001048466 001__ 1048466
001048466 005__ 20251125202202.0
001048466 0247_ $$2doi$$a10.48550/ARXIV.2509.26211
001048466 037__ $$aFZJ-2025-04664
001048466 1001_ $$0P:(DE-Juel1)190717$$aJiang, Zhongyi$$b0$$eCorresponding author$$ufzj
001048466 245__ $$aEnabling full localization of qubits and gates with a multi-mode coupler
001048466 260__ $$barXiv$$c2025
001048466 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764076584_24817
001048466 3367_ $$2ORCID$$aWORKING_PAPER
001048466 3367_ $$028$$2EndNote$$aElectronic Article
001048466 3367_ $$2DRIVER$$apreprint
001048466 3367_ $$2BibTeX$$aARTICLE
001048466 3367_ $$2DataCite$$aOutput Types/Working Paper
001048466 520__ $$aTunable couplers are a key building block of superconducting quantum processors, enabling high on-off ratios for two-qubit entangling interactions. While crosstalk can be mitigated in idle mode, conventional single-mode couplers lack independent control over interactions in the one- and two-excitation manifolds, leading to unitary errors such as leakage during gate operations. Moreover, even at the nominal decoupled point, residual wavefunction delocalization persists, causing unintended qubit-qubit coupling. Here we propose a multi-mode tunable coupler that enables nonlinear control of interactions across excitation manifolds, achieving a high on-off ratio in the one-excitation manifold while suppressing coupling in the two-excitation manifold. The proposed design also realizes complete localization between qubits, providing perfect isolation at the decoupled point and opening new possibilities for scalable, high-fidelity quantum gates.
001048466 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048466 588__ $$aDataset connected to DataCite
001048466 650_7 $$2Other$$aQuantum Physics (quant-ph)
001048466 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001048466 650_7 $$2Other$$aFOS: Physical sciences
001048466 7001_ $$0P:(DE-HGF)0$$aGeisert, Simon$$b1
001048466 7001_ $$0P:(DE-HGF)0$$aIhssen, Sören$$b2
001048466 7001_ $$0P:(DE-HGF)0$$aPop, Ioan M.$$b3
001048466 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b4$$ufzj
001048466 773__ $$a10.48550/ARXIV.2509.26211
001048466 909CO $$ooai:juser.fz-juelich.de:1048466$$pVDB
001048466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190717$$aForschungszentrum Jülich$$b0$$kFZJ
001048466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b4$$kFZJ
001048466 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048466 9141_ $$y2025
001048466 920__ $$lyes
001048466 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001048466 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x1
001048466 980__ $$apreprint
001048466 980__ $$aVDB
001048466 980__ $$aI:(DE-Juel1)PGI-2-20110106
001048466 980__ $$aI:(DE-Juel1)PGI-12-20200716
001048466 980__ $$aUNRESTRICTED