001048448 001__ 1048448
001048448 005__ 20251125202202.0
001048448 0247_ $$2arXiv$$aarXiv:2507.06201
001048448 037__ $$aFZJ-2025-04654
001048448 088__ $$2arXiv$$aarXiv:2507.06201
001048448 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj
001048448 245__ $$aSurface-Code Hardware Hamiltonian
001048448 260__ $$c2025
001048448 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764062741_15358
001048448 3367_ $$2ORCID$$aWORKING_PAPER
001048448 3367_ $$028$$2EndNote$$aElectronic Article
001048448 3367_ $$2DRIVER$$apreprint
001048448 3367_ $$2BibTeX$$aARTICLE
001048448 3367_ $$2DataCite$$aOutput Types/Working Paper
001048448 500__ $$a18 pages, 12 figures
001048448 520__ $$aWe present a scalable framework for accurately modeling many-body interactions in surface-code quantum processor units (QPUs). Combining a concise diagrammatic formalism with high-precision numerical methods, our approach efficiently evaluates high-order, long-range Pauli string couplings and maps complete chip layouts onto exact effective Hamiltonians. Applying this method to surface-code architectures, such as Google's Sycamore lattice, we identify three distinct operational regimes: computationally stable, error-dominated, and hierarchy-inverted. Our analysis reveals that even modest increases in residual qubit-qubit crosstalk can invert the interaction hierarchy, driving the system from a computationally favorable phase into a topologically ordered regime. This framework thus serves as a powerful guide for optimizing next-generation high-fidelity surface-code hardware and provides a pathway to investigate emergent quantum many-body phenomena.
001048448 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048448 588__ $$aDataset connected to arXivarXiv
001048448 7001_ $$0P:(DE-Juel1)204487$$aKaur, Kuljeet$$b1$$ufzj
001048448 7001_ $$0P:(DE-HGF)0$$aVignes, Chloé$$b2
001048448 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b3$$ufzj
001048448 7001_ $$0P:(DE-HGF)0$$aMartinis, John M.$$b4
001048448 909CO $$ooai:juser.fz-juelich.de:1048448$$pVDB
001048448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
001048448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204487$$aForschungszentrum Jülich$$b1$$kFZJ
001048448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b3$$kFZJ
001048448 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048448 9141_ $$y2025
001048448 920__ $$lyes
001048448 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048448 980__ $$apreprint
001048448 980__ $$aVDB
001048448 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048448 980__ $$aUNRESTRICTED