001     1048484
005     20260203123852.0
024 7 _ |a 10.1002/aesr.202400330
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04673
|2 datacite_doi
024 7 _ |a WOS:001373740100001
|2 WOS
037 _ _ |a FZJ-2025-04673
082 _ _ |a 333.7
100 1 _ |a Haneke, Lukas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigating the Existence of a Cathode Electrolyte Interphase on Graphite in Dual‐Ion Batteries with LiPF 6 ‐Based Aprotic Electrolytes and Unraveling the Origin of Capacity Fade
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768304259_1241
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study elucidates the presence of a cathode electrolyte interphase (CEI) at graphite positive electrodes (PEs) and assesses its impact on the performance of dual-ion batteries, being promising candidates for cost-efficient and sustainable stationary energy storage. Indeed, electrolyte oxidation increases during charge (5 V vs Li|Li+) for decreased C rates, that is longer duration at high state-of-charges (SOC) , but effective protection and evidence for CEI formation is missing as no increase in Coulombic efficiencies is observed, even with literature-known electrolyte additives like vinylene carbonate, fluoroethylene carbonate, or ethylene sulfite in a highly concentrated base electrolyte (4.0 m LiPF6 in dimethyl carbonate) as reference. Via studying charged and pristine PEs by X-ray photoelectron spectroscopy, PF6−-graphite intercalation compounds and cointercalated solvent molecules are identified, while indications for CEI are absent within 1000 charge/discharge cycles. Nevertheless, a high capacity retention of ≈94% (referring to 0.1C) is demonstrated. Affirmed by Raman spectroscopy and scanning electron microscopy, the active material remains structurally stable, suggesting capacity fading to be dominated by resistance rise at the PE, likely due to an electronic contact resistance from active material grain boundaries and/or from the interface between electrode particles and the current collector in course of high volume changes; as systematically derived by impedance spectroscopy.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 1
700 1 _ |a Rudolf, Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sutar, Pranti
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baghernejad, Masoud
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/aesr.202400330
|g Vol. 6, no. 3, p. 2400330
|0 PERI:(DE-600)3010017-3
|n 3
|p 2400330
|t Advanced energy & sustainability research
|v 6
|y 2025
|x 2699-9412
856 4 _ |u https://juser.fz-juelich.de/record/1048484/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Haneke%20-%20Investigating%20the%20Existence%20of%20a%20Cathode%20Electrolyte%20Interphase%20on%20Graphite%20in.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048484
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:09:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:09:31Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:09:31Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2025-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21