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Abstract:

The Tibetan Plateau (TP), as the region with the highest altitude in the world, plays
an important role in regulating climate change, and is highly sensitive to
anthropogenic pollutants. To assess the impact of anthropogenic emissions on
atmospheric oxygenated organic molecules (OOMs) and regional air quality in the
southeastern TP, we conducted intensive field observations using iodide Chemical
Ionization Mass Spectrometry combined with a Filter Inlet for Gases and AEROsols
(FIGAERO-CIMS) during the @Tibet field campaigns. We detected 653 distinct
OOMs in both gas and particle phases, with most falling within the intermediate
volatility range. Supervised machine learning was used to classify OOMs based on
precursor origin, including biogenic (isoprene and monoterpenes) and anthropogenic
(aromatics and aliphatics) sources. Notably, OOMs derived from anthropogenic
emissions dominated the measured compounds, representing 32.5% in the gas phase
and 45.6% in the particle phase, substantially exceeding the contributions from
biogenic sources (27.5% and 21.8% in the gas and particle phases, respectively).
These results reveal the significant influence of anthropogenic emissions on
atmospheric species even in remote areas, highlighting the urgent need to consider
these impacts in future air quality assessments and pollution mitigation strategies in

the TP region.
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Synopsis:
Our work enhances our understanding of atmospheric pollutants and highlights the

importance of anthropogenic sources to OOMs formation in the southeastern TP.
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1. INTRODUCTION

Organic aerosols (OA) constitute a significant fraction of fine particulate matter
globally,! adversely affecting air quality,> climate,> and human health.* The
complexity of OA, especially secondary organic aerosols (SOA), complicates our
understanding of their chemical compositions, sources, and formation,>” resulting in
substantial discrepancies between modeled and measured SOA concentrations.® *
Oxygenated organic molecules (OOMs) are critical intermediates during SOA
formation, produced by the oxidation of gaseous precursors such as volatility organic
compounds (VOCs).> '© Therefore, the chemical characterization of OOMs is
essential to enhance our understanding of the sources, formation pathways, and
properties of SOA.!"- 1> However, the identification of atmospheric OOMs at
molecular level remains limited, hindering the development of more accurate
atmospheric models.

The Tibetan Plateau (TP), often referred to as the “Third Pole”, plays a pivotal
role in atmospheric circulation and global climate,'® while providing substantial water
resources to downstream areas.!* Due to its sparse population and minimal industrial
activities, the atmosphere of the TP largely reflects global background conditions.'
Therefore, climate and cryosphere changes in the TP are particularly sensitive to
atmospheric pollutants.'> As such, it is imperative to assess the extent to which
anthropogenic sources impact the TP’s atmosphere. Previous studies using aerosol

mass spectrometer (AMS) measurements have demonstrated that secondary formation

is a major contributor to OA in the TP. '!® However, the specific influence of
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anthropogenic sources remains poorly constrained. Shen et al.!® detected SOA tracers
originating from different precursors through offline measurements and found that
aromatics may play an important role in SOA formation during certain seasons in the
TP. Using a similar approach, Wan et al.2? identified OA tracers from biomass burning
and biogenic sources, while a large unexplained fraction of OA was attributed to other
sources, such as anthropogenic emissions. Although offline measurement techniques
are effective in identifying SOA tracers from different precursors, the number of
detectable compounds is limited, leading to substantial uncertainty into the
assessment of anthropogenic contributions. Nitrate chemical ionization mass
spectrometry (CIMS) has been employed to measure gas-phase OOMs. Bianchi et

al.?! and Liu et al.??

revealed the substantial role of biogenic precursors, especially
monoterpenes, in SOA formation in the TP. However, nitrate CIMS is more sensitive
to highly oxygenated compounds, and molecules with lower oxygen content are often
underestimated or even entirely missed.”> Furthermore, few studies have
simultaneously investigated OOMSs in both gas and particle phases, which is essential
for capturing the full scope of atmospheric oxidation processes and sources
contributions. Therefore, a comprehensive chemical characterization of OOMs in both
phases is necessary to better quantify the role of anthropogenic sources in shaping the
OOMs formation in the TP.

