o-BiBr, flake E. (a) Bierwagen measurement on flake E with four tips placed in the
corners. (b) SEM micrograph after the completion of the measurements. The flake
shows damage from a high current event during contacting. (c) AFM topography
under ambient conditions. The same damage as in (b) is visible. (d) Height profiles
along the two red lines in (c). The average flake thickness was evaluated using the
forward and backward scan directions. The upper panel corresponds to the upper
profile indicated in (c).

This result for the room temperature anisotropy obviously does not agree with the result
obtained on the bulk sample in the previous chapter.
According to the the Bierwagen-Simon method as introduced in section
, as a next step the average sheet resistivity Rg avg is determined. To this end,
the resistances given in Tab. are plugged into the van-der-Pauw equation [Eq. ],
which ﬁg then solved numerically. The resulting sheet resistances are also given in Tab.[7.1]
Wit

RS,avg t= V PaPb = Pavg (72)

[cf Eq. (2.61)], where t is the flake thickness, the geometric mean of the two in-plane
components of p is found.

1Bierwagen et al. use the symbol Pavg for the average sheet resistivity, given in in units of 2. They also
use p, and p, for the components of the 2D resistivity tensor .
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7. Measuring the anisotropy of an a-Bi,Br, flake by the Bierwagen-Simon method

The thickness of flake E was measured using an AFM in tapping mode under ambient
conditions. There appears to be a boundary on the flake, that manifests itself differently
in Fig.[7.1](a), (b), (c), due to different contrasts mechanisms. Consequently, two different
height profiles of the AFM topography were taken. Their locations are indicated by the
red lines in Fig. [7.1(c). The height profiles are plotted in Fig. [7.1]c). Averaging the two
profiles per scan direction, flake thickness ¢ = (0.66 £ 0.08) um was obtained.

From Eq. and ([7.1)), the two components of the anisotropy tensor can be calculated:

_ _ Pavg

pa=VApsy, and pp Vi (7.3)
Using Eq. (7.2), the average of the two in-plane resistivities p,yg can the be calculated. The
results for the three measurements are given in Tab. [7.1] The average of the measurements
iS pavg = (56 £ 7) mQ cm. Thus, using Eq. (7.3), the two in-surface components p, =
(96 £ 12) mQ cm and p, = (33 £4) mQ cm. As already noted above, this result deviates

from results obtained on the bulk sample in the previous chapter.
To demonstrate a complete disentanglement of the main diagonal of the resistivity
tensor p, results measured on the bulk crystal of the previous chapter are used. There,

Rsquaren, = (158 £ 13) Q was measured in a square tip configuration with s = 10um.
Plugging the bulk results into Eq. (6.18)) yields p, = (10 £ 3) Q cm. Thus, the completed
resistivity tensor reads

(96 £ 12) mQ cm 0 0
p__ = 0 (33+4)mQcm 0 . (7.4)
- 0 0 (10 £ 3)Qcm

The mean resistivity is p = 320 m2 cm.

7.3. Discussion

Regarding the discrepancy between the bulk data presented in the previous chapter and
the flake measurements a number of possible reasons will be discussed in the following
section. As already noted in the previous chapter, transport in a-Bi,Br, is bulk dominated
until below 20K [108, 115]. Thus, the topological hinge states are not the source of the
anisotropy observed here.

7.3.1. Effect of moving the tips out of the corners

First, the effect of tip positioning is addressed: While the effect of shifting the contacts
off the circumference of the sample for resistivity measurements using the van-der-Pauw
method is discussed extensively in the literature, e.g. [52} 141], the corresponding effect
on the Bierwagen-Simon method has not been investigated in detail.

To examine the influence of the tip positioning on the resulting anisotropy finite-element
modeling (FEM) was used. The FEM simulations were performed by Helmut Soliner.
The results of these FEM calculations are presented in Fig. [7.2] A rectangular flake
of dimensions w, = 32.5um, , = 55pm, and ¢, = 0.6 um (dimensions of flake E) with
the three resistivities determined in the previous chapter was simulated. Three different
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F1aG. 7.2.: Results of FEM calculation by Helmut Soltner to investigate the dependence of the

