001048491 001__ 1048491
001048491 005__ 20251201152219.0
001048491 037__ $$aFZJ-2025-04677
001048491 1001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b0$$eCorresponding author$$ufzj
001048491 1112_ $$aInternational Conference and Expo on Advanced Ceramics and Composites$$cDaytona Beach$$d2025-01-26 - 2025-01-31$$gICACC$$wUSA
001048491 245__ $$aDesign of Novel High-Performance Cathode Materials for Na-ion Batteries
001048491 260__ $$c2025
001048491 3367_ $$033$$2EndNote$$aConference Paper
001048491 3367_ $$2DataCite$$aOther
001048491 3367_ $$2BibTeX$$aINPROCEEDINGS
001048491 3367_ $$2DRIVER$$aconferenceObject
001048491 3367_ $$2ORCID$$aLECTURE_SPEECH
001048491 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1764598918_5897$$xInvited
001048491 520__ $$aSodium-ion batteries (SIBs) are the most promising replacement for lithium-ion batteries (LiBs) owing to the low price and availability of sodium. Cathode materials for SIBs have similarity to those for LIBs, including the most popular type, namely layered metal oxides (NaxMO2). However, capacity and stability of currently known NaxMO2 materials need to be improved to meet the requirement for practical applications. In this work, multiscale modeling approaches combining electrostatic analysis, density functional theory (DFT) calculation, GW approximation [1], thermodynamics consideration, and finite element simulation, have been applied to design novel NaxMO2 materials. It is shown that calculated magnetic moment using DFT with hybrid exchange-correlation functionals can predict redox mechanism (i.e. capacity) of cathode materials [2,3]. Moreover, it is shown that how multiscale-modeling approaches can be used to predict stability of cathode materials. Finally, a combined theoretical/experimental work on design of NaxMO2 compositions with high capacity and stability is presented.  [1] K Köster and P Kaghazchi, Physical Review B 109 (15), 155134 (2024)[2] N. Voronina, JH Yu, HJ Kim, N. Yaqoob, O. Guillon, H. Kim, MG Jung, HG Jung, K. Yazawa, Hi. Yashiro, P. Kaghazchi, and S-T Myung, Advanced Functional Materials 33 (5), 2210423 (2023)[3] O. Zhanadilov, S. Baiju, N. Voronina, J-H Yu, A Kim, H-G Jung, K. Ihm, O. Guillon, P. Kaghazchi, S-T Myung, Nano-Micro Letters 16 (1), 1 (2024)
001048491 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001048491 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b0$$kFZJ
001048491 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001048491 9141_ $$y2025
001048491 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001048491 980__ $$aconf
001048491 980__ $$aEDITORS
001048491 980__ $$aVDBINPRINT
001048491 980__ $$aI:(DE-Juel1)IMD-2-20101013
001048491 980__ $$aUNRESTRICTED