To gain insight into atmospheric gaseous and particulate OOMs in the southeastern

TP, we deployed an iodide Chemical Ionization Mass Spectrometry with a Filter Inlet

for Gases and AEROsols (FIGAERO-CIMS) at the Lulang observation site, as part of



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

the @Tibet field campaigns 2021. Iodide CIMS is a powerful tool for measuring
OOMs in the atmosphere,” exhibiting high selectivity towards highly polarizable
compounds.?® And FIGAERO enables simultaneous gas and particle measurements.?’
Subsequently, we applied a machine learning approach to identify the precursors of
the measured OOMs, and elucidated the impacts of anthropogenic sources on gaseous

and particulate OOMs in the southeastern TP.

2. MATERIALS AND METHODS
2.1 Measurement Site.

The measurements were conducted at the Lulang observation site (94°44°E,
29°46°N, 3326 m a.s.l.) from April 7 to 24, 2021. Situated in a mountainous valley in
the southeastern TP, on the northern bank of the Yarlung Zangbo River,?* Lulang is
characterized by diverse vegetation, including high-altitude forests.”® A village
(Zhaxigang) and a town (Lulang) are located approximately 1.7 km and 4.5 km to the
south, respectively. National Road 318 runs east of the site. The site was considered
not strongly affected by high-intensity on-road emissions due to few tourist vehicles
during the observation period.? Overall, it is an ideal location for investigating the
impact of anthropogenic sources on the background environments of the TP. Detailed
descriptions of this site can be found in previous studies.?*
2.2 Instrumentation.

An iodide FIGAERO-CIMS (Aerodyne Research Inc.) was deployed to

simultaneously measure gaseous and particulate OOMs. The FIGAERO has three



114 inlet ports that operates in two modes.?” During the gas mode, ambient air was drawn
115  into the ion molecule reactor (IMR) at a rate of 2 L min™!, where the molecules reacted
116  with iodide ions to form product ions. The pressure and temperature in the IMR were
117  maintained at 200 mbar and 60 °C, respectively. Concurrently, ambient particles were
118  collected on a PTFE filter (1.0 um pore size Zefon®, Zefon International) on the
119  FIGAERO at a rate of 6 L min! to ensure sufficient particle loading (up to 3.6 pg,
120  based on PM>s measurements).>’ After 20 min in the gas mode, the FIGAERO
121 switched to the particle mode, where particles collected on the filter were thermally
122  desorbed using heated ultrahigh-purity (UHP) N at a rate of 2 L min’'. Then the
123 desorbed vapors were immediately drawn into the IMR for detection. The filter
124  temperature followed a three-step process: ramping from ambient temperature to 180 °C
125  over 20 min, soaking at 180 °C for 8 min, and cooling back to ambient temperature
126 over 12 min. A complete cycle, including both gas and particle modes, took 1 h.

127 To quantify the measured OOMs, we calibrated the FIGAERO-CIMS using 9
128  organic standards. The sensitivity of levoglucosan was applied to all species as the
129  maximum sensitivity of CIMS,?® thus the reported concentrations represented the
130 lower limits in this study. Considering the lowest sensitivity (Table S1), the
131  concentration of certain OOMs may be underestimated by up to two orders of
132 magnitude. The potential impact of relative humidity on sensitivity was not
133 considered in this study. As the increase of water content may variably affect the
134 sensitivity of OOMs,?> 3! this simplification could introduce systematic uncertainty

135 into the results. The backgrounds of gas and particle were conducted throughout the
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measurement period. Peak fitting of the data was processed using the Tofware
software (v3.2.2; Tofwerk AG, Switzerland). More details about the FIGAERO-CIMS
can be found in Text S1.
2.3 Assigning Precursors to Oxygenated Organic Molecules Using a Machine
Learning Approach