measured anisotropy A on the tip placement. (a) The tip placements for the diagonal
tip movement. (b) The normalized anisotropy A/A for the diagonal tip movement.
The measured anisotropy decreases, when the tips are placed closes to the flake
center. (c) Tip placements for tip movement along the long edge. The blue point
indicates the tip positions needed to explain the deviations between the measurement
on the flake and the measurement on the bulk. (d) Normalized anisotropy A/Ag for
tip movement along the long edge. Also this movement leads to a decrease of the
anisotropy when the tips are moved closer to the flake center. (e) Tip placements
for tip movement along the short edge of the flake. (f) Normalized anisotropy A/Ag
for tip movement along the short edge. In this case, the measured anisotropy is
increased by placing the tips closed to the flake center.
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cases were examined: movement of the tips along the diagonals to the center of the flake
[Fig. [7.2(a)], movement of the tips along the short edge [Fig. [7.2(c)] and movement along
the long edge [Fig. [7.2[(e)]. In all cases, the tip movement was performed symmetrically,
i.e. the tips were placed in a rectangle centered on the flake center. For the diagonal
movement, the aspect ratio of the rectangle formed by the tips did not change, while,
naturally, movement along the two edges increases or decreases the aspect ratio.

The resistances calculated using the FEM method were then evaluated using the
Bierwagen-Simon method, c.f. section 2.5.1] The anisotropies normalized to the input
anisotropy of Ay = 6.4 are plotted in Fig. [7.2{(b) for the diagonal movement, in Fig. [7.2{(d)
for the movement along the long edge, and in Fig. [7.2(f) for movement along the short
edge as a function of the simulation parameter u. The parameter u describes how far the
tips are moved away from the corner, with the tips being placed in the corners at u =1
and close to the center axes, when u approaches zero. As a first result, at u = 1, the value
Ay is found, providing a verification that the analysis methods and the FEM simulations
are working correctly. As expected, moving the tips out of the corners has a significant
impact on the measured anisotropy. The plot in Fig. [7.2(d) shows that u &~ 0.5 would
explain the observed discrepancy of bulk and flake data. The corresponding tip positions
are indicated in blue in the drawing in Fig. [7.2)(c). The tip displacement necessary to
explain the observed deviations should be visible during the measurement. However,
while the tips are obviously not in the corners of flake E in Fig. [7.1] the displacements
are not consistent with the results of the FEM calculations. Thus, the tip displacement
from the corners during the measurement cannot explain the measured lower anisotropy.

For the diagonal tip movement, the normalized anisotropy appears to reach saturation
for low values of u. At the same time, at u ~ 1, the decrease is much slower than for the
tip movement along the flake edges. This might be explained by the fact, that for the
diagonal tip movement, the aspect ratio of the rectangle does not change. The two cases
of tip movement along the flake edges are more similar than they appear at first glance.
As a first approximation, the normalized anisotropy of the tip movement along the short
edge [Fig. [7.2(d)] can be understood as the inverse of the tip movement along the long

edge [Fig. [T-2(6)

7.3.2. Influence of flake defects of flake E

The AFM topography of flake E presented in Fig. [7.I] indicates that the thickness of flake
E is not uniform. In order to analyze the influence of the thickness on the aniostropy
obtained by the Bierwagen-Simon method, another FEM simulation was performed by
Helmut Soltner: Based on the AFM topography, flake E was approximated as two
connected cuboids with different thicknesses. The thinner section makes up ~ 1/3 of
the flake length. For the other parameters and dimensions, the values of the previous
simulations were retained. Figure [7.3|(a) displays a side view of the modeled flake. Form
the simulated potential in the two configurations the anisotropy

Astep = 17 (75)

was obtained.
This result indicates that, unsurprisingly, in addition to the tip placement the quality
of the flake itself can have a pronounced influence on the measured result. The anisotropy
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Fig. 7.3.: FEM calculations by Helmut Soltner to analyze the effect of two different imper-
fections of the flake on the measured anisotropy. In both cases, a flake with the
parameters w, = 32.5um, I, = 55um, and ¢, = 0.6ym was used. (a) The AFM
image [Fig. c)] indicates that the flake exhibits a large surface step. As a simple
model, a flake with two different thicknesses was simulated. (b) The optical micro-
scope micrograph [Fig. [7.1|(a)] indicates that there might be a line shaped defect in
the flake separating it into two parts. To simulate this kind of defect, a thin stripe
of insulating material (red line) was inserted into the flake.

obtained from this simulation is much lower than the measured value of A = 2.9 +0.1.
This discrepancy may be due to the simplified model of flake E used in the simulation.
Furthermore, this simulation does not take into account any effects of tip placement.

