| 001 | 1048448 | ||
| 005 | 20251125202202.0 | ||
| 024 | 7 | _ | |a arXiv:2507.06201 |2 arXiv |
| 037 | _ | _ | |a FZJ-2025-04654 |
| 088 | _ | _ | |a arXiv:2507.06201 |2 arXiv |
| 100 | 1 | _ | |a Xu, Xuexin |0 P:(DE-Juel1)176178 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Surface-Code Hardware Hamiltonian |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1764062741_15358 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a 18 pages, 12 figures |
| 520 | _ | _ | |a We present a scalable framework for accurately modeling many-body interactions in surface-code quantum processor units (QPUs). Combining a concise diagrammatic formalism with high-precision numerical methods, our approach efficiently evaluates high-order, long-range Pauli string couplings and maps complete chip layouts onto exact effective Hamiltonians. Applying this method to surface-code architectures, such as Google's Sycamore lattice, we identify three distinct operational regimes: computationally stable, error-dominated, and hierarchy-inverted. Our analysis reveals that even modest increases in residual qubit-qubit crosstalk can invert the interaction hierarchy, driving the system from a computationally favorable phase into a topologically ordered regime. This framework thus serves as a powerful guide for optimizing next-generation high-fidelity surface-code hardware and provides a pathway to investigate emergent quantum many-body phenomena. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |a Kaur, Kuljeet |0 P:(DE-Juel1)204487 |b 1 |u fzj |
| 700 | 1 | _ | |a Vignes, Chloé |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Ansari, Mohammad H. |0 P:(DE-Juel1)171686 |b 3 |u fzj |
| 700 | 1 | _ | |a Martinis, John M. |0 P:(DE-HGF)0 |b 4 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048448 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176178 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)204487 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171686 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|