A detailed workflow to identify the precursors of the measured OOMs is illustrated
in Figure S1. OOMs measured by FIGAERO-CIMS originate from both direct
emissions and the oxidation of precursors.’! To assign possible precursors to the
measured OOMs, it is necessary to exclude primary OOMs firstly. Biomass burning
has been identified as a significant source in the TP.!?® We excluded OOMs likely
from biomass burning (BB-OOMs) based on their correlations with C¢Hi0Os, an
important maker for biomass burning.** Except for BB-OOMs, most measured OOMs
were probably produced through photochemical oxidation, indicated by their higher
concentrations during the period from 11:00 to 16:00 (Figure S2), when short-wave
radiation was highest.?> Gas-phase OOMs displayed higher concentration
enhancement than particle-phase OOMs, probably due to the mass transfer limitations
of gas-particle partitioning.>* Subsequently, we omitted OOMs with a carbon number
< 3 (Small OOMs), as these small molecules could derive from the oxidation of
multiple precursors.** %>
A supervised machine learning approach was used to assign possible precursors to

the remaining OOMs based on the methodologies of Qiao et al.>® and Wang et al.>* A

random forest model was established for classification, requiring a pre-labeled
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training dataset. Wang et al.>* has created a dataset comprising known oxidation
products from four precursor classes. Since the dataset is concluded from a series of
laboratory and field studies using [-CIMS to measure the products of different
precursors, it can also be applied in our study. The dataset consists of 82, 126, 215,
and 118 products from isoprene, monoterpene, aliphatic, and aromatic, respectively,
effectively capturing the characteristics of different precursor classes.’* The direct
application of a multi-class classification model may introduce considerable
uncertainty due to the presence of OOMs that originate from multiple precursors. To
overcome this issue, we reformulated the original four-class classification task into
four independent binary classification tasks. In each task, a separate random forest
model was trained to predict whether a given OOM belongs to the corresponding
precursor class or not. This approach allows for overlapping classifications and
improves the robustness of precursor attribution. Model input features included the
number of carbon, hydrogen, oxygen, and nitrogen atoms (nc, nu, no, and nn,
respectively), as well as calculated parameters such as double bond equivalent (DBE),
hydrogen-to-carbon ratio (H/C), oxygen-to-carbon ratio (O/C), and average carbon
oxidation state (OS¢). The random forest model was implemented using the sklearn
package (v1.3.0) in Python, producing the occurrence probability for each OOM
across the four precursor classes. We replaced the probability < 0.6 with 0, proposing
that the OOM unlikely came from the corresponding precursor. Then the signal of
each OOM was assigned to four precursor classes based on the ratio of occurrence

probabilities. If no probability was > 0.6, the OOM was labeled as “Other OOMs”.
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More details about the probability calculations can be found in Text S2.

To train and evaluate the random forest model, the dataset was divided into two
subsets randomly: 70% for training and 30% for testing. We employed a grid search
method to determine optimal model parameters. Three parameters were examined in
our study, i.e. the number of trees (from 1 to 150), the maximum depth of each tree
(from 1 to 14), and the max features for the best split at each node of a decision tree
(from 1 to 8). Model performance was assessed using three metrics, i.e. Precision,
Recall, and F1-score (the calculation detailed in Text S3). The variation of the metrics
with three selected parameters was explored, as shown in Figure S3. The optimal
value was 21, 8, and 2 for the number of trees, the maximum depth of each tree, and
the max features, respectively. Precision, Recall, and FI-score of final random forest
model was calculated using these optimal values, as listed in Table S2. All F/-scores
were > (.75, indicating high accuracy in predicting the precursors for OOMs. In
addition, a 5-fold cross-validation was conducted to prevent overfitting (Text S4 and
Figure S4), with the average Fl-score of four precursor classes at each iteration >

0.75, thus demonstrating model reliability.

3. RESULTS AND DISCUSSION

3.1 Characteristics of Oxygenated Organic Molecules in the Ambient Air of Tibet
A total of 653 OOMs were identified within the m/z 150-400 Th in this study,

including 347 organic carbon species (OC = CxHyO,, where 1 < x < 20, y is an even