A further FEM simulation was performed to analyze the influence of a long defect
extending in a direction. The defect was simulated by a layer of air in the flake, producing
a 0.1 pym wide defect extending over the complete thickness of the flake. This is displayed
in Fig. [7.3|(b). The anisotropy obtained from this simulation is

Aline defect = 0.37. (76)

An anisotropy of A < 1 indicates, that the resistivity p, appears to be larger than p,
(Ao = pa/pvr = 6.4 was used as an input parameter in all calculations). This is primarily
an effect of the measurement of R,. Due to the placement of the voltage probing tips,
they are almost cut off from the potential landscape on the other side of the defect.
Consequently, the measured resistance is extremely small. Obviously, the effect of such a
linear defect strongly depends on its size and its actual resistivity. In the FEM simulation
presented here, the effect of the defect is rather pronounced, as the defect is rather long
and approximated as non conductive material.

Based on the available data of the actual flake and its complexity presented in Fig. [7.1]
it is not possible to accurately simulate the measurement. However, the simulations
indicate that the differences in thickness across the flake and possible defects can explain
the lower anisotropy, that was observed here. During the measurement in the four-tip
STM, it is very difficult to obtain accurate measurements of the flake thickness using a
tip of the four-tip STM, as the flake is substantially larger than the maximum nominal
scan size of ~ 3um and the large thickness requires a good linearity of the z-scanner
piezos over almost their entire range. The non-linearities of the z- and y-scanner piezos
can be calibrated using a method developed by Leis et al. [142].

97
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7.4. Résumé

In this chapter, an alternative approach to measure the elements on the main diagonal of
the resistivity tensor p was introduced. This method was applied to the resistivity tensor
of a-BisBr, using the sample simplification already introduced in the precious chapter.
In contrast to the method presented in the previous chapter, the surface anisotropy
A = p,/p, was measured on a-Bi,Br, flakes using the Bierwagen-Simon method. While it
is possible to demonstrate the disentanglement of the three elements of p, the anisotropy
obtained here diverges significantly form the anisotropy obtained on the bulk sample.
Thus, the resistivity tensor presented in this chapter is different from the one found before.

Based on FEM simulations of the Bierwagen-Simon measurements, the tip-placement
error could be excluded as the sole source of the deviation. However, when measuring
on smaller flakes, it could become a more significant source of error. The FEM simula-
tions indicate that the cause of the deviation are imperfections of the flake used for the
measurements.
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8. Conclusion and outlook

In the present thesis, two different properties arising from the quasi one-dimensional
crystal structure of the higher-order topological insulator (HOTI) a-BiBr, were studied:
its topological properties under shear strain and its electrical anisotropy. a-BiyBr, pos-
sesses two van-der-Waals gaps: One separating the layers stacked in the crystallographic
c-direction, and the other separating the individual chains within the layers. The chains
extend into the b-direction and are bonded together by covalent bonds.

In chapter [, one consequence of this quasi one-dimensional crystal structure is studied:
As the van-der-Waals bonds joining the adjacent chains are comparatively weak, the
crystal can easily be deformed by external shear stress. Using STM measurements on
the @-BiyBr,(001) surface, a new monolayer structure of o-BiyBr, was observed. In this
structure, there is a mutual shift of the quasi one-dimensional chains of b/3, instead of b/2
as observed for the known surface structure of a-Bi,Br,. This b/3 structure is attributed
to shear strain, as the experimental data and DFT calculations allowed to exclude a
surface reconstruction. At step edges on the surface, states with a non-vanishing density
of states inside the band gap were observed by STS. Since the b/2 structure is a quantum
spin Hall (QSH) insulator, these metallic states are attributed to the QSH edge states.
A band inversion makes a-BiyBry a QSH insulator [23] [99, [100]. This band inversion
depends on the van-der-Waals interaction between neighboring chains. Therefore, DFT
calculations were performed by Minggian Zheng and Jin-Jian Zhou [31] to study the
dependence of the band inversion on the lattice parameters of the b/3 structure. These
DFT calculations corroborate the earlier conclusion that a monolayer of the b/3 structure
is also a QSH insulator, as the topological invariant Z, = 1 is obtained. This behavior
is radically different from conventional 2D van-der-Waals materials where a change in
the stacking (which is similar to an in-plane change in a-BiyBry) can drastically alter the
electronic properties [120, [122].

