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ARTICLE INFO ABSTRACT

Handling Editor: Xavier Querol Mobile monitoring has proven to be a very efficient tool to measure and feed into models of air pollution as it
complements fixed air quality monitoring networks by adding spatiotemporal resolution. This paper explores
best practices, opportunities and challenges related to mobile monitoring of air pollutants, focusing on three key
application areas, namely source-, exposure-, and health-related use cases. Use cases are linked to users, ensuring
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mobile monitoring is effectively tailored to diverse research and policy needs. Tailoring mobile monitoring in-
volves experimental design choices (platform, instrumentation, route planning and spatiotemporal coverage) and
data processing choices (data-only vs modelling) optimized towards the envisaged use case. This position paper

aims to guide researchers and air pollution stakeholders in generating high-quality mobile monitoring datasets.
We identify best practices, discuss monitoring strategies, and highlight future research directions. Additionally,
mobile monitoring supports public engagement and actionability, allowing communities to advocate for cleaner

air and drive behavior change.

1. Introduction

Air pollution (a complex mixture of gases and particles of different
sizes and compositions) continues to have significant health impacts
worldwide (EEA, 2023; Cohen et al., 2017; WHO, 2021; Brauer et al.,
2024); thus, necessitating monitoring, strategies to identify trends and
estimate exposures, and inform strategies to reduce pollution and health
impacts. Often, air quality is assessed using measurements obtained
from stationary Air Quality Monitoring Stations (AQMS). Such networks
provide high-quality, standardized information about pollutant con-
centrations, which is ideal for analyzing spatiotemporal trends across
large areas. However, fixed-site monitors and networks of monitors
generally cannot capture hyperlocal (street-by-street) variations of air
pollution (Apte et al., 2017; HEI, 2010; Boogaard et al., 2022; HEL, 2022;
Patton et al., 2024), the scale at which exposures (and, potentially,
exceedances of ambient standards) occur.

For pollutants that are spatially relatively homogeneous (e.g.,
PM;5), a network of a few AQMS (Air Quality Monitoring Stations)
might be sufficient to capture the spatiotemporal variability across the
urban scale (1-10 km). In contrast, concentrations of ultrafine particles
(UFP), black carbon (BC), and oxides of nitrogen (NO/NOj)) vary
significantly over short distances (< 300 m) (Van den Bossche et al.,
2015; Fujita et al., 2014; Kaur et al., 2005; Kumar et al., 2018; Morawska
et al., 2008; Peters et al., 2014; Pirjola et al., 2012; Simon et al., 2017)),
resulting in spatial variability that is often not directly captured by a
small number of AQMS. While the new EU air quality Directive (EU),
(2024) requires member states to monitor UFP, budgetary and logistic
constraints often limit the number of monitors in an AQMS network.
However, advances in air quality sensors and Internet of Things (IoT)
technologies, participatory science, and the availability of portable
monitoring solutions have paved the way for more fine-grained sensor
networks and mobile air quality monitoring applications, generating
high spatial and temporal resolution data (Gohlke Julia et al., 2023;
Hofman et al., 2024). These advances have great potential to improve
our understanding of the spatiotemporal dynamics of air pollution.

In this paper, we show the added value of mobile monitoring for
increasing the spatiotemporal resolution of air quality data relative to
purely fixed-site monitors and networks. We define mobile monitoring
as the use of a mobile platform (e.g., a motorized vehicle, bicycle, or a
pedestrian) equipped with rapid-response instruments to measure
ambient air pollutant concentrations at ground level. An illustrative
overview of mobile monitoring studies, including mode of transport, is
listed in Supplementary Table S1. Personal monitoring and measure-
ments with other mobile platforms including satellites, airplanes, bal-
loons, and drones are out of scope for this article. Of note, low-cost
stationary networks of active and passive sensors (typically less than 500
euro) as a third measurement technique can be somewhat in between
AQMS and mobile monitoring in terms of spatial and temporal
completeness.

Mobile monitoring enables efficient measurement of air pollution in
complex and diverse, often urban, built environments. The quick
mobilization and inherent advantage of mobility of the monitoring
platform allows large spatial coverage, and weaker assumptions related
to the number of spatial nodes required to capture relevant concentra-
tion patterns compared to a network of monitors at fixed sites.
Furthermore, the number of devices needed is limited, enabling the

employment of lab-grade instruments (opposed to low-cost sensor net-
works). Together with advancements in air quality monitoring instru-
mentation, such as higher time resolution and greater portability,
mobile platforms can capture the high variability of air pollutants in
space and time. While cost-effective in capturing spatial variability,
mobile monitoring lacks temporal continuity, necessitating temporal
aggregation of repeated measurements or use of statistical approaches or
modelling techniques to estimate long-term averages.

The goal of this paper is to inform researchers and other air pollution
stakeholders about successful strategies for generating high quality data
sets based on mobile monitoring for specific use cases. We focus on UFP,
BC, and NOg, which are (i) known to exhibit high spatial variability in
ambient air and (ii) often considered in mobile monitoring studies,
allowing us to derive best practices. Furthermore, we aim to use the
consensus among leading researchers in the field of mobile monitoring
research as a scientific roadmap for future mobile monitoring cam-
paigns. We do not aim to systematically review all mobile monitoring
studies; thus, this work should be seen as a position paper. Specifically,
this paper (i) provides an overview of use cases as well as opportunities
and associated challenges for mobile air quality monitoring, (ii) reflects
on good practices in terms of monitoring design, data processing and
modeling, and (iii) highlights potential future research directions.

2. Use cases and users

Mobile monitoring, which has been invaluable in emergency situa-
tions, such as accidental pollutant releases (Oladeji et al., 2023) to
inform evacuations and other precautions (Shie and Chan, 2013), can be
applied to numerous other use cases, from epidemiology and
community-wide exposure assessments in a city or larger area to hot
spot detection for assessing the impact industrial sources (Galarneau
etal., 2023), woodsmoke (Wagstaff et al., 2018), highways (Liggio et al.,
2012; Wren et al., 2018), or airports (Hsu et al., 2014; Westerdahl et al.,
2008; Austin et al., 2021). Mobile monitoring has also been employed to
investigate the effects of various air quality management strategies
including industrial emissions controls near fenceline communities
(DeLuca et al., 2012) and solid or green barriers along busy roads (Van
Ryswyk et al., 2019; Baldauf, 2017). Mobile monitors have been
deployed in campaigns using diverse monitoring strategies such as
scheduled monitoring on pre-designated monitoring routes, adaptive
monitoring to track impacts from individual sources in an area, and non-
scheduled opportunistic monitoring.

To effectively tailor best practices, we identified potential use cases
and users of mobile monitoring data in Fig. 1. We group the use cases in
three categories: source-related, exposure-related, and health-related,
and acknowledge that some use cases are broader than the assigned
category. We thereby consider use cases as the end points; the platform
used, and monitoring design are tools to get there. In the remainder of
this section, we match use cases to users and discuss best practices to
ensure mobile monitoring is effectively tailored for the user/use case
combinations identified in Fig. 1.

Note that there is much overlap in the monitoring strategy of the
various use cases, so they are not repeated for every combination of
users and use cases. Per design criterion, we first discuss general aspects
and then focus on specific use cases. In the following paragraphs, the
different use cases for mobile monitoring, outlined in Fig. 1, are



J. Kerckhoffs et al.
presented and delineated in terms of users and application areas.
2.1. Source-related use cases

For effective air quality management, it is essential to know which
sources are contributing to air pollution population exposures in an area.
To do so, it is important to identify and quantify emissions, the spatial
scale of source impacts (hyperlocal, local, neighborhood and regional),
and the timescales of impact (peak, diurnal, seasonal and annual). Mo-
bile monitoring can help to identify sources, without relying on a priori
assumptions on source emissions rates, or on transport and trans-
formation of that source emission within the environment. This allows
for a wide range of users to efficiently and accurately quantify impacts
and characterize emission plumes. Some applications of this approach
include identifying spatial impact of poorly or uncharacterized local
sources of air pollution (deSouza et al., 2020), characterizing the range
of emission plumes (Hudda et al., 2014), deriving in situ emission factors
(Kelp et al., 2020), and localization of unknown point sources (e.g.,
wood burning).