number not exceeding 2x+2, and z > 2) and 306 organic nitrate species (ON =

10



202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

CxHyO;Ni or2, when Nj, 1 <x <20, y is an odd number not exceeding 2x+1, and z > 2;
when Nz, 1 < x < 20, y is an even number not exceeding 2x, and z > 4). The
campaign-averaged mass spectra of the measured gaseous and particulate OOMs are
shown in Figure S5. In general, larger OOMs exhibited a higher proportion in the
particle phase compared to the gas phase. The signal fractions decreased with the
increase of m/z when m/z was > 290 Th in the gas phase. The signal-weighted
average formulas of gaseous and particulate OOMs were Csi1H77038No> and
CesHo3047No3, corresponding to molecular weights of 132 and 171 g mol?,
respectively. The oxygen number was higher, while the O/C was lower in the particle
phase than those in the gas phase, attributed to the larger fractions of more oxidized
small OOMs in the gas phase. It should be noted that several small OOMs exhibited
high abundances in the particle phase, likely resulting from thermal decomposition of
larger OOMs during thermal desorption on FIGAERO.?"-37 The presence of small
OOMs could lead to an underestimation of effective molecular weight and an
overestimation of bulk volatility in the particle phase. Organic nitrates were clearly
observed in both gas and particle phases, indicating the significant role of NOx (3.7 +
2.4 ppbv during the observation period) in local atmospheric chemistry. It should be
noted that in addition to anthropogenic sources, NOx may also come from strong
natural sources in the TP, such as soil microbial activity, lakes, and lightning-induced
NO, 3839

The numbers of carbon and oxygen of the measured gaseous and particulate OOMs
were analyzed, as shown in Figure 1. C;> OOMs constituted a significant proportion

11
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(27.4%) in the gas phase, especially CH>O> (16.0%). CH20> has been assigned as
formic acid, commonly found in various atmospheres and produced by wvarious
precursors.*® Apart from Ci» OOMs, Cs7 OOMs were the main components in the
gas phase, accounting for 44.8% of the total measured OOMs. In contrast, besides
Cs.7 OOMs, Cg.10 OOMs also exhibited high abundances in the particle phase, with
the total proportion of 26.2%. The major oxygen number was 4 in both gas and
particle phases, comprising 28.5% and 18.8%, respectively. Notably, the fraction of
highly oxygenated organic molecules (no > 6) was significantly higher in the particle

phase than that in the gas phase.

20

(a) 02 04 706 " 08
15 1 03 705 BO7 HO=8

10 A

Signal fraction (%)

20

(b) 02 04 106 I 08
15 1 03 105 BO7 HO>8
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
Carbon number

5>15
Figure 1. The distributions of carbon and oxygen numbers of the measured
OOMs. (a) Gas phase; (b) Particle phase.

The different distribution characteristics between gaseous and particulate OOMs
depend on their different partition coefficients, which are affected by volatilities and

functional groups.*! Therefore, this study investigated the relationship between OSg

12
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and saturation concentration (C") of measured OOMs, representing oxidation degree
and volatility, respectively, as shown in Figure 2. The calculations of 0S¢ and C"can
be found in Text S5. Several OOMs appeared with high volatility and oxidation
degree in both gas and particle phases, probably resulting from fragmentation
reactions during sufficient oxidation.*! Except for these OOMs, OS: generally
increased with the decrease of logioC’, indicating that the addition of
oxygen-containing functional groups reduced volatility.*! OOMs with lower
volatilities were more likely to partition into the particle phase, demonstrated by their
higher F, (the ratio of concentration in the particle phase to the sum concentration in
both the gas and particle phases) (Figure S6). However, some compounds with high
volatility also exhibited high F,, probably due to the decomposition on FIGAERO.?"
37 The relationship of F, and logioC™ had a systematic shift from the theoretical line
based on gas-particle partitioning, indicating the volatility might be overestimated
through the formula method in our study.’” On the contrary, there is no obvious
correlation between F, and OS.. Gaseous OOMs predominantly fell within the
intermediate volatility organic compounds (IVOCs) range, accounting for 67.2% of
the total measured OOMs. While particulate OOMs were mainly distributed across
both IVOCs and semi-volatile organic compounds (SVOCs) ranges, accounting for

43.5% and 33.5%, respectively.
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Figure 2. Relationship between average carbon oxidation state (0S;) and
logarithmic saturated vapor concentration (logioC”) of the measured OOMs. (a)
Gas phase; (b) Particle phase. The circle size is proportional to the logarithmic
signal fraction. The black dotted lines in panel (a) are theoretical curves for these
formulas. The circles in panel (b) are colored by Fy (the ratio of concentration in
the particle phase to the sum concentration in the gas and particle phases). Both

(a) and (b) include all measured OC and ON species.

