001048451 001__ 1048451
001048451 005__ 20260106202634.0
001048451 037__ $$aFZJ-2025-04657
001048451 041__ $$aEnglish
001048451 1001_ $$0P:(DE-Juel1)200266$$aHilche, Tobias$$b0$$eCorresponding author
001048451 1112_ $$aUlm Electro Chemical Talks$$cUlm$$d2025-06-04 - 2025-06-05$$gUECT 2025$$wGermany
001048451 245__ $$aScanning Electrochemical Microscopy Study on Model Ex-situ Treatment of MEA Anodes for PEM Water Electrolysis
001048451 260__ $$c2025
001048451 3367_ $$033$$2EndNote$$aConference Paper
001048451 3367_ $$2BibTeX$$aINPROCEEDINGS
001048451 3367_ $$2DRIVER$$aconferenceObject
001048451 3367_ $$2ORCID$$aCONFERENCE_POSTER
001048451 3367_ $$2DataCite$$aOutput Types/Conference Poster
001048451 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1767688887_22080$$xAfter Call
001048451 520__ $$aPolymer electrolyte membrane (PEM) water electrolysis[1] is a key technology for sustainable hydrogen production as a resource and for energy storage at industrial scale. The central component of PEM water electrolyzers is the membrane electrode assembly (MEA), which defines the performance efficiency and lifetime of the electrolysis cell from an electrochemical perspective. A typical approach to the assessment of MEA durability is the accelerated stress test (AST).[2] ASTs have been established as a short time approximation to the degradation process of MEAs under realistic operating conditions. However, by nature of design the impact of different stressors in early, mid and late stages of operation cannot be evaluated individually. Furthermore, any AST can only deliver valid information within its own standardized testing environment.[3]To address this issue, our group is investigating isolated parameters in-situ, i.e. in a PEM water electrolysis cell setup,[4] as well as ex-situ, where the catalyst layer (CL) electrodes of a MEA are applied in a conventional 3- or 4-electrode electrochemical setup. Ex-situ, the electrochemical performance efficiency of a CL can be investigated based on preceding treatment. In this context cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) can provide valuable information about the catalytic activity, kinetics and electrochemically active surface area, and scanning electrochemical microscopy (SECM)[5] – as an electrochemical imaging technique – gives insight into the homogeneity of the active surface.In our study, we present the results of the effect of different conditioning procedures on the electrochemical performance of commercial MEAs. We investigated combinations of potential cycling, chemical, potentiostatic and potentiodynamic conditioning protocols at IrOx-based anodes. The ex-situ electrochemical characterization on the conditioned anodes showed that the potentiostatic MEA conditioning has a positive impact on the anode impedance and current response. The focus will be on local properties obtained from SECM experiments.Funding: This work was financially supported by the Bundesministerium für Bildung und Forschung (BMBF): Wasserstoff - Leitprojekt H2Giga, Teilvorhaben DERIEL (project number 03HY122C), SEGIWA (project number 03HY121B).[1] A. S. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, J. Appl. Electrochem. 2013, 43, 107.[2] E. Kuhnert, V. Hacker, M. Bodner, Int. J. Energy Res. 2023, 2023, 1.[3] P. Aßmann, A. S. Gago, P. Gazdzicki, K. A. Friedrich, M. Wark, Curr. Opin. Electrochem. 2020, 21, 225.[4] N. Wolf, A. Javed, L. Treutlein, H. Kungl, A. Karl, E. Jodat, R.-A. Eichel, Electrochem. Sci. Adv. 2025, 0:e202400038.[5] D. Polcari, P. Dauphin-Ducharme, J. Mauzeroll, Chem. Rev. 2016, 116, 13234.
001048451 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001048451 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001048451 7001_ $$0P:(DE-Juel1)196067$$aFröhlich, Kristina$$b1
001048451 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b2
001048451 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3
001048451 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001048451 909CO $$ooai:juser.fz-juelich.de:1048451$$pVDB
001048451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200266$$aForschungszentrum Jülich$$b0$$kFZJ
001048451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196067$$aForschungszentrum Jülich$$b1$$kFZJ
001048451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b2$$kFZJ
001048451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ
001048451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001048451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001048451 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001048451 920__ $$lyes
001048451 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001048451 980__ $$aposter
001048451 980__ $$aVDB
001048451 980__ $$aI:(DE-Juel1)IET-1-20110218
001048451 980__ $$aUNRESTRICTED