001048663 001__ 1048663
001048663 005__ 20251213202221.0
001048663 0247_ $$2doi$$a10.1088/2058-9565/ae1e99
001048663 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04791
001048663 037__ $$aFZJ-2025-04791
001048663 082__ $$a530
001048663 1001_ $$0P:(DE-Juel1)194305$$aMontañez-Barrera, J. A.$$b0$$eCorresponding author
001048663 245__ $$aDiagnosing crosstalk in large-scale QPUs using zero-entropy classical shadows
001048663 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2026
001048663 3367_ $$2DRIVER$$aarticle
001048663 3367_ $$2DataCite$$aOutput Types/Journal article
001048663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765628616_25537
001048663 3367_ $$2BibTeX$$aARTICLE
001048663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048663 3367_ $$00$$2EndNote$$aJournal Article
001048663 520__ $$aAs quantum processing units (QPUs) scale toward hundreds of qubits, diagnosing noise-induced correlations (crosstalk) becomes critical for reliable quantum computation. In this work, we introduce Zero-Entropy Classical Shadows (ZECS), a diagnostic tool that uses information of a rank-one quantum state tomography reconstruction from classical shadow information to make a crosstalk diagnosis. We use ZECS on trapped ion and superconductive QPUs including ionq_forte (36 qubits), ibm_brisbane (127 qubits), and ibm_fez (156 qubits), using from 1000 to 6000 samples. With these samples, we use the ZECS to characterize crosstalk among disjoint qubit subsets across the full hardware. This information is then used to select low-crosstalk qubit subsets on ibm_fez for executing the quantum approximate optimization algorithm on a 20-qubit problem. Compared to the best qubit selection via Qiskit transpilation, our method improves solution quality by 10% and increases algorithmic coherence by 33%. ZECS offers a scalable and measurement-efficient approach to diagnosing crosstalk in large-scale QPUs.
001048663 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x0
001048663 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001048663 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x2
001048663 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048663 7001_ $$00000-0001-9302-2468$$aBeretta, G. P.$$b1
001048663 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001048663 7001_ $$00000-0002-3884-6904$$avon Spakovsky, Michael R$$b3
001048663 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/ae1e99$$gVol. 11, no. 1, p. 015008 -$$n1$$p17$$tQuantum science and technology$$v11$$x2058-9565$$y2026
001048663 8564_ $$uhttps://juser.fz-juelich.de/record/1048663/files/Montan%CC%83ez-Barrera_2026_Quantum_Sci._Technol._11_015008.pdf$$yOpenAccess
001048663 909CO $$ooai:juser.fz-juelich.de:1048663$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001048663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194305$$aForschungszentrum Jülich$$b0$$kFZJ
001048663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001048663 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x0
001048663 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001048663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
001048663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
001048663 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048663 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-03
001048663 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-03
001048663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
001048663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048663 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-03
001048663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
001048663 920__ $$lyes
001048663 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001048663 980__ $$ajournal
001048663 980__ $$aVDB
001048663 980__ $$aUNRESTRICTED
001048663 980__ $$aI:(DE-Juel1)JSC-20090406
001048663 9801_ $$aFullTexts