001048484 001__ 1048484
001048484 005__ 20260203123852.0
001048484 0247_ $$2doi$$a10.1002/aesr.202400330
001048484 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04673
001048484 0247_ $$2WOS$$aWOS:001373740100001
001048484 037__ $$aFZJ-2025-04673
001048484 082__ $$a333.7
001048484 1001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b0
001048484 245__ $$aInvestigating the Existence of a Cathode Electrolyte Interphase on Graphite in Dual‐Ion Batteries with LiPF 6 ‐Based Aprotic Electrolytes and Unraveling the Origin of Capacity Fade
001048484 260__ $$aWeinheim$$bWiley-VCH$$c2025
001048484 3367_ $$2DRIVER$$aarticle
001048484 3367_ $$2DataCite$$aOutput Types/Journal article
001048484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768304259_1241
001048484 3367_ $$2BibTeX$$aARTICLE
001048484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048484 3367_ $$00$$2EndNote$$aJournal Article
001048484 520__ $$aThis study elucidates the presence of a cathode electrolyte interphase (CEI) at graphite positive electrodes (PEs) and assesses its impact on the performance of dual-ion batteries, being promising candidates for cost-efficient and sustainable stationary energy storage. Indeed, electrolyte oxidation increases during charge (5 V vs Li|Li+) for decreased C rates, that is longer duration at high state-of-charges (SOC) , but effective protection and evidence for CEI formation is missing as no increase in Coulombic efficiencies is observed, even with literature-known electrolyte additives like vinylene carbonate, fluoroethylene carbonate, or ethylene sulfite in a highly concentrated base electrolyte (4.0 m LiPF6 in dimethyl carbonate) as reference. Via studying charged and pristine PEs by X-ray photoelectron spectroscopy, PF6−-graphite intercalation compounds and cointercalated solvent molecules are identified, while indications for CEI are absent within 1000 charge/discharge cycles. Nevertheless, a high capacity retention of ≈94% (referring to 0.1C) is demonstrated. Affirmed by Raman spectroscopy and scanning electron microscopy, the active material remains structurally stable, suggesting capacity fading to be dominated by resistance rise at the PE, likely due to an electronic contact resistance from active material grain boundaries and/or from the interface between electrode particles and the current collector in course of high volume changes; as systematically derived by impedance spectroscopy.
001048484 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001048484 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048484 7001_ $$0P:(DE-Juel1)188450$$aPfeiffer, Felix$$b1
001048484 7001_ $$0P:(DE-HGF)0$$aRudolf, Katharina$$b2
001048484 7001_ $$0P:(DE-HGF)0$$aSutar, Pranti$$b3
001048484 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b4
001048484 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5
001048484 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b6
001048484 7001_ $$0P:(DE-HGF)0$$aKasnatscheew, Johannes$$b7$$eCorresponding author
001048484 773__ $$0PERI:(DE-600)3010017-3$$a10.1002/aesr.202400330$$gVol. 6, no. 3, p. 2400330$$n3$$p2400330$$tAdvanced energy & sustainability research$$v6$$x2699-9412$$y2025
001048484 8564_ $$uhttps://juser.fz-juelich.de/record/1048484/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Haneke%20-%20Investigating%20the%20Existence%20of%20a%20Cathode%20Electrolyte%20Interphase%20on%20Graphite%20in.pdf$$yOpenAccess
001048484 909CO $$ooai:juser.fz-juelich.de:1048484$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001048484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188450$$aForschungszentrum Jülich$$b1$$kFZJ
001048484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
001048484 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001048484 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048484 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-05$$wger
001048484 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:31Z
001048484 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:31Z
001048484 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048484 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:09:31Z
001048484 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-05
001048484 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-05
001048484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERG SUST RES : 2022$$d2025-11-11
001048484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-11
001048484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-11
001048484 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-11-11
001048484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-11
001048484 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ENERG SUST RES : 2022$$d2025-11-11
001048484 920__ $$lyes
001048484 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001048484 980__ $$ajournal
001048484 980__ $$aVDB
001048484 980__ $$aUNRESTRICTED
001048484 980__ $$aI:(DE-Juel1)IMD-4-20141217
001048484 9801_ $$aFullTexts