Regulators and urban planners can benefit from hotspot detection
and source identification by implementing changes in the urban design
or pinpointing the industrial site, evaluate emission limits, discover
disparate exposure outcomes, or identify specific source contributors
(Yacovitch et al., 2023; deSouza et al., 2020; Robinson et al., 2018;
Hudda et al., 2018). This can help provide evidence of, e.g., elevated
concentrations near industrial or other point sources and can potentially
identify unequal exposures related to location. A better identification of
sources can also help to improve models.
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2.2. Exposure-related use cases

Mobile monitoring is used by national environmental and health
officials to compare with regulatory limit values, especially in areas with
no or limited fixed monitoring stations. This can include (i) com-
plementing a stationary monitoring network as can be seen in Dakar,
Senegal (WHO, 2023) and (ii) investigating industrial emissions impacts
on air quality as can be seen in the Michigan-Ontario region, USA-
Canada (Yacovitch et al., 2023). Moreover, dense air pollution mea-
surements are useful for urban planners and local authorities interested
in evidence-based air quality management choices. Conducting targeted
measurements before and after a policy or program has been imple-
mented can be especially informative when assessing the effectiveness of
a policy or action. This is especially true for policies implemented far
from fixed-site air quality monitoring stations. For example, when Tor-
onto piloted a car-free street in its financial district, many researchers
collaborated to measure the impact of this intervention in the nearby
streets and buildings using mobile monitors, which provided crucial
information for city managers when evaluating the efficacy of this policy
(University of Toronto Engineering News, 2018). This holds as well for
using hyper-local data to inform simulations on the impact of a policy,
for example in an agent-based model (Sonnenschein et al., 2024).
Similarly, the spatial impact of the London ultra-low emission zone was
evaluated by a mobile laboratory (Padilla et al., 2022). In addition to
policy interventions, mobile monitoring can help define priority areas or
population groups for targeted air quality measures. Decades of research
have highlighted that racial/ethnic minorities and people of low socio-
economic status in the United States (Jbaily et al., 2022; Bramble et al.,
2023), Canada (Giang and Castellani, 2020; Zalzal and Hatzopoulou,
2022) and in some cities in Europe (Fecht et al., 2015), are at higher risk
of death from exposure to pollution and are exposed to higher levels of

EPIDEMIOLOGY HOTSPOT DETECTION
HEALTH IMPACT AND RISK ASSESSMENT SOURCE APPORTIONMENT
CITIZEN ENGAGEMENT/AWARENESS GOVERNMENT FENCELINE MONITORING
HEALTH SCIENTISTS EMERGENCY RESPONSE

CITIZENS MODEL EVALUATION

URBAN PLANNERS
ATMOSPHERIC RESEARCHERS
REGULATORS
HEALTH PROFESSIONALS
PRIVATE SECTOR (REAL-ESTATE)
MUNICIPAL DECISION MAKERS
ADVOCACY GROUPS

INTERVENTIONS

PERSONAL OUTDOOR EXPOSURE
REGULATORY COMPLIANCE
ENVIRONMENTAL JUSTICE

CITIZEN ENGAGEMENT/AWARENESS

Fig. 1. Defined users (center) and use cases in source-, exposure- and health-related application domains.
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pollution than are other population groups (Johnston and Cushing,
2020), (Marshall et al., 2014). As such, mobile monitoring data can
uncover urban-scale and hyper-local exposure disparities (Shah et al.,
2020).

Mobile monitoring allows for population-specific exposure studies
(e.g. commuters) using portable instruments (Hofman et al., 2024;
Moreno et al., 2015; Nwokoro et al., 2012; Int Panis et al., 2010).
Although not necessarily representative of long-term exposure, short-
term mobile monitoring campaigns can shed light on exposure vari-
ability exhibited during activities of interest (e.g., commuting, physical
or recreational activity) and for specific population subgroups (Mila
et al., 2018). People who live in the areas where monitoring takes place
are important stakeholders as neighborhood-scale data and information
offers great potential for awareness raising and behavioral change (e.g.,
on route choice, avoidance of local sources, or making decisions based
on understanding how meteorology affects air pollution concentrations
and thus exposures).

2.3. Health-related use cases

Mobile monitoring can be conducted to collect fine spatial resolu-
tion, population-representative data, which can subsequently be used
for epidemiological applications (Blanco et al., 2023b; Apte et al., 2017;
Kerckhoffs et al., 2022; Doubleday et al., 2023). Mobile monitoring
campaigns have been used to assess the link between air pollution ex-
posures and health outcomes, including cardiovascular (Laeremans
et al., 2018b; Provost et al., 2016; Pieters et al., 2015; Cole-Hunter et al.,
2016), brain health (Blanco et al., 2024), respiratory (Laeremans et al.,
2018a; Laeremans et al., 2018b; Int Panis et al., 2017; Weichenthal
et al., 2011) outcomes and mortality (Bouma et al., 2023). Compared to
NO; or PMy 5, UFP and BC have been less frequently measured and
assessed in studies of traffic-related air pollution (Patton 2024). The
spatial patterns of these pollutants are insufficiently captured by sta-
tionary monitoring sites, thus necessitating more extensive spatial
coverage to capture their high spatial variability and reduce exposure
measurement error. Moreover, research interest has grown in acute
health responses from short-term, in-traffic, exposure peaks quantified
via mobile monitoring campaigns (Mila et al., 2018; Dons et al., 2018;
Jarjour et al., 2013; Jerrett et al., 2005; Cole-Hunter et al., 2016; Int
Panis et al., 2017; Laeremans et al., 2018b).

3. Monitoring design

Table 1 shows an overview of the main design options when planning
a mobile monitoring campaign, split into the platform, instrumentation
and route planning used. Optimal strategies can be different for the
different use cases. For example, for exposure-related use cases, high-
quality instrumentation is a priority, meaning a platform needs to be
considered that can carry such instrumentation. For many epidemio-
logical studies, spatial coverage is most important, meaning a fast (or
many) platform(s) should be used. A key message is that the monitoring
design needs to be aligned with the research question and subsequent
data processing.

3.1. Mobile platforms

Most mobile monitoring studies have integrated rapid-response
instrumentation with either dedicated motorized road vehicles (e.g.,
cars) to measure air pollutant concentrations (Yuan et al., 2022; Miller
et al., 2020; Messier et al., 2018; Apte et al., 2017; Kolb et al., 2004) or
service fleet vehicles like taxis, buses, city vehicles, trash trucks and
postal vans (deSouza et al., 2020; Wu et al., 2020; Hasenfratz et al.,
2015; Tian et al., 2022; Hofman et al., 2023). Other studies have used
bicycles (Wesseling et al., 2021a; Elen et al., 2013; Carreras et al., 2020;
Hofman et al., 2018; Van den Bossche et al., 2015; Kaminska et al., 2023;
Van Poppel et al., 2023), public transport (Kaivonen and Ngai, 2019;

Table 1
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Design strategies for mobile monitoring campaigns.

Design options

Advantages

Considerations

Platform
Passenger vehicle
(car), cargo van

Bicycle

Public Transport
(bus, tram, train,
subway)

Walking

Instrumentation
Lab-grade
instruments

Mid-size (hand-
held)
instruments

Low-cost sensors

Route planning
Dedicated

Opportunistic
Carried by
individuals

during daily
activities

Stop-and-go

Repeated sampling

Large spatial coverage, lab-
grade equipment can be used

Can access places where cars
cannot go, no self-sampling,
relevant exposure
measurement

No need for specific mobile
platform

More spatially precise
measurements, relevant
exposure measurement

Accurate measurements,
source specificity

Often portable, most can be
used with all platforms

More affordable, allowing
for more instruments, most
can be used with all
platforms

Specific spatial and temporal
coverage, platform can also
be used for community
engagement

Add instrumentation on
existing mobile platforms
Relevant exposure
measurements, do not
require access to motorized
or bicycle platforms, not
confined to roadways,
Community engagement,
local experts

Adjustment of measurements
to account for movement of
the platform not needed,
longer measurement
averaging time at specific
locations

More accurate
measurements of long-term
concentrations at specific
locations

Inlet system, self-sampling,
sensitivity to vibration,
power source for vehicle and
instrumentation, General
Data Protection Regulation
(GDPR)

Weight (portability) and
power source for sampling
equipment, GDPR

Similar routes, inlet system,
permissions, power source
for vehicle and
instrumentation

Distance that can be covered,
weight and power supply of
sampling equipment, GDPR

Expensive, high-power
consumption, often not
portable

Accuracy, reliability,
comparison with reference
instruments

Accuracy, reliability,
validation comparison with
reference instruments

Route planning, repeated
sampling (Temporal and
spatial coverage)

Temporal and spatial
coverage

Specific routes; limited
temporal coverage; logistics

Less spatial coverage for the
same amount of driving time

Tradeoff with driving on
other streets for the same
amount of time.