A second property arising from its crystal structure is the electrical anisotropy of
the resistivity of a-BiyBry. The resistivity of a-BiyBr, is addressed in chapters [] and [7}
In chapter [, a method is developed to disentangle the three components on the main
diagonal of the resistivity tensor. This method involves three measurements: Two on a
bulk sample in a square tip configuration and one distance-dependent measurement on
a long, thin flake in a linear configuration. It is long known that mechanical exfoliation
of a-BiyBr, tends to produce flakes, that are elongated in b-direction, e.g. [108]. Surface
properties of the a-BiBry, that are closely related to the quasi-one dimensional crystal
structure were used to align the square during the measurements. In principle, this
method could be extended by measuring the square resistances as a function of the
rotation angle. This would allow to apply the method to crystals where the orientation of
the lattice vectors on the surface is harder to ascertain. Furthermore, the measurements
do not necessarily rely on correction factors. For the measurements at low temperature,
however, correction factors had to be applied due to experimental difficulties with the
bulk sample.
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The method outlined above was subsequently applied to a-Bi Br, under the assumption
that the off-diagonal elements of the resistivity tensor p could be neglected. At room

temperature, the resistivity along the chains (in b-direction) is 6.4 & 0.5 times smaller
than the resistivity perpendicular to the chains. Since only the a-Bi Br,(001) surface
was used for the measurements, the result obtained for p, is subject to a considerable
measurement uncertainty. Nevertheless, the results show that p, is ~ 1300 times larger
than pp. This high out-of plane anisotropy can be attributed to the weak inter-layer
coupling, i.e. the larger van-der-Waals gap between the layers. At 77K, the in-plane
anisotropy reduces to A = 5.0 & 0.3. The out of plane anisotropy increases to ~ 6500.
The notably larger anistorpy A, can be attributed to the weak inter-layer coupling of
a-BiBry [99], which is also evident in the larger van-der-Waals gap in z-direction.

An alternative method to measure the in-plane anisotropy of a-Bi,Br, on the (001)
surface is described in chapter [] This second method relies on the Bierwagen-Simon
method to measure the anisotropy of a flake and the van-der-Pauw method to find its sheet
resistivity. Using data from the bulk sample discussed in chapter [6], it was possible to
disentangle the three components on the main diagonal. However, the surface anisotropy
A obtained here is considerably different from the results obtained on the bulk sample.
Based on FEM simulations of the Bierwagen-Simon measurements, the tip-placement
error could be excluded as the sole source of the deviation. However, it could become a
more significant source of error when measuring smaller flakes. The FEM simulations of
the internal defects indicate that the cause of the deviation are imperfections in the flake
used for the measurements.

As a next step, measurements of the ballistic transport through a hinge or edge state
are planned. Such measurements were previously attempted by Leis etal. [143]. The
hallmark property of ballistic transport, the quantized conductance, could, however, not
be observed [143]. Such measurements are performed on a thin, finite 2D sample, where
the hinge/edge states form the boundary. In such a measurement, the edge or hinge state
is not contacted directly. Instead, the current is injected into the 2D sample. A part
of this current then flows through the 2D material into the edge state. This is referred
to as distributed injection (143, [144]. The problem of distributed injection is treated
in Ref. [144] for a ballistic channel adjacent to a conductive half-plane. To account for
the anisotropy of a-Bi,Br,, the Wasscher transformation can then be used to extend the
treatment of an isotropic 2D half-plane to an anisotropic 2D half-plane. The presence
of a ballistic edge channel (compared to an Ohmic edge channel) strongly influences
the interface potential between the edge channel and the conductive half-plane. The
potential on the conductive half-plane can be calculated from the interface potential
using analytic continuation [144]. Thus, the effect of a ballistic edge channel can be
pinpointed by comparing the calculated potential to the data collected on a sample using
either scanning tunneling potentiometry [81], [83] or four-probe resistance measurements
with a mobile tip voltage-probing tip as in Ref. [143].
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A. Solving Eq. 2.50 and [2.5]] for the
three components of the resistivity
tensor

For a bulk sample, when measuring in both in a square and in a linear, equidistant
configuration, there a four different resistances, that can be measured:

Riines = Puybe: (in-line for x) (A1)

27s

\Y4 pzzpzz

2ms
R _ \/PazPzz (1 1 )
square,x — - Pz
s V 1 + Pyy

Rsquarey = Prvlaz (1 7 ! ) (square for y). (A.4)

s + Lvy
Pz

Riiney = (in-line for y) (A.2)

(square for x) (A.3)

While, at first glance, this system appears to be overdetermined, the system is in fact
underdetermined. This can be demonstrated by substituting

Puw =QT (A.5)
Pyy =T (A.6)
_B
pzz - r bl (A.7)
where a, 8 € R. This yields
_VB
Rline T —Tm (A8)
_vep
Rhne,y - s (Ag)

quuare,x 2@ (1 - 1 ) (A].O)

quuare,y :ﬁ (1 - 1 ) . (A.l].)

s Jitl

Obviously, the system separates into two systems, one for the linear measurement and
the other for the square measurement. From both of these systems, the parameters «
and 8 can be determined. The third component (the parameter r in the substitution),
however, has to determined by an independent measurement.
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B. Calibration Procedures

The calibration procedures given here are intended for the old Createc four-tip STM
electronics, using a single DSP, two ADDA boards, and 16 bit DACs for the bias voltages.

B.1. Bias DAC Calibration

In the following the DACs generating the bias voltages for the four tips will be cali-
brated. A good calibration of the bias voltage DACs is useful for four-probe resistance
measurements and necessary for STP. Furthermore, calibrated bias DACs are needed
for two-probe measurements. Use a Keithley 2000 digital multimeter or a similar device
with 63 digits.

1. Set gain and offset of the bias DACs to 1 and 0, respectively.

2. For each bias DAC, measure the output voltage Upac as a function of the voltage
set in the software Us. To ensure a good calibration, use enough points: e.g. Uses =
0V; £0.1V; £0.5V; £1V; £2V; £3V; £4V; £5V; £6V; £7V; £8V; £9V.
Select appropriate measurement ranges at the digital multimeter.

3. Plot Uy as a function of Upac and fit it with y = A -z + B. A is then the gain,
and B the offset. Note, the offset is given in mV in the old software.

4. Verify the quality of the calibration. Especially close to Uses = 0V.

B.2. ADC Calibration

This calibration is needed both for four-tip transport measurements and for STP. Use a
Keithley 2000 digital multimeter or a similar device with 6% digits.

1. Set gain and offset of all ADCs to 1 and 0, respectively.

2. In principle, all ADCs can be measured simultaneously using the Mulitspec feature
of the software, if they all connected to the same voltage source.

3. As a voltage source, a DAC can be used. If the electronics only features 16 bit bias
DAGCs, another DAC (e.g. the x output of tip 1 can be used.) In any case, one
mulitmeter should be used to measure the voltage Us; applied to the ADCs to be
independent of the DAC calibration.

4. Measure the ADC input voltage Uapc as a function of the voltage set in the software
Uses. To ensure a good calibration, use enough points: e.g. Uset =~ 0V; £0.1V; £
05V; £1V; £2V; £3V; £4V; £5V; £6V; £7V; £8V; £9V. Since the
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B. Calibration Procedures

Keithley 2000
Ureal

Keithley 2000
Umeas

F1ac. B.1.: Calibration of the voltage-probe mode of the Black Box, using a bias output DAC,
1/100 voltage divider and two Keithley 2000 multimeters.

applied voltage Uy is measured with the multimeter, small deviations from the
voltages given here are permissible. Select appropriate measurement ranges at the
digital multimeter.

5. For each ADC, plot U as a function of Uapc and fit it withy=A-z+ B. Ais
then the gain, and B the offset. Note, the offset is given in mV in the software.

6. Verify the quality of the calibration. Especially close to Uses =0V.

B.3. Calibrating the offset of the current amplifier

The current amplifier of the Black Box also has a gain and an offset. Due to the lack of
calibrated current source, only the offset can be calibrated for. This procedure requires
calibrated ADCs and DACs. This calibration is necessary for STP. The gain of the Black
Box is not calibrated.

