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In a classic Mott system, the transition from the insulating to the metallic state occurs when the lattice spacing
is reduced such that the increase in bandwidth W overcomes the local Coulomb repulsion U . In this picture, both
W and the ratio W/U become larger with decreasing the distance between correlated sites. Here we show that,
in transition-metal compounds, there is another path to metallization. It is associated with an expansion (instead
of a compression) of the lattice and thus with a decrease in W . In this scenario W/U grows with increasing
distance—the opposite of the classical Mott case. Such a surprising inversion can be obtained by decoupling the
main factors controlling W and screening. This mechanism explains the electronic behavior of the t2

2g triangular
lattice series LiVX2 (X = O, S, and Se) with increasing anionic size.
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Introduction. The insulator to metal transition (IMT) oc-
curs when the bandwidth of correlated electrons, W , increases
beyond a critical value, overcoming the local Coulomb re-
pulsion U . In the classical Mott picture, W decreases with
increasing lattice spacing, and the ratio W/U follows; the
metallic state thus emerges by lattice compression [1]. This
scenario is believed to apply to most correlated transition-
metal compounds (TMCs). In real materials, complexity
arises because of multiorbital effects. The latter take place
within the correlated-electrons space and have various causes:
orbital degeneracy and its reduction, the Hund’s rule coupling,
the crystal-field splitting, the spin-orbit coupling, and the sub-
tle interplay of all that [2–9]. This does not change the overall
picture, however. The reason is that W and U are typically
controlled via the same effects—e.g., the hybridization with
the anionic p states—but W is more sensitive than screening
to lattice changes. The metallic phase is thus expected to be
stabilized by lattice compression.

Here we show that, surprisingly, there is an alternative path
to the IMT, which goes via lattice expansion. This requires
that the main factors controlling bandwidth and screening are
decoupled. The picture is illustrated in Fig. 1 in a possible
realization. In TMCs, lattice expansion eventually leads to a
decrease of W , everything else staying the same. There are
different ways of expanding the lattice, however. A possible
path is the chemical substitution of the anions with larger
ions in the same group (2p → 4p). This choice, in specific
structures, can indeed disentangle bandwidth and screening.
In this situation, while W itself decreases, screening becomes
rapidly more effective. Under certain circumstances, one can
then reach a paradoxical situation: by expanding the lattice,
while W decreases, the ratio W/U increases, and the system
turns metallic (inverse Mott transition).
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This mechanism explains the puzzling trends in the elec-
tronic properties of the t2

2g LiVX2 series (X = O, S, and
Se). These materials have attracted attention because of the
unusual formation of complex molecular clusters and valence-
bond solid (VBS) states at low temperature [10–25]. The

FIG. 1. Insulator to metal transition by lattice expansion. Top:
Spectral functions of an insulating transition-metal oxide, for U = 0
(left) and for a U sufficiently large to open a gap (right). Correlated
bands: blue. Anion bands: orange. Center: O is replaced by a larger
anion X and the lattice spacing increases; the bandwidth W (left)
is reduced. In a classic Mott picture, this enlarges the gap (right).
Bottom: As in the central panel, but, in addition, the distance between
anionic and correlated bands decreases (left), making screening more
efficient. This eventually leads to metallization (right).
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FIG. 2. Part of a VO6 layer in LiVO2. Layers are made by edge-
sharing VO6 octahedra forming a triangular lattice (O: red spheres;
V: remaining spheres); they are divided by triangular Li lattices, not
shown.

crystal structure is made by layers of edge-sharing VX6 octa-
hedra, separated by Li atoms forming themselves a triangular
lattice. The V t2g bands crossing the Fermi level are narrow
and the systems are correlated. Experimentally, LiVO2 is a
small gap insulator; from resistivity measurements the gap is
0.1–0.2 eV [26,27]. The system exhibits a phase transition to
a VBS upon cooling, with critical temperature Tc ≈ 500 K.
Instead, LiVS2 and LiVSe2 are metallic above Tc; more specif-
ically, LiVS2 is a metal down to 300 K and LiVSe2 is a
metal down to 2 K [18]. The question we address here is
why, for T >Tc, an insulator to metal transition is observed
by increasing the anion size. In early works, this was seen as
a consequence of an increase in W due to chemical pressure
[18], hence to a classical Mott mechanism. Here we show
that this explanation does not hold, however. Instead, the
behavior is well captured by the different path to metallization
described in the last panel of Fig. 1.