Hasenfratz et al., 2015), walking (van den Bossche et al., 2016; Mead
et al., 2013), and/or combinations thereof.
When considering the type of mobile platform, the representative-

ness of the data for the intended use case will be determined by the
measurement duration or period (e.g., hours of the day, days of the
week, seasons), sampling location and its geographical extent, required
spatial resolution and route. Depending on the area (small/large) and
the resolution (per 5 m, street segment) you can select another platform
(function of speed). Bicycle measurements might be more appropriate to
quantify cyclist exposure or map car-free streets/areas when compared
to on-road car measurements. Public transport operates outside daily
business hours, while postal or garbage trucks cover all postal addresses
of a city but are often not operational on Sundays; however, such
campaigns necessitate that measurements can be carried out unattended
(by the research team) and quality checks can be performed before and
after campaigns. Next, a dedicated monitoring design, delineated in
terms of spatial area, specific routes, and time of sampling, can be
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optimized for a specific research question or use case, while opportu-
nistic data collection on existing platforms can provide more data at a
lower cost.

Some aspects to consider when designing a mobile platform for air
pollution monitoring include having sufficient electricity to operate all
instruments and pumps (often supplied by rechargeable batteries and an
inverter), adequate manifolds, tubing that is as short as possible and
made of conductive material (to prevent particle losses) or nonreactive
material (to prevent chemical consumption of gases), and for non-
electric cars the sampling inlet system (preferably isokinetic) is as far
away from the exhaust as possible to minimize self-sampling. Addi-
tionally, some instruments need proper anchoring and stabilization as
they use optics that can be disturbed by vibrations. For instrumentation
in backpacks or attached to bikes, weather-proof housing, and porta-
bility (size and weight) are vital. Lastly, in some cases when instruments
are placed on buses or street sweepers self-pollution is not trivial and
needs to be accounted for. Though, this is not the case if commuter (bus
riders) or occupational (street sweepers) exposure is of interest and the
measurement is made within the rider’s cabin.

For use cases requiring large geographical areas be monitored, it is
advised to adjust the speed based on the size of the study area and the
strength of near-road sources. For example, a use fast-moving vehicle (>
15 km/h) or multiple platforms are often used by health scientists and
epidemiologists wanting to measure exposures for people living in a
large region or country (Gkatzelis et al., 2021; Kerckhoffs et al., 2021).
For this setup, measuring all different topologies and characteristics of
an area is often prioritized over full coverage or the number of repeats.
On the other hand, a slow-moving vehicle (< 15 km/h) would be more
appropriate when assessing variations in air pollution exposures in
neighborhoods close to a busy road (Patton et al., 2014). For intra-urban
mapping, evaluation of interventions, fenceline monitoring, and hotspot
detection, walking or biking might also suffice. Here, the spatial reso-
lution of the measurements themselves and number of repeats is more
important. Though, cars (or buses, trams, etc.) can still significantly
decrease the duration of the campaign by covering many more streets
over the same time duration. The advantage of walking is that mea-
surements made on residential streets are generally more representative
of (home) outdoor pollution levels (which is often used in epidemio-
logical studies) because they are further away from busy commercial
streets. This holds for citizen engagement as well, as the impact in-
creases when citizens can perform and reflect on their own
measurements.

3.2. Instruments

The selection of monitoring instruments depends on the pollutants
that are most in line with the use case, for example pollutants that are
expected to have a larger spatial variability to identify sources or to be a
proxy for the health effects studies. The technical specifications of the
instruments, such as measurement technique (e.g., chemiluminescence,
light-scattering), time-resolution, size, and weight are implicitly linked
to study design criteria. The most important requirement for in-
struments mounted on or inside a mobile platform is their ability to
accurately measure pollutant concentrations at a high temporal resolu-
tion: a resolution of 1 s (bicycle, car) to 10 s (pedestrian) is important to
achieve a spatial monitoring resolution of ~5-15 m. A list of instruments
frequently used in mobile monitoring studies can be found in Supple-
mentary Table S2. One division is based on the quality of the in-
struments; high-grade (reference and lab-grade instruments; 20,000
euros plus), mid-grade (portable and precise instruments in the range of
5,000-10,000 euros) and low-grade (low-cost sensors; 10 to 500 euros).

Some instruments need signal-to-noise correction to cope with the
high temporal resolution as signals fluctuate too much on a 1-second
timescale. For example, BC aethalometers (AE51, MA200) often need
to be post-processed to remove impacts of noise and mechanical vibra-
tions from uneven road surfaces and travel speeds. An optimized noise-
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reduction algorithm (ONA; a flexible moving average) is commonly
applied to achieve this (Hagler, 2011). A moving average of a couple of
seconds is another way of dealing with this issue (thereby decreasing the
spatiotemporal resolution). Similarly, some instruments, such as
particle-size classifiers, which are designed to count particles in one size
bin at a time, need up to tens of seconds to measure all different size bins.
For these instruments, each measurement reflects a larger distance,
decreasing spatial resolution of measurements. One solution is to
implement a stop-and-go strategy if particle size distribution is impor-
tant to the use case.

Another aspect that needs to be considered is the response time of the
instrument, which depends on the length of the sampling line (the time it
takes to sample air from the inlet to an instrument) and the intrinsic
response time of the instrument. For example, most optical devices allow
for faster internal response times compared to electrochemical in-
struments. It is therefore important to correct for any differences in in-
strument response times, otherwise measurements will not be correctly
joined with locations and inter-pollutant correlations will be artificially
low, e.g., concentration peaks of different pollutants may not coincide.

Precision and accuracy of the instruments is also important to
consider. For hotspot detection and health-effects use cases, instruments
that have high precision are often prioritized over instruments with high
accuracy. This is also true for campaigns where multiple devices are
combined to distinguish measured pollution gradients from instrument
uncertainty. For comparisons with regulatory limit values, instrument
accuracy is more important than precision, although precision becomes
important when concentrations are close to the regulatory limits. For
citizens and urban planners interested in a general idea of air pollution
in an area, there is less need for the most precise and accurate equip-
ment. Also, for hotspot detection, concentration peaks can be captured
adequately by low- to mid-grade devices.

Technological advances have allowed for quantification of some
pollutants (e.g., PM, NO;) with low-cost sensors (LCS) at a high
spatiotemporal resolution, while for other pollutants mid- or high-grade
instruments are required to accurately measure concentrations (i.e.,
UFP, BC). A large disadvantage of LCS is the low to moderate agreement
of measurements of individual sensors with measurements from refer-
ence monitors. In stationary settings this can be solved by averaging
over longer times or using multiple sensors but in mobile settings the
sensor uncertainties are combined with the short sampling time per
location. Some research has evaluated LCS in mobile settings (Russell
et al., 2024; Santana et al., 2021; Hofman et al., 2023; deSouza et al.,
2023; Mui et al., 2021, Hofman et al., 2024) and determined that factors
such as the choice of calibration model, the positioning of the LCS on the
vehicle, air velocity, sensor age, and pollution gradients can impact LCS
performance. Despite the uncertainties in using LCS for mobile mea-
surements some campaigns have found these instruments effective for
use in community engagement campaigns (Mijling et al., 2017; Hofman
et al., 2022b; Hofman et al., 2022¢c; Wesseling et al., 2021a).