1. Connect a 1 GS2 resistor to the tip input of the Black Box to simulate the tunnel
resistance.

2. Measure a voltage ramp from +1V to —1V and back to +1V.

3. Both the forward part of the ramp (FWD) and the backward part of the ramp
(BWD) do not pass though I = 0 A. Due to some parasitic capacitances, the two
parts of the voltage ramp will not coincide. Adjust the offset of the ADC such that
I =0A is at an equal distance from both FWD and BWD.

B.4. Calibrating the gain of the voltage-probe mode

Each voltage follower in the Black Box has two gains and two offsets. Which one needs
to be calibrated, depends on whether 100 times amplification is used. For transport-
measurements, only the gains are actually relevant. STP does not use the voltage-probe
mode. Use two Keithley 2000 digital multimeters or a similar devices with 6% digits. The

drawing in Fig. [B.]] clarifies the measurement set up.

1. Switch the Black Box into the voltage-probe mode.
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B.5. Calibrating the offset of the bias voltage in the Black Box

Fia.

Black Box A

out

Tip in

Bias in|

Bias out}—{ 1/10

current-probe mode

Keithley 2000
Ureal

Black Box B

voltage-probe mode

Keithley 2000

Umeas

B.2.: Setup to measure Up;,s that the Black Box under testing (DUT) puts out using a
second Black Box in voltage-probe mode.

. Apply the voltage Us to triaxial input of the Black Box. Use one multimeter, to

measure the Uy in order to be independent of the calibration of the voltage source.
If the 100 times amplification is used, place a 1/100 voltage divider between voltage
source and Black Box, and measure Uy after the divider. As coaxial to triaxial
plug adapter, use one, that drops the guard, i.e. the inner shield.

. Terminate the bias input of the Black Box with a 502 resistor.

. Measure the output voltage of the voltage follower Uy using the second multimeter

at Uy =~ 0V; £0.1V; £05V; £1V; £2V; £3V; £4V; £5V; £6V; +
7V; £8V; +9V using the appropriate measurement ranges.

. Plot Uy as a function of Uyr and fit it with y = A-x + B. A is then the gain, and

B the offset.

. During data analysis of the four-probe transport data, the calibration factors then

have to applied to the measured voltages before numerically calculating the voltage
drop.

Note, if the Black Boxes with different gains are used for the voltage measurement, reading
the voltage drop in differentially, using only one ADC, is impossible.

B.5. Calibrating the offset of the bias voltage in the

Black Box

If deemed necessary, also the offset of the bias voltage applied by the Black Box to the
tip can be measured. This calibration can help to suppress small, spurious currents from
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B. Calibration Procedures

flowing in very conductive samples, when (nominally) 0V is applied to both current
injection tips. To measure the applied bias of one Black Box, a second black in voltage
probe mode is used. The calibration factors for the latter Black Box for 100 times
amplification must be known. Figure [B.2 displays a drawing of the measurement setup.

1.
2.

7.

Switch Black Box A to be measured to current-probe mode.

Switch the measuring Black Box B to the voltage-probe mode, connect a multimeter
to its output and terminate its bias input with a 50 €2 resistor

. Terminate the bias input of the Black Box to be measured with a 502 resistor, as

well, or connect it to the bias output of the respective tip.

. Connect the triaxial inputs of both Black Boxes.

. Measure the output voltage Upeas using the second multimeter at Uy = 0V; £

0.1V; £0.5V; £1V; £2V; £3V; £4V; £5V; £6V; £7V; £8V; £9V
using the appropriate measurement ranges.

. Plot U as a function of Upe,s and fit it with y = A -z + B. A is then the gain,

and B the offset.

Adjust the offset of the bias DAC accordingly.

If during a measurement in hard contact a spurious current is observed even though
all bias voltages are set to 0V and the ADCs and DACs are well calibrated, a different
method can be used. To correct the effect of the offset, change the setting of one bias
output (DAC 6-9) in hard contact until there is no current flowing when 0 V are applied
to both current injection tips.
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C. Contacting procedure

This procedure was used on samples of a-BiyBr, with a high resistance to ground due
to the SOI substrate used (R ~ 500 M(?). Depending on the resistance of the sample-
to-ground connection, the response of the sample material to high current densities, and
the tunneling parameters suitable for a stable tunneling contact, this procedure may
need to be modified. Also note that switching the light of the optical microscope on and
off can cause drift in the position of the tip. Therefore, switching the light on and off
during tunneling or hard contact should be avoided. If a transport measurement is to be
performed without illumination, the tip positions in tunneling contact should be checked
before switching off the light to ensure accurate positioning, as the z fine piezo drives
can also move the tip laterally. Also, no coarse steps should be done, while a tip is in
tunneling or hard contact, if it can be avoided.

