| 001 | 1048450 | ||
| 005 | 20251125202202.0 | ||
| 024 | 7 | _ | |a arXiv:2508.10807 |2 arXiv |
| 037 | _ | _ | |a FZJ-2025-04656 |
| 088 | _ | _ | |a arXiv:2508.10807 |2 arXiv |
| 100 | 1 | _ | |a Xu, Xuexin |0 P:(DE-Juel1)176178 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Parity Cross-Resonance: A Multiqubit Gate |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1764062756_8066 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a 19 pages, 10 figures |
| 520 | _ | _ | |a We present a native three-qubit entangling gate that exploits engineered interactions to realize control-control-target and control-target-target operations in a single coherent step. Unlike conventional decompositions into multiple two-qubit gates, our hybrid optimization approach selectively amplifies desired interactions while suppressing unwanted couplings, yielding robust performance across the computational subspace and beyond. The new gate can be classified as a cross-resonance gate. We show it can be utilized in several ways, for example, in GHZ triplet state preparation, Toffoli-class logic demonstrations with many-body interactions, and in implementing a controlled-ZZ gate. The latter maps the parity of two data qubits directly onto a measurement qubit, enabling faster and higher-fidelity stabilizer measurements in surface-code quantum error correction. In all these examples, we show that the three-qubit gate performance remains robust across Hilbert space sizes, as confirmed by testing under increasing total excitation numbers. This work lays the foundation for co-designing circuit architectures and control protocols that leverage native multiqubit interactions as core elements of next-generation superconducting quantum processors. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |a Wang, Siyu |0 P:(DE-Juel1)207732 |b 1 |u fzj |
| 700 | 1 | _ | |a Joshi, Radhika |0 P:(DE-Juel1)175500 |b 2 |u fzj |
| 700 | 1 | _ | |a Hai, Rihan |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Ansari, Mohammad H. |0 P:(DE-Juel1)171686 |b 4 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:1048450 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176178 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)207732 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)175500 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171686 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|