For all instrumentation (especially for LCS), it is advised to follow
manufacturer guidance and to evaluate accuracy and precision with
available reference equipment, preferably under similar environmental
conditions (meteorology, concentration range, etc.). Data quality can be
optimized by applying calibration algorithms (trained in representative
environmental conditions), often achieved through co-location cam-
paigns at reference urban Air Quality Monitoring Stations (AQMS).

3.3. Route planning

Mobile monitoring or mapping can be performed in a very
‘controlled’ way or a more ‘opportunistic’ way. We define opportunistic
monitoring as data collection in which the route is uncontrolled from the
point of view of the researcher, for example, by using public service
vehicles as the mobile monitoring platform or asking independent citi-
zen scientists to carry the monitors as they go about their days
(Wesseling et al., 2021b; Van den Bossche, 2016; Hofman et al., 2023).
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Dedicated routes, on the other hand, are deliberately planned with
specific spatial coverage in mind (Van Poppel et al., 2024; Kaminska
et al., 2023). Somewhat in between is when a researcher controls the
spatial coverage that needs to be covered in a time window by the
monitoring platform without a specific route plan (Kerckhoffs et al.,
2022). We consider this a dedicated approach because the researcher is
still in control, for example by making sure enough randomization is
applied in terms of street topologies, geographic domain, and temporal
coverage.

A big advantage of opportunistic monitoring is that it uses existing
mobile infrastructure or people’s common daily routines. Examples of
campaigns that can run independently for long periods without human
interaction after initial setup are those based on sensors mounted on
vehicles such as cars, buses, postal vans, street sweeping vehicles or
trams (deSouza et al., 2020; Hasenfratz et al., 2015; Hofman et al.,
2023). In these cases, the measurements are restricted to the route fol-
lowed and/or schedule of the driver.

This is also true when citizens or commuters are performing the
measurements (Moreno et al., 2015; Carreras et al., 2020; Hofman et al.,
2018; Peters et al., 2014; Qiu et al., 2019; Weichenthal et al., 2011). The
more human interaction the data collection needs, the more user-
friendliness of the instrument and the motivation of the people
involved become important requirements. The disadvantage of oppor-
tunistic monitoring by citizens is that it could result in sampling bias in
which certain urban microenvironments or timeslots are underrepre-
sented or absent in the data. This complicates the data interpretation
(the comparison of the measured concentrations at the distinct loca-
tions) as well as the applications of the data.

The advantage of a dedicated approach (Kerckhoffs et al., 2022) (Van
Poppel et al.; 2024; Blanco et al., 2023a; Kaminska et al., 2023) is that
the campaign can be tuned to ensure it is well suited to the ultimate use
case and includes appropriate comparison (background) areas.
Balancing temporal coverage (time of day, days of the week, and sea-
sons) makes it easier to compare measurements made at distinct loca-
tions and to ensure good estimates of the target quantities of interest (i.
e., long-term location-specific average concentrations). However, the
monitoring team will need to be able to improvise in cases of con-
struction or unplanned road closures. In the absence of advanced navi-
gation systems as in many Low- to Middle Income Countries (LMIC)
settings, additional staff might also be required for manual navigation
when driving every street segment in a specific area. Lastly, targeted
monitoring reduces bias due to weather conditions, as a commuter
might take their personal car instead of walking/biking with the
monitoring device on rainy or cold days.

The involvement of citizens in data collection is an important part of
community engagement and assessing personal exposures. When citi-
zens are part of the route planning it can benefit hotspot detection and
representativeness of sampling, as they often know their neighborhood
very well. Likewise, they can provide valuable input when interpreting
mobile measurements. For epidemiology, it is important to cover the
entire population of interest by unbiased measurements, so the design of
the mobile monitoring route can additionally benefit from maps of the
study area and other resources. This requires adherence to an appro-
priate study design; however, not all streets need to be measured to
create an accurate exposure map.

3.4. Spatial and temporal coverage

3.4.1. Number of repeats

The number of repeated measurements at distinct locations or at
different times will depend on the location and the use case. It is evident
that with just a few drives on a street segment (1-4 drives) it is not
possible to characterize long-term average concentrations with mea-
surements only. However, a Land Use Regression (LUR) model based on
mobile data with only a few repeats per street segment may predict
relative differences between street segments within the measured area
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(Kerckhoffs et al., 2021). Therefore, how many times a street segment
needs to be measured depends on processing method (data-only vs
model), the use case and temporal variability of local sources of air
pollution. For identification of intermittent hotspots and comparisons
with regulatory limit values, repeated measurements on street segments
are crucial because regulatory limits are usually based on long-term
averages. However, for its use in epidemiology, it might be less impor-
tant to know the exact absolute air pollution values on every single street
segment because measuring a lot of street segments with similar char-
acteristics can be seen as pseudo repeats when it comes to developing
LUR models. In other words, the associations between street (and land-
use) characteristics and its measured concentration are captured due to
the many combinations of features and measurements. Though this only
holds if the relative spatial differences in exposure values at different
locations are captured accurately (Kerckhoffs et al., 2021). When
comparing different situations (before and after measures or comparing
different seasons) repeated measurements are needed to take into ac-
count background variations and can be complemented with rescaling
based on concentrations at fixed AQMS location(s).

To evaluate the representativeness of short-term mobile measure-
ments for estimating long-term exposure, subsampling analysis can be
performed on the mobile data to derive a minimal number of required
repeats at a location or street segment of interest (Van den Bossche et al.,
2015; Apte et al., 2017; Hofman et al., 2023). Doing so, Van den Bossche
etal. (2015) found that the required number of repeats to be within 25 %
of the long-term average concentration varied widely when considering
measured BC concentrations in different 50 m street segments along a
cycling route, with 33-141 repeats to obtain convergence (95 % prob-
ability and 25 % deviation). Additional postprocessing via the use of
trimmed mean and background normalization (Van den Bossche et al.,
2015; Peters et al., 2014; Apte et al., 2017), reduced the number of
required passages to 24-94 (10 and 90 percentiles of 50 m segments)
(Van den Bossche et al., 2015). Similarly, another study found that about
45 repeats (31 after postprocessing) were required to derive represen-
tative long-term NO; exposure data from an opportunistic mobile air
quality dataset collected on postal vans (Hofman et al., 2023).

Blanco et al (2023b) showed that about 28 stationary off-road
measurements per site were needed to approximate long-term average
NOx concentrations within 25 % error for that site (average of 10.000
random samples at 69 sites). The same sampling error was found for
street segments in London (Padilla et al., 2022). In a study by Messier
et al. (2018), they assumed that 50 unique drive days on a road segment
would represent a stable long-term average concentration. They then
created subsets of the data with varying numbers of drive days per road
segment and compared the average concentration of the subset with the
average concentration of the full measurement campaign. The authors
found that the correlation between having about 20-25 drive days per
street segment and the full dataset was still very high (R? > 0.9).

Comparing data-only to model approaches, Messier et al. (2018)
found that 4 to 8 repeats were already sufficient to create an exposure
map at measured locations for BC and NO better or at par with a LUR
model based on the same data. Fig. 2 shows the correlation pattern
between data-only/LUR models and long-term average concentrations
related to the number of drive days per street segment. So, all street
segment averages based on the subsets of the mobile data (x-axis) were
correlated with the same street segment averages based on the full
dataset (50 drive days). The figure also shows that repeated measure-
ments per street segment do not help in creating a better LUR model. A
LUR model based on one measurement per street segment already pro-
vides enough information to create a stable LUR model (Kerckhoffs
et al., 2024), though Clark et al. (2024) found that beta coefficients for
individual features were not stable with limited repeats per segment.
Future research should verify if this holds in other geographical areas
and for other pollutants. For example, UFP concentrations vary more
than NO» in urban environments.
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Fig. 2. Performance of data-only mapping and LUR models for NO related to the number of drive days per segment where the reference is 50 drive days per segment

(reproduced from Messier et al (2018)).