1. Verify that the sample is grounded.
2. Approach all tips into tunneling contact with e.g. I = 100 pA and Vj,s = 0.3V

3. Retract the tips a few coarse steps and move them into the desired configuration.
For precise positioning, a small amplitude of the sawtooth pulse and the fine-motion
piezo drives (offsets) can be used.

4. Sequentially approach each tip in turn into tunneling contact and verify accurate
positioning and then retract it using the fine motion piezo-drive. At this point, do
not keep multiple tips in tunneling contact at the same time.

5. Set slightly different bias voltages at the tips, so that there is never a net zero
voltage difference between the sample and any given tip once the first tip is lowered
into hard contact.

6. Approach all tips into tunneling contact, one after the other. The creep of the piezo
must be allowed to decay at each tip, which takes at least several minutes. Waiting
for all tips to decay can be done simultaneously to save time.

7. Contacting procedure:

a) Once no creep is visible in the Data Recorder (long term graph), retract a tip
by 1nm using the z-limiter of the control software. The tunneling current
should vanish.

b) Change the tunneling set point to a sufficiently high value, it should be at
least one order of magnitude higher than the highest expected current of the
four-probe transport experiment. In the Parameters window of the Createc
software, it is possible to easily set I = 107! A.
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C. Contacting procedure

c) Change the current gain to ~ 10°V A~1. Doing this after changing the setpoint
will prevent the feedback loop from retracting the tip if it registers the higher
amplifier noise as tunneling current

d) Set V = 0.1V to prevent sample damage from too high a current and tip
crashes of the other, still tunneling tips. (This is a precautionary measure; it
may not always be necessary.)

e) Use the z-limiter up-button to move the tip back towards the sample in
steps of 1 nm or less until a visible change in the measured current can be seen:
There should be sudden, step-like increase of the measured current to at least
0.01pA. If the sample-to-ground contact is highly insulating, this current may
be hard to detect. In this case, stop after ~ 10 steps (~ 10nm) and approach
a second tip.

f) Set Vhias = 0V, and repeat for the next tip.

8. Once all tips are in hard contact, the quality of the contacts can be checked:

a) Place all tips in voltage-probe mode: The voltage should read 0. Drifting
voltages indicate bad contact.

b) Remove the sample ground.

c) Place all but one tip in voltage-probe mode: The voltage-probe tips should
follow the voltage of the current injection tips without any delay. Slow drift
towards the applied voltage indicates bad contact of the tip.

d) Place the tips needed for current injection (depending on the measurement,
that may comprise all four tips) in current injection mode and verify, that a
reasonable current (e.g. 1uA) can be injected.

9. If a contact is not satisfactory:

a) Press more steps, or

b) Re-contact the tip: Remember to reconnect the sample ground and to set
Vhias 7 0V! Experience shows, that moving the tip a little to the side (e.g.
changing an offset by 0.1V [= 14nm)]) and then contacting it again can lead
to good contact.

10. The ultimate judge of good contact is the transport measurement! The voltage
drop needs to attain a reasonable value (i.e. more than 1 mV peak-to-peak) an the
four-probe (and perhaps two-probe) resistances must make sense.
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D. Crystal structures of Biyl,

o Figure [D.1] shows atomic models of the crystal structure of 8-Bigly.

o Figure shows atomic models of the crystal structure of a-Big, and its AA’
stacking,.

(a)

8 0 --0-0-8
-9 99 ©

Fiac. D.1.: Atomic crystal models of 5-Biyl,. (a) shows the projection along the lattice
vector a*. The AA stacking is indicated using the two black horizontal arrows
connecting two corresponding I atoms of two chains laying on top of each other. (b)
side view of the unit cell. The unit cell is indicated in black. Note, in contrast to
a-Bi,Br, and a-Bigly, the unit cell height corresponds to the height of a monolayer.
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D. Crystal structures of Biyl,