3.2 Precursor Apportionment of Oxygenated Organic Molecules
Biomass burning has been recognized as an important source in the TP.?® C¢Hi0Os
detected by FIGAERO-CIMS has been previously attributed to levoglucosan and its

isomers,3">

regarded as important makers for biomass burning.’* The average mass
concentration of particulate CeH19Os was 1.21 + 1.91 ng m™ in this study, slightly
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lower than the result at another site in the TP,' but significantly lower by 1-2 orders
of magnitude compared to the results from typical megacities.!" > This may be
attributed to the enhanced intensity of biomass burning activities and unfavorable
meteorological conditions during certain seasons in megacities.!"> ** The diurnal
profile of both gaseous and particulate C¢H10Os exhibited a significant peak in the
morning (Figure S7), suggesting enhanced biomass burning activity. In addition,
CsHsNOs, CsHi004, and CsHi120s displayed strong correlations with CsH10Os in both
gas and particle phases (R > 0.8), indicating that they might also originate from

biomass burning.
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Figure 3. Contributions of different precursor classes to the measured OOMs.

Contributions of different OOMs at each volatility bin in the (a) gas phase, and

(b) particle phase, respectively. Contributions of different OOMs to the total
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measured OOMs in the (c¢) gas phase, and (d) particle phase, respectively.
“BB-OOMs” represents the OOMs from biomass burning. “Small OOMs”
represents the OOMs with carbon number < 3.

After excluding 4 BB-OOMs and 61 small OOMs, we identified 50
isoprene-OOMs, 142 monoterpene-OOMs, 157 aliphatic-OOMs, 228 aromatic-OOMs,
and 89 aromatic-OOMs using the random forest model (Figure 3 and Figure S8). And
the remaining 89 OOMs were classified into “Other OOMs”. The diurnal patterns of
four types of OOMs are shown in Figure S9. As mentioned above, Ci.3 OOMs were
excluded as small OOMs from classification, due to the large overlap of them in the
oxidation products of various precursors.** Gaseous and particulate BB-OOMs
accounted for only 2.5% and 1.7% of the total measured OOMs, respectively. As
mentioned in the method, BB-OOMs only represent the compounds directly emitted
from biomass burning. Chen et al. **revealed the important contribution of biomass
burning to particles at the same site through the measurements of n-alkanes and
polycyclic aromatic hydrocarbons, which cannot be measured by FIGAERO-CIMS.
The measured oxidation products of n-alkanes and polycyclic aromatic hydrocarbons,
which may be emitted by biomass burning, will be categorized as aliphatic-OOMs
and aromatic-OOMs, respectively, in our study. As shown in Figure S10, over 75% of
isoprene-OOMs, aliphatic-OOMs, and aromatic-OOMs were distributed in the IVOCs
range in the gas phase. While 71.9% and 23.1% of gaseous monoterpene-OOMs were
distributed in the IVOCs and SVOCs ranges, respectively. In contrast, more
isoprene-OOMs, monoterpene-OOMs, aliphatic-OOMs, and aromatic-OOMs were
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found in the SVOCs range in the particle phase, indicating that these OOMs were
more likely to partition into particle. Wang et al. (2024)** showed that the OOMs
derived from four precursors mainly distributed in the low volatility organic
compounds (LVOCs) range at multiple sites. This is because the volatility estimated
through formula method in our study would be several orders of magnitude higher
than that estimated through thermogram method in Wang et al. (2024).>” To
investigate the sources of OOMs from different precursors, we simply assumed that
isoprene-OOMs and monoterpene-OOMs originated from biogenic sources, and
aliphatic-OOMs and aromatic-OOMs originated from anthropogenic sources.®
Isoprene may be emitted from anthropogenic sources, but in background region the
anthropogenic fraction of isoprene is quite small.*> Aromatics can also come from
biogenic sources, such as cyanobacteria in the lake.*® Since there are no large lakes
around the sampling site, this impact can also be ignored. BB-OOMs were not
categorized as biogenic or anthropogenic sources. Due to the small fraction of
BB-OOMs, it will not significantly affect the conclusions. Monoterpene-OOMs and
isoprene-OOMs constituted only 27.5% and 21.8% of the total measured OOMs in the
gas and particle phases, respectively. The contribution of monoterpene-OOMs was
significantly higher than that of isoprene-OOMs, indicating that monoterpenes might
be more important in biogenic SOA formation in the southeastern TP.
Aliphatic-OOMs contributed 9.7% and 15.7% to the total measured OOMs in the gas
and particle phases, respectively, with alkanes regarded as the dominant precursors.>
The proportions of aromatic-OOMs were 22.8% and 29.9%, respectively.
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Aliphatic-OOMs and aromatic-OOMs contributed 32.5% and 45.6% to the total
measured OOMs in the gas and particle phases, respectively, emphasizing a more
critical role of anthropogenic sources in OOMs formation than biogenic sources in the
southeastern TP. If all other OOMs were classified as biogenic OOMs, the fraction of
total biogenic OOMs would be 31.2% and 32.8% in the gas and particle phases,
respectively, still lower than that of anthropogenic OOMSs, indicating these
unclassified OOMs would not significantly impact the conclusions. Since small
OOMs account for only a minor fraction in the particle phase, including them in the
model did not significantly affect the overall conclusions (Figure S11). However, the
contribution of biogenic sources to OOMs would increase to a level comparable to
that of anthropogenic sources, as a larger number of small OOMs were classified as
biogenic OOMs. This highlights the need for accurate source apportionment of small
OOM s in future studies, for example through isotopic analysis.**