3.4.2. Temporal coverage

Unlike continuous stationary monitoring networks that can charac-
terize long-term trends at a few sites, mobile monitoring campaigns
inherently achieve the opposite — increased spatial coverage at the
expense of limited temporal coverage. In this regard, a distinction can be
made between area coverage (percentage of street segments or fraction
of area covered; i.e., spatial coverage) and street segment coverage
(repeated measurements per street segment; i.e. temporal coverage)
(Hofman et al., 2023). Blanco et al. (2023a) reported that the most
relevant factor for good predictions of the annual average exposure
surface in Seattle was the total number of stops (# locations/segments *
repeats).

Collecting temporally balanced measurements is necessary to esti-
mate unbiased longer-term averages that capture the exposure period of
interest. Sampling across two or more seasons during both weekdays and
weekends and during most hours of the day (5 AM - 11 PM), for
example, is necessary to estimate unbiased annual averages of both fine
particulate matter (PM35) as well as more spatially variable pollutants
like UFP, BC, NO5, NOx, and CO, (Blanco et al., 2023a; Blanco et al.,
2023b). The extent of bias likely varies in different settings related to the
degree of diurnal and seasonal variation and the stability of spatial
contrast across hours, days and seasons (Upadhya et al., 2023). So, when
annual average concentrations are of interest, it is important that the
repeated measurements cover different seasons, days of week, and times
of day which can affect pollution levels significantly.

Notably, most campaigns typically sample during typical business
hours because a technician is required to operate the monitoring plat-
form, thereby allowing some bias related to characterizing the long-term
average (Blanco et al., 2023a; Blanco et al., 2023b; Downward et al.,
2018). Opportunistic mobile monitoring applications on service fleet
vehicles (deSouza et al., 2020; Hofman et al., 2023) or public transport
(Hasenfratz et al., 2015; Kaivonen and Ngai, 2019; Wu et al., 2020) can
extend this time window to weekend days, holidays, or night hours.

3.4.3. Spatial coverage

For most use cases it is clear where the measurements should be
taken. However, when considering a large cohort study, it is impossible
to measure every street segment enough times in an area where the
cohort participants reside. At least 5-10 % of the street segments within
the domain need to be measured (once) to develop a detailed prediction
map of the area long-term average pollution (Hatzopoulou et al., 2017;
Kerckhoffs et al., 2017; Messier et al., 2018), with the prerequisite that
all different topologies (major and minor roads, industrial areas, air-
ports, etc.) within the area have been sampled. Ideally, balanced

sampling has been done to capture all times of day, days of week and
seasons. In general, more repeated measurements per location will result
in better performance scores of the training model (Blanco et al, 2023),
though when looking at external (independent) validation data, more
repeated measurements do not necessarily improve performance scores.

While there is no ground truth for deriving spatial patterns from
mobile monitoring, Messier et al. (2018) produced robust weekday
daytime exposure prediction models for NO and BC with samples from
approximately 30 % of the roads within a 30 km? domain in Oakland,
CA, and with 4-8 repeat visits per road segment (Messier et al., 2018).
Hofman et al (2023) showed that opportunistic data collection using
service fleet vehicles (e.g., postal vans) was an efficient approach to
rapidly cover a 6 km? domain in Antwerp, Belgium, with > 50 % of total
street length (709 km) covered after deploying 17 sensor units for 1
month. (Hatzopoulou et al., 2017) found that different subsets of
~150-200 road segments and 10-12 visits per segment across three
seasons produced stable PNC and NO, prediction models in Montreal,
Canada (470 km? domain). Even LUR models based on 100 (out of 480)
segments predicted on average 73 % variation (opposed to 74 % for the
full dataset), albeit with a wider range (55-85 % opposed to 70-78 % for
the full dataset).

3.4.4. On-road measurements versus off-road concentrations

Most mobile campaigns explicitly collect on-road measurements on a
moving platform, meaning there are considerations when using pre-
dictions from these data for epidemiologic applications. Because mea-
surements are done on or in the vicinity of roads (different for car,
cyclists and pedestrians), predictions from mobile monitoring models
are typically higher than those from roadside stationary monitoring,
especially for high concentration areas (Kerckhoffs et al., 2016); Dou-
bleday et al., 2023). Studies have found differences in the range of
20-30 % between on-road and off-road (roadside or facade) measure-
ments (Sabaliauskas et al., 2015; Kaur et al., 2005; Simon et al., 2017),
but the difference depends on the setting and pollutant. Differential
exposure misclassification could thus be a concern when these pre-
dictions are applied to cohort locations. Several approaches have been
taken to adjust on-road measurements to better approximate off-road (e.
g., residential) locations (Brantley et al., 2014; Doubleday et al., 2023;
Kerckhoffs et al., 2016). These include plume detection approaches
(Kerckhoffs et al., 2016), transfer learning (Yuan et al., 2022, Yuan et al.,
2023) and those that leverage both stationary and multi-pollutant
measurements to detect and remove estimated on-road sources from
the long-term averages (Doubleday et al., 2023).
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4. Data processing
4.1. Quality control

Like all data collection campaigns, air pollution measurements from
mobile monitoring campaigns need to be processed to remove faulty
measurements. Note however that mobile measurements are typically
collected at a high temporal resolution (1-10 sec) and are taken on the
road itself, so extremely high values are more plausible than observed in
hourly average values at fixed measurement stations and outlier tests
need to be applied with care. Erroneous outlier measurements are rarer
than short-term increases (or spikes) in air pollutant concentrations that
might coincide with local activity such as a truck passing by. Whether
such spikes should be removed or not depends on the use case and
whether long-term baseline or average concentration is more relevant.

Because extreme concentration measurements can significantly
affect mean values for a road segment, options to decrease (but not
remove) the impact is to calculate a median value instead of the mean
(more on this in section 4.3) or by applying winsorizing. Winsorizing
means that values below and above a certain threshold (e.g., 5t and 95t
percentile) are set to the 5% and 95t percentile, respectively. After
winsorizing, the measurement is still very high but does not dominate
the average value for a road segment. Winsorizing at the site level is
preferable to doing so at the dataset level to avoid shifting entire sets of
observations from extremely low or high concentration sites, thus dis-
torting the exposure surface (Doubleday et al. 2023). Another approach
to dealing with extreme observations is to remove them (Van den Bos-
sche et al., 2015), although this assumes that those observations are rare
and unrepresentative of general trends and that selectively removing
data based on its value is appropriate in the context of the specific use
case. They can also be included in analyses if the data are normalized,
for example by a log-transform and the location of the extreme values is
predictable (Patton et al. 2014).

In addition, ambient air measurements should not be influenced by
the emissions generated by the measuring vehicle. Measurements taken
when the vehicle is stationary with the engine or power generators
running can lead to increased measured values and should be tested for
and filtered out if needed before further analysis.

4.2. Localization of measurements

Mobile measurements depend on geographical localization using
GPS with a high (e.g., 1 sec) temporal resolution; without GPS, mobile
measurements are often useless for understanding spatial patterns.
However, GPS signals are not always accurate in urban settings and
might not align perfectly with a street (e.g. Hofman et al. (2024)). Since
we know the mobile platform (especially if it is a car) was on the road, all
measurements sampled with this platform can be snapped to the nearest
road segment if the nearest road segment was the most likely mea-
surement location or manually adjusted to road segments based on
knowledge of the route. Additionally, for mobile monitoring not
restricted to roadways, e.g., data collected by pedestrians or bicyclists,
automatic snapping based on roadways could be incorrect, and instead
snapping to manually drawn trajectories could be preferred.