Theoretical method. We adopt the density functional theory
+ dynamical mean-field theory (DFT + DMFT) approach
to construct and solve the t2g Hubbard model describing the
correlated V bands close to the Fermi level [28–30]. The
noninteracting part of the model is obtained from linearized
augmented plane-wave band-structure calculations based on
the WIEN2K code [31]. From the latter we construct Wannier
functions spanning the t2g bands and obtain the associated
Hubbard model:
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Here m and m′ are V t2g orbitals and i site indices; the
parameters t i,i′

mm′ are the hopping integrals (i �= i′) or crystal-
field matrix elements (i = i′). The lattice structure is shown
in Fig. 2. The site symmetry at the V site is D3d , so that
the t2g states split into an a1g singly degenerate level and an
eπ

g doublet; for ideal regular octahedra, a1g: 1√
3
|xy−yz+xz〉

and eπ
g :{ 1√

6
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FIG. 3. LiVX2 band structure with increasing anion size. From
top to bottom: The t2g bandwidth W (red) decreases, and the anion
bands (blue) move closer to the Fermi level.

between a1g and eπ
g states is εCF = 126, 104, and 96 meV

for X = O, S, and Se, respectively, with the a1g state having
higher energy in all cases. We solve the correlated quantum-
impurity problem via the weak-coupling continuous-time
quantum Monte Carlo method [32], as implemented in
Refs. [33–36]. Finally, we calculate the screened Coulomb
parameters U and J by the constrained random-phase ap-
proximation method [37] via the GAP2 code [38], obtaining
U ≈ 4.3 eV and J ≈ 0.49 eV for X = O, U ≈ 2.2 eV and
J ≈ 0.38 eV for X = S, and U ≈ 1.9 eV and J ≈ 0.36 eV
for X = Se [39]. The experimental crystal structure data for
LiVO2, LiVS2, and LiVSe2 are from Refs. [10–12,25]. The
average Coulomb repulsion is given by Uav = U−2J .

Results. Figure 3 shows the evolution of the band structure
when X changes from O to Se. The figure shows that the
t2g bandwidth decreases from W ≈ 2.64 eV for X = O to
W ≈ 1.82 eV for X = Se. The origin of the bandwidth reduc-
tion can be traced down to the increase of the V-V distance,
which strongly suppresses direct V-V hopping integrals. The
difference in the staking of layers (R3̄m space group for
LiVO2 and P3̄m1 for the other two systems) has instead a
small role; in fact, an idealized calculation for LiVO2 with the
P3̄m1 structure even yields a slightly larger W ≈ 2.72 eV. The
reduction of W with increasing anionic size, with everything
else staying the same, suggests that LiVSe2 should be more
correlated than LiVO2. Intra t2g multiorbital effects, such as
the reduction in CF splitting, εCF, could of course affect this
conclusion, however. In fact, a decrease in εCF can enhance
orbital fluctuations, reducing the strength of correlations [8].
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FIG. 4. Spectral functions for constant Uav = U ∗ (left) and in-
cluding X -dependent screening (right) [39]. Left column: The gap
increases with increasing anionic radius. Right column: The oppo-
site behavior is observed. Calculations are for β = 10 eV−1 (above
Tc). Orange arrows: Direction in which the strength of correlation
increases in each column.