To investigate the impact of regional transport to OOMs formation, a cluster
analysis of 72h backward air mass trajectories at 500m above ground level was
performed, as shown in Figure S12. This height was chosen to better represent the
lower free troposphere over the plateau’s complex terrain, such as mountain and
valley.*® The 72h duration was chosen based on the typical atmospheric lifetime of
OOMs. The air masses over the Lulang site primarily originated from the south, with
the shortest transport distance constituting 81% of all trajectories, indicating that local
emissions likely played a dominant role in shaping the observed OOMs composition.
There are no significant differences in OOMs compositions in both gas and particle
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phases among different clusters, as shown in Figure S13. Although the air mass
clusters varied in transport distance, they all passed through the region associated with
the dominant short-range cluster. Consequently, characteristics of OOMs from
long-range transport may be masked by local emissions. Given the proximity of a
village, a town, and National Road 318, anthropogenic precursors and their oxidation
products may be transported to the Lulang site by these prevailing air masses from the
three nearby emission regions.

To the best of our knowledge, the present work is the first study to assign specific
precursors to OOMs measured by FIGAERO-CIMS in the TP. Previous studies have
resolved the contributions of primary and secondary sources to OA in other TP
regions, but the roles of different precursors have not been well characterized.'® !7-47
Through the measurement of SOA tracers, Shen et al.!” found that secondary organic
carbons (SOC) from aromatics accounted for approximately 25% of the total
estimated SOC at Nam Co lake. Guo et al.*® demonstrated the significant
contributions of aromatics to SOA through the estimation of SOA potentials of VOC
components at the same site. However, Liu et al.?* reported that anthropogenic
precursors explained only 10% of extremely low-volatility organic compounds
measured by nitrate CIMS at the same site, lower than our results. The difference may
be attributed to the different measurement ranges of organic compounds,*® as
FIGAERO-CIMS mainly measured S/IVOCs in our study. The accurate quantification
of both instruments may be important for their comparability in future study.* It
should be noted that the relative contributions of anthropogenic and biogenic sources
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to OOMs in the TP can be influenced by multiple factors, such as emissions patterns,

atmospheric conditions, and sampling period. Bianchi et al.?!

reported that biogenic
sources were an important contributor to particle at a site located at 5079 m a.s.l.,
possibly due to lower anthropogenic emissions in that region. Shen et al.'” found that
the contribution of anthropogenic sources to SOC increased significantly in April
compared to other summer months, which coincides with the sampling period of this
study. In addition, the impacts of anthropogenic sources on atmospheric species have
also been observed at other mountain sites.’*>? For instance, Zhang et al.>® discovered
that anthropogenic sources contributed 16%-35% to total gaseous organic compounds
at Shanghuang Mountain. Therefore, establishing the links between precursors and
OOMs in background sites should be given more consideration in future studies for
better understanding the impacts of anthropogenic sources on background
atmosphere.