Subsequent aggregation along the trajectories depends on the use
case and can be done by aggregating (i) on street segments, (ii) in pre-
defined (point) buffers along street segments (e.g. (Van Poppel et al.,
2024; Peters et al., 2014), or (iii) in grids. The speed and mode of the
mobile platform will affect the spatial aggregation that can be used.
Most LUR models based on mobile data use the street segments as spatial
aggregation for their models, defined as a line segment from one inter-
section to the next, or as predefined distances of e.g., 20-200 m (Hofman
et al., 2018; Van den Bossche, 2016; Hankey and Marshall, 2015; Ker-
ckhoffs et al., 2017; Kerckhoffs et al., 2016; Chambliss et al., 2020;
Doubleday et al., 2023; Patton et al., 2014). Hankey and Marshall
(2015) analyzed the impact of spatial resolution in a mobile monitoring
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campaign and found very little difference between the performance of
LUR models that were based on segments where concentrations were
averaged over 50, 100 and 200 m. Similar conclusions were obtained in
Amsterdam (Tian et al., 2025). However, for hotspot detection it can be
crucial to keep the length of road segments (or size of grids) as small as
possible, preferably within 50 m. The impact of diverse spatial units (i.
e., segments and grids) on model accuracy when shifting scales (from 50
to 500 m) remains unclear. In addition to the discrete aggregation,
continuous use of measurements has been applied as well, e.g. via
Gaussian Kernels (Wilde et al., 2024).

Two difficult stretches of road to deal with in mobile monitoring
studies are tunnels and overpasses. Tunnels because the GPS signal goes
missing or deviates from the actual route and overpasses because the
GPS cannot distinguish on which segment the measurement was taken.
When the measurement cannot be pinpointed to a specific location it is
difficult to use. Depending on the use case, those data can either be
deleted or assigned to locations along the known trajectory by assuming
uniform vehicle speed from when the signal is lost to when it is reac-
quired (Perkins et al., 2013). For population health-related use cases the
tunnel data can often be deleted because there are no residences in a
tunnel. One reason to keep the measurements is when you are specif-
ically interested in the generally higher (Martin et al., 2016; Pant and
Harrison, 2013) pollutant concentrations in the tunnel from a commuter
exposure perspective or are using mobile monitoring to assess emissions
(e.g., Perkins et al 2013). Telematics data can sometimes be used to
extrapolate such dark spots in the GPS measurements (Ghaffarpasand
et al., 2022).

4.3. Temporal adjustments of data aggregated to the segment level

A fundamental challenge with mobile monitoring is that it is difficult
to separate temporal and spatial variation, as the platform is moving in
time and space. To better compare mobile measurements sampled on
different hours, days and seasons, a temporal correction is often applied.
The reason for doing this is to separate the impact of spatial features
from the temporal conditions since extensive spatial and temporal
coverage is ideal but not possible. Pollutant concentrations will namely
fluctuate across multiple time-scales due to meteorological (e.g., tem-
perature inversions, wind conditions), seasonal and anthropogenic (e.g.,
rush hours, wood burning) factors. However, temporal corrections are
not a panacea since they also introduce noise into the data; more work is
needed to understand when temporal corrections improve understand-
ing for various use cases.

A method that is often used to address temporal unbalanced sam-
pling schemes is background normalization, using the temporal
pollutant dynamics at a central fixed site (van de Beek et al., 2020; Dons
et al., 2017; Kerckhoffs et al., 2021; Van Poppel et al., 2024). With this
method you match the time of the mobile measurement with a reference
site and adjust the mobile measurements based on the fixed measure-
ment on the same time relative to the average of the reference site for the
full campaign, either by calculating the absolute (additive) or relative
(multiplicative) difference (Dons et al., 2017). For the assessment of
individual locations or personal exposure this can be very important, as
it makes the comparison between road segments or subjects easier.
However, it strongly assumes that all monitoring sites share the same
temporal pattern. This assumption is underlying epidemiological time
series studies based on a central monitoring site but may not apply
universally. Further, not only do temporal adjustments rely on estimates
which introduce additional noise in the measurements, but disparities in
the time trends across locations have been observed in specific locations
making it difficult to identify a reference site that is suitable to apply to
all locations (Blanco et al., 2023b, Blanco et al., 2022). Documenting the
trade-offs between potential bias reduction and increased noise from
different temporal adjustment approaches is an important topic for
future research.

A transformation method that can be helpful to distinguish between



J. Kerckhoffs et al.

regional, urban, and local influences is deconvolution. This approach
was developed by Brantley et al. (2014) and applied by Shairsingh et al
(2019) in which measurements were averaged over different timescales
ranging from 60 to 2000 s. Then, the optimal timescale for each
geographical level is determined based on a spline of minimums. In the
end the total concentrations measured are divided into a regional
background contribution, an urban background contribution and a local
contribution. This can be helpful for use cases such as hotspot detection
and source identification.

4.4. Quality control of mobile monitoring

Especially when mobile measurements are based on mid-grade in-
struments or low-cost sensors, information about the instrument un-
certainty is crucial. Focus should be on comparability with a reference
station (accuracy) and between-sensor uncertainty (precision). In-
struments are typically co-located near a regulatory Air Quality Moni-
toring Station (AQMS) to evaluate uncertainty and apply local
calibration of the applied monitoring equipment (Hofman et al., 2022c;
van Zoest et al., 2019; Petaja et al., 2021; Elomaa et al., 2024; Hofman
et al., 2023). One co-location station near or along the route (similar
urban environment and pollutant composition) may suffice. However,
also with high-grade instruments, co-location with reference stations is
recommended to document performance, especially if frequent cali-
bration common in routine fixed site monitoring is not performed.

5. Modelling

Although mobile monitoring data can be used on itself to answer
certain research questions (data-only approach), mobile measurements
are often used to develop models, leveraging their inherent spatio-
temporal nature, mainly for use cases that need to cover a large area
or consider long-term exposure. A data-only approach might not capture
enough spatiotemporal repeats to create a robust long-term average
exposure map or lack measurements at certain locations that need to be
predicted. Common approaches for air pollution modelling include
deterministic modelling such as dispersion and chemical transport
modeling, and statistical modelling, such as Land-Use Regression (LUR).
Modelling approaches can be combined in so-called hybrid models
which combines various modelling approaches (Jerrett et al., 2005;
Hoek, 2017). For instance, a hybrid model might combine a chemical
transport model, which simulates the physical and chemical processes of
air pollution dispersion, with a machine learning model, which can
capture complex, non-linear relationships in the data (Feldman et al.,
2024; Mathew et al., 2023).

In terms of data input, fine resolution traffic (Shen et al., 2024) and
emission (Paunu et al., 2024) data provide helpful information about
pollution sources, particularly industrial emissions, etc. (Borge et al.,
2014). Furthermore, the influence of meteorological parameters, such as
wind speed and direction, temperature, and humidity, on air pollution
dispersion and short- and long-range transport is well documented.
Besides high-resolution traffic and meteorological information, urban
topology (e.g. height/width ratio) and the presence of urban green will
affect local natural ventilation and pollutant dispersion (Voordeckers
et al.,, 2021; Hofman et al., 2020; Morakinyo et al., 2016; Gallagher
et al., 2015; Vranckx et al., 2015; Gromke and Ruck, 2007; Vos et al.,
2013). Thus, when possible, it is worthwhile to include these predictors
to develop more accurate air pollution models (Hofman et al., 2022a;
Qin et al., 2022; Qin et al., 2021; Do et al., 2020).

Other data sources, such as satellite-derived air quality products, can
also be integrated with models or mobile measurements. Satellite-
derived air quality data provide information on columnar abundance
of air pollutants over large geographical areas during daylight hours
(Knibbs et al., (2014)). However, satellite retrievals from polar-orbiting
satellites tend to have low temporal resolution (daily at best). New
geostationary satellites like GEMS over Asia and TEMPO over North
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America provide higher spatial and temporal resolution than was pre-
viously available with about 1-km spatial resolution hourly satellite
retrievals. For higher spatial or temporal resolution, other sources of air
quality data — like those from mobile monitoring — are still needed
(Holloway et al., 2021). Additionally, satellite data needs to be adjusted
for most use cases that use mobile monitoring or other ground-based
measurements in order to predict ground-level concentrations instead
of columnar abundance (Holloway et al., 2021; Verhoelst et al., 2021;
Bechle et al., 2013; Wei et al., 2022) To date, air quality and health
applications have primarily utilized satellite observations and satellite-
derived products relevant to near-surface PMy s and NOy (Holloway
et al., 2021).

