001048642 001__ 1048642
001048642 005__ 20260108204821.0
001048642 020__ $$a978-3-95806-860-5
001048642 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04772
001048642 037__ $$aFZJ-2025-04772
001048642 1001_ $$0P:(DE-Juel1)174237$$aKaracan, Cinar$$b0$$eCorresponding author
001048642 245__ $$aEntwicklung von nickelbasierten katalysatorbeschichteten Diaphragmen für die alkalische Wasserelektrolyse$$f - 2025-05-21
001048642 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2025
001048642 300__ $$a146
001048642 3367_ $$2DataCite$$aOutput Types/Dissertation
001048642 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001048642 3367_ $$2ORCID$$aDISSERTATION
001048642 3367_ $$2BibTeX$$aPHDTHESIS
001048642 3367_ $$02$$2EndNote$$aThesis
001048642 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1767877688_22185
001048642 3367_ $$2DRIVER$$adoctoralThesis
001048642 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v679
001048642 502__ $$aDissertation, RWTH Aachen University, 2025$$bDissertation$$cRWTH Aachen University$$d2025
001048642 520__ $$aEnergy storage plays an important role for the weather dependence of energy production via renewable energy power plants. One way of energy storage is the electrochemical production of hydrogen via water electrolysis. A well-known technology is alkaline water electrolysis. The advantage of alkaline water electrolysis over the acidic PEM electrolysis is the use of nonplatinum metal catalysts. However, the high gas impurity, which is caused by the porous diaphragms and the mixing of the electrolytes, shows a big problem for the dynamic operation of the electrolyzer, which is important for the direct connection to renewable power plants. To counter this problem, spacers are installed between the electrodes to reduce gas impurity. However, this leads to high ohmic losses and thus to a low power density. These power losses are not competitive with the high power densities of acid PEM electrolysis, which use a zerogap constellation. These losses of power densities are compensated by larger cell areas, but results in high system costs, offsetting the advantage of non-platinum group catalysts. Based on this background, this work deals with the development of new electrode systems for classical-alkaline electrolysis. First, a new measurement protocol for alkaline single cell tests is developed to ensure a reliable evaluation of these new electrode systems. Then, nickelbased catalyst powders are tested via the rotating disk electrode for suitability as HER catalysts for the new electrode system. The most suitable HER catalyst is then coated onto the Zirfon® diaphragm in the zero-gap constellation via the doctor blade process and tested with various parameters. The power density, long-term stability and gas purity were investigated with different electrode thicknesses and binder proportions. It was possible to develop a catalyst coated diaphragm with a Raney nickel HER catalyst for classical alkaline electrolysis in this work. In this work, the best formulation was able to reduce the overvoltage by 270 mV at 300 mA cm-2 compared to the benchmark, which consisted of an uncoated diaphragm. This reduction consisted mainly of the higher catalytic activity of the Raney nickel. However, the new electrode system showed lower long-term stability than the benchmark, which resulted from the successive reduction in catalytic activity. The gas purity tests showed that the catalyst-coated diaphragm can find its  application in the zero-gap constellation in atmospheric electrolyzers, where a partially separated electrolyte cycle prevails.
001048642 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001048642 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
001048642 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
001048642 8564_ $$uhttps://juser.fz-juelich.de/record/1048642/files/Energie_Umwelt_679.pdf$$yOpenAccess
001048642 909CO $$ooai:juser.fz-juelich.de:1048642$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174237$$aForschungszentrum Jülich$$b0$$kFZJ
001048642 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001048642 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
001048642 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
001048642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048642 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048642 920__ $$lyes
001048642 9201_ $$0I:(DE-Juel1)ICE-2-20101013$$kICE-2$$lJülicher Systemanalyse$$x0
001048642 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
001048642 980__ $$aphd
001048642 980__ $$aVDB
001048642 980__ $$aUNRESTRICTED
001048642 980__ $$abook
001048642 980__ $$aI:(DE-Juel1)ICE-2-20101013
001048642 980__ $$aI:(DE-Juel1)IET-4-20191129
001048642 9801_ $$aFullTexts