Although our study provides valuable insight into the OOMs species in the TP,
there are several limitations that need to be considered. Firstly, the sampling duration
is limited to approximately two weeks in April 2021. As stated by previous studies,'”"
28 the emissions of biogenic and anthropogenic sources display significant seasonal
variation in the TP. For instance, biogenic emissions are typically enhanced during
summer,'” while anthropogenic emissions associated with tourism may peak at other
seasons.”® The relative importance of biogenic and anthropogenic sources may vary in
different seasons. Nevertheless, our results provide a representative snapshot of

OOMs characteristics during the spring period in the TP and can serve as a baseline
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for future seasonal comparisons. Secondly, there exist some uncertainties of
classifications based on the machine learning approach, especially for those OOMs
from multiple precursors. There are 18 species belonging to both isoprene-OOMs and
aliphatic-OOMs, and 29 species belonging to both monoterpene-OOMs and

aromatic-OOMs in the dataset.>*

We compared the occurrence probability of these
OOMs, as shown in Figure S14. The probability of aromatic was higher than that of
monoterpene for most OOMs derived from both aromatic and monoterpene,
indicating the aromatic-OOMs would be overestimated in the actual atmosphere. In
the real atmosphere, the contributions of different sources to these overlapping OOMs
may be influenced by meteorological conditions and the relative proportions of
emission sources. However, these factors are not considered in the current model. To
better understand this uncertainty, we performed a sensitivity analysis on the model.
We considered two scenarios: all overlapping OOMs were assumed to originate from
anthropogenic sources, and all overlapping OOMs were assumed to originate from
biogenic sources. The results (Figure S11) showed that anthropogenic OOMs
remained more abundant than biogenic OOMSs, except for the gas phase under the
second scenario. This indicates that the classification of gas-phase OOMs may be
more susceptible to uncertainties associated with overlapping OOMs. In addition, the
value of threshold (0.6) may affect the probabilities of overlapping OOMs. To assess
the sensitivity of our results to this parameter, we also examined thresholds of 0.4 and
0.8, with the results shown in Figure S11. In both cases, contributions of
anthropogenic sources remained higher than those of biogenic sources, suggesting the
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robustness of the results with respect to the choice of threshold. Thirdly, considering
the same sensitivity was assumed for all measured OOMs, the contribution of
different sources has large uncertainty. The transmission, which is a function of m/z,
is an important factor in affecting the sensitivity of different OOMs.>* The
distributions of biogenic and anthropogenic OOMs on m/z were compared, as shown
in Figure S15. In the gas phase, their distributions were similar, indicating the
transmission has little impact on the contribution of two sources. In the particle phase,
biogenic OOMs distributed more in the large m/z range, indicating its contribution

would be slightly underestimated.

3.3 Atmospheric Implications

As the “Third Pole”, the TP significantly affects atmospheric circulation, global
climate, and cryosphere change.!* The TP’s atmospheric environment has been
considered representative of global background conditions due to limited human
activities.!> However, economic development has resulted in the inevitable emission
of anthropogenic pollutants into the TP’s environments.>>>® Kang et al.!* noted that
these exogenous pollutants substantially impact regional climate and environmental
changes in the TP. In recent decades, the TP has experienced considerable climate
warming.>’ Anthropogenic pollutants can contribute to climate change through their
effects on solar radiation.®® Our study highlights the significant impacts of
anthropogenic sources on OOMs formation in the southeastern TP, with

aromatic-OOMs being the dominant components of particulate OOMs. Laboratory
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investigation by Nakayama et al.”* demonstrated that secondary organic aerosols from
toluene photooxidation exhibit substantial light absorption properties, indicating
substantial brown carbon formation that contributes to positive radiative forcing and
atmospheric warming. These experimentally determined optical properties are
applicable to our observed anthropogenic OOMs, as aromatic precursors may undergo
comparable photooxidation.®® Ji et al.® conducted comprehensive simulations of
carbonaceous aerosols over the TP and adjacent regions, revealing the importance of
aerosol longwave radiative forcing to climatic effect of aerosols. Our molecular-level
characterization of anthropogenic OOMs provides crucial chemical speciation data
that bridges the gap between emission sources and the formation of climatically active
light-absorbing secondary organic compounds, thereby enabling more accurate
parameterization of aerosol optical properties in regional climate models. These
findings underscore the necessity of considering anthropogenic influences in future
research. Overall, our study provides valuable insights into atmospheric species, and
enhances our understanding of pollutant sources and atmospheric chemical processes

in the TP.
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