Mobile monitoring records air pollution under specific multi-
variable spatiotemporal conditions, such as meteorology, traffic pat-
terns, and land use. Therefore, models built from mobile monitoring
data can adapt to spatiotemporal changes in these variables to estimate
pollution levels at a higher temporal resolution. Though, it is important
to note that a model is always bound to assumptions, smooths local
information over a larger domain and can only implement known
sources of air pollution. The use of a model in hotspot detection, in-
terventions and source identification is therefore only helpful if one
knows what one is looking for. Also, for regulatory comparisons, it is
common practice to only use fixed-site routine monitor measurements.
Various interested parties might have more trust in measurements
(compared to models), advocating for the model applications combined
with or derived from (mobile) measurements.

Performance of models derived from mobile monitoring measure-
ments should be evaluated by comparison against independent refer-
ence data (when available), often measurements from AQMS (Hofman
et al., 2022a) or long-term home-outdoor concentrations, though, such
measurements are rarely available for UFP and BC. The FAIRMODE
guidance document on modelling quality objectives and benchmarking
published by JRC (Janssen and Thunis, 2022), can serve as methodo-
logical guidance. A recent study applied this framework to temporally
validate two machine learning models trained on mobile monitoring
data from different cities and pollutants (PM, NO, and BC) showing that
the data-driven models approached physicochemical dispersion models
in terms of performance (Hofman et al., 2022a). Other evidence exists
that models derived from mobile monitoring can have comparable
performance to other types of near-road air quality models.

5.1. Deterministic modelling

Deterministic modelling, also known as dispersion and chemical
transport modelling, is a fundamental approach in air quality assess-
ment. These models (spatial resolution: address- or street-scale) such as
the Danish AirGIS system (Khan et al., 2019) are based on atmospheric
physical, chemical reaction, and emission data to simulate the emission,
accumulation, dispersion, and transfer of pollutants in the air (Shiva
Nagendra et al., 2021). Because pollutant levels are simulated based on
scientific understanding rather than measured, for many use cases it can
be very useful to leverage deterministic model outputs with mobile
measurements to improve (e.g. through data assimilation (Nguyen and
Soulhac, 2021; Wang et al., 2000)) or validate deterministic models.

Researchers have combined mobile monitoring and deterministic
modelling to assess air pollution levels and compare measurements
against model predictions. For instance, Fattoruso et al. (2022) assessed
NO; and CO concentrations in Portici, Naples, using mobile monitoring
and the SIRANE dispersion model (Soulhac et al., 2011), finding
recorded concentrations three times higher for CO and twice as high for
NO; compared to simulations. They suggest that while SIRANE is useful
for preliminary evaluations, an integrated approach with pervasive
monitoring is needed to understand discrepancies, noting significant
uncertainty in average concentration levels from unstructured cam-
paigns. Similarly, Zwack et al. (2011) combined mobile monitoring and
dispersion modeling (QUIC) to analyze UFP concentrations in Brooklyn,
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New York, finding that this combination provides a richer character-
ization of spatial concentration patterns, though it requires robust
emission factors and background concentration characterization.
Another study (Zalzal et al. 2024) showed that mobile monitoring can
also be used to downscale chemistry-transport models, enhancing their
resolution. Mobile monitoring can leverage deterministic models as well
by e.g., refining emission factors for urban pollutants. In this regard, a
study by Wilde et al., (Wilde et al., 2024) showed through mobile
monitoring that road emission intensity in London was clearly linked to
traffic behavior (congestion).

5.2. Statistical and stochastic modelling

With mobile monitoring it is customary to produce aggregated air
pollution levels. This, among others, is significantly useful for analyzing
the relationship between average air pollution levels and land use fea-
tures at many distinct locations. While the sampling time for each road
segment is small, typically ~1-15 s per segment, different road segments
with similar characteristics can be seen as pseudo repeats (Kerckhoffs
et al., 2019). For example, there are many road segments with a certain
number of cars and specific road width. By averaging all the relation-
ships between pollution and traffic intensity on all similar road seg-
ments, the model can learn the correct correlation for that domain.

Many statistical models applied to mobile monitoring data are land
use regression (LUR) models, which use a variety of predictors in a
multiple linear regression model (Yuan et al., 2023; Van den Bossche
et al., 2020; Shairsingh et al., 2019; Messier et al., 2018). Some groups
extend the LUR approach to characterize the residual spatial structure
using a universal kriging (UK) geostatistical model (Blanco et al., 2023a;
Blanco et al., 2022). The relationship between land use covariates and
pollutant measurements can be characterized in a wide variety of ways,
including partial least squares and machine learning (Blanco et al.,
2023a; Blanco et al., 2023b; Blanco et al., 2022).

Machine learning models can integrate the same predictors as LUR
and find underlying relationships with air quality, accounting for non-
linear relationships and interactions between predictors (De Vito
et al., 2020; Lim et al., 2019; Qin et al., 2021; Do et al., 2020; Yuan et al.,
2022). Applying those algorithms, such as Support Vector Machines,
Artificial Neural Networks, and Random Forest to mobile monitoring
data can facilitate identifying patterns and (non-linear) relationships
that would be difficult to discern using traditional statistical regression-
based methods (Kerckhoffs et al., 2019; Rybarczyk and Zalakeviciute,
2018; Qin et al., 2022; Hofman et al., 2021). Once machine learning
models predict outside of their training conditions, however, model
performance has shown to quickly deteriorate for sensor calibration and
air quality mapping applications (Hofman et al., 2022a, Hofman et al.,
2022b).

A disadvantage of stochastic models is that they learn the relation-
ship between measurements and predictor variables at the location of
the measurements (often on-road). However, in most use cases off-road
exposure is more relevant. As an alternative to correcting the on-road
data before modeling, an approach to narrow the gap between the
training (on-road) and prediction (off-road) domain is to use transfer
learning (Yuan et al., 2022; Yuan et al., 2023). This method reweighs the
mobile input data to the desired long-term off-road domain with more
appropriate parameters.

5.3. Hybrid modelling

Hybrid modeling aims to combine the best information from two or
more modeling types. For example, physical and chemical in-
terdependencies from deterministic modelling and data patterns from
machine learning can be combined to build hybrid model variants that
estimate pollutant concentrations more accurately. (Jerrett et al., 2005;
Simon et al., 2017). For example, Adams and Kanaroglou (2016) com-
bined mobile monitoring with fixed-site monitors and neural networks
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to map NOy health risks for conventional environmental management in
Hamilton, Ontario, Canada. A study by Kushwah and Agrawal (2024)
introduced a hybrid model for air quality prediction that combines
empirical mode decomposition (EMD), long short-term memory (LSTM)
networks, and optimization techniques such as random search and
Bayesian optimization. This hybrid approach significantly improved
prediction accuracy, demonstrating the potential of integrating multiple
methodologies to enhance air quality forecasts (Kushwah and Agrawal,
2024). Similarly, Huang et al. (Huang et al.) proposed a novel hybrid
model using dimension reduction and error correction techniques to
predict air quality indices (AQI). Their model, which incorporates
empirical mode decomposition, K-means clustering, and LSTM net-
works, showed superior performance in predicting AQI across multiple
urban centers (Huang et al., 2024).

5.4. Performance evaluation of air quality models

Mobile measurements consist of a few seconds per road segment and
are therefore very variable, while most studies aim to predict a long-
term average exposure. The performance of models based on mobile
data can therefore be poor. However, poor performance of mobile
models does not mean a poor performance when evaluated with robust
long-term average concentrations. This means that when evaluating
mobile models, it is crucial to assess their performance on a long-term
hyperlocal average concentration domain, focusing on spatial valida-
tion. For example, Hatzopoulou et al. (2017) compared LUR models
developed on road segments with at least 3 visits to segments with at
least 16 visits and found that road segments with at least 16 observations
achieved a higher adjusted model R? with fewer explanatory variables
compared to the model developed with segments having 3 + visits. This
higher performance is mainly due to increased accuracy of the test set,
not of the training set. However, it can be challenging to achieve such
good model performance for the case of UFP and BC due to the high
spatial and temporal variability of these pollutants, as well as the in-
fluence of numerous local sources and meteorological conditions.

