001     1048663
005     20251213202221.0
024 7 _ |a 10.1088/2058-9565/ae1e99
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04791
|2 datacite_doi
037 _ _ |a FZJ-2025-04791
082 _ _ |a 530
100 1 _ |a Montañez-Barrera, J. A.
|0 P:(DE-Juel1)194305
|b 0
|e Corresponding author
245 _ _ |a Diagnosing crosstalk in large-scale QPUs using zero-entropy classical shadows
260 _ _ |a Philadelphia, PA
|c 2026
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765628616_25537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As quantum processing units (QPUs) scale toward hundreds of qubits, diagnosing noise-induced correlations (crosstalk) becomes critical for reliable quantum computation. In this work, we introduce Zero-Entropy Classical Shadows (ZECS), a diagnostic tool that uses information of a rank-one quantum state tomography reconstruction from classical shadow information to make a crosstalk diagnosis. We use ZECS on trapped ion and superconductive QPUs including ionq_forte (36 qubits), ibm_brisbane (127 qubits), and ibm_fez (156 qubits), using from 1000 to 6000 samples. With these samples, we use the ZECS to characterize crosstalk among disjoint qubit subsets across the full hardware. This information is then used to select low-crosstalk qubit subsets on ibm_fez for executing the quantum approximate optimization algorithm on a 20-qubit problem. Compared to the best qubit selection via Qiskit transpilation, our method improves solution quality by 10% and increases algorithmic coherence by 33%. ZECS offers a scalable and measurement-efficient approach to diagnosing crosstalk in large-scale QPUs.
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Beretta, G. P.
|0 0000-0001-9302-2468
|b 1
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
|u fzj
700 1 _ |a von Spakovsky, Michael R
|0 0000-0002-3884-6904
|b 3
773 _ _ |a 10.1088/2058-9565/ae1e99
|g Vol. 11, no. 1, p. 015008 -
|0 PERI:(DE-600)2906136-2
|n 1
|p 17
|t Quantum science and technology
|v 11
|y 2026
|x 2058-9565
856 4 _ |u https://juser.fz-juelich.de/record/1048663/files/Montan%CC%83ez-Barrera_2026_Quantum_Sci._Technol._11_015008.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048663
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21