001048450 001__ 1048450
001048450 005__ 20251125202202.0
001048450 0247_ $$2arXiv$$aarXiv:2508.10807
001048450 037__ $$aFZJ-2025-04656
001048450 088__ $$2arXiv$$aarXiv:2508.10807
001048450 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj
001048450 245__ $$aParity Cross-Resonance: A Multiqubit Gate
001048450 260__ $$c2025
001048450 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764062756_8066
001048450 3367_ $$2ORCID$$aWORKING_PAPER
001048450 3367_ $$028$$2EndNote$$aElectronic Article
001048450 3367_ $$2DRIVER$$apreprint
001048450 3367_ $$2BibTeX$$aARTICLE
001048450 3367_ $$2DataCite$$aOutput Types/Working Paper
001048450 500__ $$a19 pages, 10 figures
001048450 520__ $$aWe present a native three-qubit entangling gate that exploits engineered interactions to realize control-control-target and control-target-target operations in a single coherent step. Unlike conventional decompositions into multiple two-qubit gates, our hybrid optimization approach selectively amplifies desired interactions while suppressing unwanted couplings, yielding robust performance across the computational subspace and beyond. The new gate can be classified as a cross-resonance gate. We show it can be utilized in several ways, for example, in GHZ triplet state preparation, Toffoli-class logic demonstrations with many-body interactions, and in implementing a controlled-ZZ gate. The latter maps the parity of two data qubits directly onto a measurement qubit, enabling faster and higher-fidelity stabilizer measurements in surface-code quantum error correction. In all these examples, we show that the three-qubit gate performance remains robust across Hilbert space sizes, as confirmed by testing under increasing total excitation numbers. This work lays the foundation for co-designing circuit architectures and control protocols that leverage native multiqubit interactions as core elements of next-generation superconducting quantum processors.
001048450 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048450 588__ $$aDataset connected to arXivarXiv
001048450 7001_ $$0P:(DE-Juel1)207732$$aWang, Siyu$$b1$$ufzj
001048450 7001_ $$0P:(DE-Juel1)175500$$aJoshi, Radhika$$b2$$ufzj
001048450 7001_ $$0P:(DE-HGF)0$$aHai, Rihan$$b3
001048450 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b4$$ufzj
001048450 909CO $$ooai:juser.fz-juelich.de:1048450$$pVDB
001048450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
001048450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207732$$aForschungszentrum Jülich$$b1$$kFZJ
001048450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175500$$aForschungszentrum Jülich$$b2$$kFZJ
001048450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b4$$kFZJ
001048450 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048450 9141_ $$y2025
001048450 920__ $$lyes
001048450 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048450 980__ $$apreprint
001048450 980__ $$aVDB
001048450 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048450 980__ $$aUNRESTRICTED