001048492 001__ 1048492 001048492 005__ 20251204202144.0 001048492 0247_ $$2doi$$a10.5194/acp-25-16833-2025 001048492 0247_ $$2ISSN$$a1680-7316 001048492 0247_ $$2ISSN$$a1680-7324 001048492 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04678 001048492 037__ $$aFZJ-2025-04678 001048492 082__ $$a550 001048492 1001_ $$00000-0001-8303-5062$$aAnsari, Tabish$$b0$$eCorresponding author 001048492 245__ $$aExplaining trends and changing seasonal cycles of surface ozone in North America and Europe over the 2000–2018 period: a global modelling study with NO x and VOC tagging 001048492 260__ $$aKatlenburg-Lindau$$bEGU$$c2025 001048492 3367_ $$2DRIVER$$aarticle 001048492 3367_ $$2DataCite$$aOutput Types/Journal article 001048492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764849801_6975 001048492 3367_ $$2BibTeX$$aARTICLE 001048492 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001048492 3367_ $$00$$2EndNote$$aJournal Article 001048492 520__ $$aSurface ozone, with its long enough lifetime, can travel far from its precursor emissions, affecting human health, vegetation, and ecosystems on an intercontinental scale. Recent decades have seen significant shifts in ozone precursor emissions: reductions in North America and Europe, increases in Asia, and a steady global rise in methane. Observations from North America and Europe show declining ozone trends, a flattened seasonal cycle, a shift in peak ozone from summer to spring, and increasing wintertime levels. To explain these changes, we use TOAST 1.0, a novel ozone tagging technique implemented in the global atmospheric model CAM4-Chem which attributes ozone to its precursor emissions fully by $NO_x$ or $VOC+CO+CH_4$ sources and perform multi-decadal model simulations for 2000–2018. Model-simulated maximum daily 8 h ozone (MDA8 $O_3$) agrees well with rural observations from the TOAR-II database. Our analysis reveals that declining local $NO_x$ contributions to peak-season ozone (PSO) in North America and Europe are offset by rising contributions from natural $NO_x$ (due to increased $O_3$ production), and foreign anthropogenic- and international shipping $NO_x$ due to increased emissions. Transported ozone dominates during spring. Methane is the largest VOC contributor to PSO, while natural NMVOCs become more important in summer. Contributions from anthropogenic NMVOCs remain smaller than those from anthropogenic $NO_x$. Despite rising global methane levels, its contribution to PSO in North America and Europe has declined due to reductions in local $NO_x$ emissions. Our results highlight the evolving drivers of surface ozone and emphasize the need for coordinated global strategies that consider both regional emission trends and long-range pollutant transport. 001048492 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001048492 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1 001048492 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001048492 7001_ $$0P:(DE-HGF)0$$aNalam, Aditya$$b1 001048492 7001_ $$00000-0002-1055-9727$$aLupaşcu, Aurelia$$b2 001048492 7001_ $$0P:(DE-Juel1)171304$$aHinz, Carsten$$b3 001048492 7001_ $$0P:(DE-Juel1)176624$$aGrasse, Simon$$b4 001048492 7001_ $$00000-0002-2219-4657$$aButler, Tim$$b5 001048492 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-25-16833-2025$$gVol. 25, no. 22, p. 16833 - 16876$$n22$$p16833 - 16876$$tAtmospheric chemistry and physics$$v25$$x1680-7316$$y2025 001048492 8564_ $$uhttps://acp.copernicus.org/articles/25/16833/2025/ 001048492 8564_ $$uhttps://juser.fz-juelich.de/record/1048492/files/acp-25-16833-2025.pdf$$yOpenAccess 001048492 909CO $$ooai:juser.fz-juelich.de:1048492$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001048492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171304$$aForschungszentrum Jülich$$b3$$kFZJ 001048492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176624$$aForschungszentrum Jülich$$b4$$kFZJ 001048492 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001048492 9141_ $$y2025 001048492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21 001048492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001048492 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z 001048492 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z 001048492 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001048492 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z 001048492 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21 001048492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21 001048492 920__ $$lyes 001048492 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001048492 980__ $$ajournal 001048492 980__ $$aVDB 001048492 980__ $$aUNRESTRICTED 001048492 980__ $$aI:(DE-Juel1)JSC-20090406 001048492 9801_ $$aFullTexts