Hofman et al. (2022a) temporally validated two machine learning
models (Qin et al., 2021; Do et al., 2019) trained on different mobile
monitoring data (NO2, PM> 5 and BC) at multiple fixed AQMS, following
the JRC FAIRMODE protocol (Janssen and Thunis, 2022) They
demonstrated that good model performance is achievable, depending on
the amount and representativity of the training data. Performance
metrics approached state-of-the-art chemical transport models while
requiring fewer resources, computational power, infrastructure, and
processing time. However, model performance relies on the spatiotem-
poral monitoring coverage of the mobile measurements. Accurate and
representative data in both space and time are essential to train the
models and provide reliable results.

Of note, mobile data can also be used as validation for prediction
models based on fixed data, although careful consideration is needed on
the boundary conditions of both approaches (Van Poppel et al., 2024).
Global or continental deterministic models are adequate in mapping
regional differences but often lack high-resolution data to scale models
to map local differences. Mobile monitoring data can potentially
leverage these models, enhancing their spatial accuracy.

5.5. Strengths and limitations

The biggest advantage of mobile monitoring is that many locations
can be measured in a short amount of time. For source-related use cases
this means that identification of sources can be done very locally, and
expected and unexpected hotspots can be detected much more effi-
ciently. From an exposure perspective, mobile monitoring sheds light on
exposure disparities while quantifying impacts from air quality man-
agement choices. For health-related use cases, this means that exposure
estimates to participants can be assigned with more accuracy due to
more precise spatial resolution.
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Another advantage is that monitoring equipment can be deployed by
individuals on their day-to-day commutes, or on service fleet vehicles.
Real-time pollutant exposure feedback for participants and behavioral
impacts (e.g., considered transport modes or cycling routes) are useful
for raising awareness, potentially driving behavior change and creating
impact. Furthermore, mobile platforms can measure locations which are
out of reach for stationary regulatory monitoring, such as intersections
or near traffic lights. Mobile campaigns are also well suited to mea-
surement of highly spatially heterogeneous pollutants with high quality
instruments that might be expensive or otherwise difficult to locate at
many sites throughout a study area. Lastly, mobile monitoring only re-
quires limited instruments to measure at many different places, which
makes it an interesting tool for low- and middle-income countries.

The inherent disadvantage of mobile monitoring is the sparse tem-
poral coverage. By increasing the spatial coverage, the temporal
coverage per location measured is very limited. While there are both
design and modelling solutions to address the lack of temporal coverage
that will vary depending upon the use case, mobile monitoring is not
intended to replace stationary monitoring. Stationary monitoring sites
use reference-grade instruments and adhere to certain protocols that
make them suitable for air pollution trend analyses and air quality limit
value compliance.

Mainly for health-related use cases, when assigning long-term
average exposure estimates, the on-road versus off-road difference can
be important as well, depending on the platform (e.g., pedestrian or
cyclist routes might be better than motorized vehicles at sampling off-
road) and monitoring approach (e.g., measurements at the roadside
versus while driving). Measurement locations are in the middle of the
road lane for mobile monitoring and are per definition not the same as
home addresses of study participants. Because the on- versus off-road
differences can reach 20-30 %, it is important to adjust mobile moni-
toring data for on-road sources. Further, it is important to consider the
on- versus off-road difference when absolute levels are of interest.

Due to the low spatial variability of PM within cities, mobile moni-
toring does not contribute much to insights in local to urban scale
concentration maps beyond existing stationary air quality stations.
Though, for areas with no or limited fixed stations, mobile PM mea-
surements can still contribute useful information.

The potential of low-cost sensors in mobile monitoring studies has
been shown for PM and NO; but requires careful validation (accuracy
and precision) and calibration work. Low-cost NO; sensors are still
hampered in terms of data quality and calibration protocol. Neverthe-
less, studies have shown their potential in stationary applications mainly
for citizen engagement use cases. Of note, other pollutants require mid-
or high-grade instruments to accurately measure concentration levels
(UFP, BQ).

5.6. Future directions and actionability

Mobile monitoring data enables the development of fine-scale
spatiotemporal air quality maps. These maps can highlight the spatio-
temporal exposure variability in urban areas, revealing pollution expo-
sure dynamics in complex urban terrain or during certain time-activity
patterns (e.g., commuting exposure). Moreover, when including multi-
ple pollutants in future mobile monitoring studies, more insights about
e.g., source attribution can be obtained. When combining spatiotem-
poral maps with daily activity data of cohort participants collected by
diaries, GPS trackers, or mobility models personal exposure estimates
can be developed for use in health effect association studies. Local
monitoring data, which is often collected with mobile (or stationary)
platforms, can be used to engage citizens and advocacy groups to build
capacity and advocate for change in their community. Mobile moni-
toring also provides the ability to assess short-term peak exposure and
associated acute health responses (e.g., lung function, oxidative
potential).

We hope that this paper can contribute to regulatory recognition of
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mobile monitoring. Despite its demonstrated value in capturing fine-
scale spatial variability it remains absent in major regulatory frame-
works such as the EU Directive on Ambient Air Quality and comparable
international acts. Future policy efforts should consider integrating
mobile monitoring as a complementary tool into official air quality
management strategies, especially in areas where fixed-site coverage is
limited.

Since many mobile monitoring studies collect data on multiple pol-
lutants at the same time, this greatly expands the opportunities for
multi-pollutant insights. Ratios between pollutants can facilitate source
identification, source apportionment, and disentangle the health effects
of different pollutants in epidemiological studies. This could even be
extended to other components (next to air pollution as well. Multi-
component (noise, air quality, health, safety, stress, etc.) exposure as-
sessments (exposome) are the way forward as stressors can have a
synergistic effect and will impact the resilience of community groups or
individuals.

One of the aspects that is still unclear is how to best translate on-road
measurements to residential exposure estimates. Therefore, it makes
sense to combine mobile measurements with other data sources and
modelling techniques in a data fusion approach. This can be done with
land use regression, transfer learning, or other means of blending
different models and measurement strategies to maximize the individual
strengths of each source. For example, using mobile monitoring as the
primary source for the spatial variation (with its limited and random
temporal scale) and fusing with temporally rich measurements (AQMS
and stationary LCS) in an empirical or deterministic modelling frame-
work. Some data sources that are marginally used, such as street view
images, street topology and greenery can help in resolving this issue as
well. With the rise of artificial intelligence frameworks, mobile data can
be integrated with real-time data and virtual sensors for next level
exposure assessment.

Lastly, as most of the mobile monitoring studies have been con-
ducted in high income countries (HIC), authors would like to encourage
mobile monitoring applications in highly polluted and LMIC countries,
which often have limited stationary monitoring stations.

6. Conclusions

Today, mobile monitoring applications complement stationary
monitoring networks to obtain high spatiotemporal information on
spatially variable pollutants (e.g., UFP, BC and NO;) and improve
contemporary exposure assessments. This paper presents opportunities
and challenges related to mobile monitoring. We identified relevant
source-, exposure- & health-related use cases for mobile monitoring and
relevant pollutants (UFP, BC and NOj). The monitoring strategy will
depend on the envisioned use case (research question) and involve
careful consideration of the used mobile platform, air quality in-
struments and route planning. Design choices will determine temporal
(number of repeats) and spatial (number of road segments) monitoring
coverage which should be balanced when aiming at long-term average
air quality assessments. The data collection strategy can vary from
dedicated to opportunistic in terms of routing and number of repeats.

When aiming at specific urban areas, population subgroups or time
windows (e.g., rush hour exposure), data-only approaches can generate
representative and meaningful data when appropriately designed
(balanced in terms of spatial and temporal coverage). When aiming at
air quality assessments over very large areas, high spatial and temporal
monitoring coverage becomes challenging for data-only approaches,
requiring modelling approaches to extrapolate mobile measurements to
other time and space instances. Validation of mobile measurements or
model predictions is crucial and should include (i) comparability against
a reference (e.g., AQMS), ideally in similar conditions as the mobile
monitoring use case or application, and (ii) between-sensor compara-
bility (precision) when using multiple instruments.
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