(a)
O Bi OI

o

A4

a b

Fi1G. D.2.: Atomic crystal models of a-Bigl,. (a) shows the projection along the lattice
vector a*. The AA’ stacking is indicated using the black horizontal arrow connecting
two corresponding I atoms of two chains laying on top of each other. The AA’
stacking is due to the b/2 shift present in this structure: In the ab-plane, two
neighboring chains are shifted by b/2. (b) side view of the unit cell. The unit cell is
indicated in black.
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E. Extended data: evaluation of the
band gap of the b/3 structure
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E. Extended data: evaluation of the band gap of the b/3 structure
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F1c. E.1.: Extended data for experimental determination of the band gap of the b/3 structure.:
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(a) Iset = 50pA7 ‘/set = —-0.6V. (b) Iset = 50pA, ‘/set = —-0.6V. (C) Iset — 50pA,
Vset = +0.6 V. (d) Toer = SOPA, Vet = +0.6 V. (e) Iset = 100 pA’ Viet = +0.6 V. (f)
Iset =100 pA, ‘/sef, =—-0.4V.



F. Diagonalisation of the conductivity
tensor

In the coordinate system K, the conductivity tensor of a-Bi,Bry is given by [38, Chap-

ter 11; b4l [55]
Oaa 0 0g
g = 0 Opp 0 . (Fl)

Oaz 0 o0

The conductivity tensor in the coordinate system K’ is found by rotation around b. This
is achieved by the rotation matrix

(cos(¢) 0 — sin(¢))
R=| 0 1 0o |. (F.2)
sin(¢) 0 cos(q)

The conductivity tensor in the coordinate system K’ is

gl :RgR_l
”‘"‘”Uzzﬂaaa_0")2005(2@_2”“ sin(2¢) 0 0uyco8(20) + (04 — Taa) cos(¢) sin(¢)
= 0 Obb 0
Oaz COS(2¢) + (Uzz - Uaa.) COS(¢) Sln(¢) 0 Uaa+0'zz+(azz—gaa);os(2¢)+20u sin(2¢)

(F.3)

To find the angle ¢, by which the coordinate system has to be rotated around b to
obtain a diagonal tensor ¢’, the roots of the off-diagonal elements have to be considered:

Oaz C0S(20) = — (0 — 0aa) cos(@) sin(¢) (F4)
0w _ _ cos(¢)sin(g)
O —0w)  cos20) (5)

Using the multiple-angle formula sin(2¢) = 2 cos(¢) sin(¢) [71, p. 72] the rotation angle
¢ needed for diagonalization is given by

2¢ = — arctan (£> : (F.6)

022 — Oaa
In the next step, the element o/, is considered.

Oaa + Ouz + (Caa — 04z) COS(20) + 204, sin(2¢
o (0= ) c(20) (29) )
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F. Diagonalisation of the conductivity tensor

To simplify the following algebraic manipulations, only the 6., — ;) cos(2¢) +20,, sin(2¢)
is considered. Plugging in Eq. using the two identities [145] p. 48]

—_

cos(arctan(z)) = and F.8
(arctan(a)) = —— (F8)
T
sin(arctan(z)) = ——, F.9
(arctan(@)) = == (F.9)
yields
204z
-1 RN
(Can — 0g) - ——————=— 200, - (("“))2 (F.10)
204, 204z
1 + ((‘Tzz_”aa)) 1 + ((Uzz—ffaa))
-1 2 . 2
= ((Uaa - Uzz) - < ( T ) )) (Fll)
1 +( 202 )2 (022 — Oaa)
(Uzz_daa)
- ! ((0an = 022) + (2002)?) (F.12)
( Oy — Uaa) : e, 2 aa ZZ az .
+ ((Uzz_f’aa))

— 2 2

_ (0aa — 0w)* + (20u1) (F.13)
V(e — 022)? + (202,)?

= /(0aa — 022)? + (200,)? (F.14)

Consequently, the element o}, is

’ Oaa — Ozz + \/(Jaa - Uzz)2 + 40'32
O33 = B .

(F.15)

The element the element o, is can be calculated in a similar manner.
Thus, the diagonal tensor is

Taa—0zz Taa—0zz 2 Taz
+4/( : )?+402, 0 0
= 0 Obb 0 . (F.16)
0 0 Taa—0zz—\/ (O’aafo'zz)erélO’Zz

2

5]
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G. Extended data: Damage to flake E

nm

F1c. G.1.: Damage to flake E seen with the optical microscope. (a) Undamaged flake during
measurement. (b) Flake E after sustaining damage from a transitory high current
event.
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