Furthermore, in the t2
2g configuration, the Hund’s rule coupling

can also modify the strength of correlations [4–6], and cRPA
calculations show that J decreases (from 0.49 to 0.36 eV) with
increasing ionic size. Hence, the metallic behavior could be
the result of changes in orbital physics within the space of
correlated t2g states. This, as we discussed in the Introduction,
remains inside the classic Mott picture.

In order to put this hypothesis to the test, we first perform
DFT + DMFT calculations with constant Uav = U ∗ ≈ 4 eV,
using in each case the cRPA J values. The results are shown
in Fig. 4, left-hand side. For LiVO2, top left, we obtain an
insulating solution with a gap close to the experimental value.
Also the other two systems, however, turn out insulators in
the calculations; furthermore, the gap increases with increas-
ing the size of the anion. This behavior could arise from
suppression of orbital fluctuation, bandwidth reduction, or
both combined. To disentangle these effects, we calculate the
orbital polarization p(X ) = 1

2 neπ
g
−na1g . The latter ranges from

p = −2.0 [orbital ordering with the a2
1g(eπ

g )0 configuration]
to p = 1.0 [orbital ordering with the a0

1g(eπ
g )2 configuration];

strong orbital fluctuations yield p ≈ 0. Here we find p(O) ≈
0.52, p(S) ≈ 0.35 and p(Se) ≈ 0.28 for β = 10 eV−1. Ev-
erything else being the same, this suggests [2,8] that the
correlation strength is weaker for X = Se than for X = O.
Thus, the main cause of the gap increase appears to be the

reduction of W . Either way, the conclusion is that, from the
classic Mott viewpoint, all LiVX2 systems should be insula-
tors, with the largest gap in LiVSe2 [40].

Next we consider the alternative mechanism illustrated in
Fig. 1. To this end, we perform additional DFT + DMFT
calculations, but this time taking into account materials-
dependent screening effects, as obtained in the cRPA.
Remarkably we find an unexpectedly strong decrease in Uav

with increasing anion size: for X = Se, Uav becomes about
one half of the X = O value. The resulting spectral functions
are shown in the right-hand column of Fig. 4; one can see
that the trends with X are the opposite of those obtained in
the left-hand column. The effective masses m∗ increase going
from the bottom to the top of the figure (orange arrow); a
gap only opens in the case of LiVO2. This is in line with
experimental findings. The last question that remains to be
addressed is what reduces Uav so drastically, sufficiently to
reverse the trend. Our results show that the main cause is the
reduction of the charge-transfer energy between anionic p and
transition-metal 3d bands (Fig. 3), rather than the expansion
of the wave functions. In fact, the bare direct Coulomb repul-
sion Ubare decreases from 16.6 to 13.5 eV going from X = O
to X = Se; the ratio between screened and bare Coulomb
repulsion, rX = U/U bare, however, takes the value rO = 0.26
for LiVO2, rS = 0.16 for LiVS2, and rSe = 0.14 for LiVSe2.
This is exactly the mechanism described in Fig. 1.

Conclusion and outlook. We have shown that, surprisingly,
in correlated TMCs, it is possible to obtain an insulator to
metal transition by lattice expansion, i.e., decreasing the band-
width W —as opposed to the classic Mott picture, in which
lattice compression is key, so that the bandwidth increases.
This unusual behavior can be realized by decoupling the main
factors that control bandwidth and screening. In TMCs this
disentanglement can be achieved, e.g., replacing O with larger
anions of the same group. We have shown that this mechanism
finds a realization in the LiVX2 series. The ideas outlined in
this Letter are not confined to these compounds, however;
they are likely to be at play in other TMCs, in particular,
edge-sharing systems, currently the subject of intense research
[41–45], since their structure promotes sizable direct-hopping
integrals. The results obtained can also provide guidelines to
tune correlations in devices based on these materials, e.g.,
energy-efficient batteries [46,47] or neuromorphic computers
[48].
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