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Abstract

In loop quantum gravity (LQG), states of the gravitational field are represented by labeled
graphs called spin networks. Their dynamics can be described by a Hamiltonian constraint,
which acts on the spin network states, modifying both spins and graphs. Fixed-graph
approximations of the dynamics have been extensively studied, but its full graph-changing
action so far remains elusive. The latter, alongside the solutions of its constraint, are
arguably the missing features in canonical LQG to access phenomenology in all its richness.
Here, we discuss a recently developed numerical tool that, for the first time, implements
graph-changing dynamics via the Hamiltonian constraint. We explain how it is used to find
new solutions to that constraint and to show that some quantum geometric observables
behave differently than in the graph-preserving truncation. We also point out that these
new numerical methods can find applications in other domains.

Keywords: loop quantum gravity; canonical general relativity; hamiltonian constraint;
challenges in gravitational physics

PACS: 04.60.-m; 04.60.Pp; 98.80.Qc

General Relativity was introduced 110 years ago by Einstein to describe the gravita-
tional interaction in a geometric language that extends the universality of physics beyond
the framework of nonacelerated observers [1]. Despite the success of the theory in ex-
plaining a wide variety of astrophysical and gravitational scenarios, and the accumulated
observational confirmation of its predictions [2], the fact that the principles of General
Relativity are based on a classical formulation of the spacetime geometry is in conflict
with Quantum Mechanics. Combining these two different visions of nature (classical and
quantum) into a single theory that includes gravity is probably the main challenge of
General Relativity, which still awaits a consensual solution [3].

One of the most solid candidates for achieving such a consistent quantum version of
General Relativity is Loop Quantum Gravity (LQG) [4–6]. A distinct feature of this quantum
theory is that geometric observables acquire discrete spectra [7]. Next year (2026) will mark
the 40th anniversary of the complete definition by Ashtekar of new variables [8], inspired
by the works of Sen [9]. These variables allow General Relativity to be reformulated as a
theory of connections and allow for them to build the mathematical structure on which
LQG rests. However, while this mathematical structure is quite well defined, computations
in this theory present an enormous challenge. In particular, the dynamics are encoded
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as part of the symmetries and are therefore governed by a (quantum) constraint [4,5].
This, called the quantum Hamiltonian constraint, has proven to be extremely complex,
and its implementation and resolution is the main obstacle to completing the quantization
program of LQG. Recently, several numerical computations [10–15] have been developed
within the covariant formulation of the theory [6], but, in general, numerical tools remain
scarce, particularly in the canonical approach [16,17], where the four-dimensional spacetime
manifold is foliated, adopting a 3+1 description [4].

More concretely, the dynamics of canonical LQG is defined by a single operator,
the aforementioned Hamiltonian constraint [18]. It acts on a state space for the spacetime
geometry that admits a basis formed by spin networks [19,20]. These are graphs with
links carrying spin labels that (normally) form singlets at the nodes [21–24]. They can
be applied in several areas of physics and quantum computing [25]. The Hamiltonian
constraint changes the graph of a spin network and its spin assignments in multiple
ways, yielding a superposition of spin networks with different graphs. This complication
is amplified by the presence of the volume operator in the Hamiltonian. Calculating
matrix elements of the volume requires diagonalizing matrices built on subspaces of spin
networks with identical graphs [26–32], which demands the development of new numerical
approaches. The resulting dynamics, as well as the solutions to its constraint, have therefore
remained inaccessible. Even its effect on the volume—a key geometric observable—has
yet to be characterized, preventing canonical LQG from reaching the physically correct
quantum domain.

In this work, we discuss and summarize the first numerical approach implementing
the Hamiltonian constraint on 3- and 4-valent spin networks, dual graphs to triangulations
of, respectively, two- and three-dimensional hypersurfaces (“spacetime cuts"), without re-
curring to truncations to fixed graphs as is common in LQG (cf. Figure 1). The valence
of the spin network is the number of links joining at (each of) its vertices. This approach
has been recently introduced in Ref. [33]. Given the length and complexity of the calcula-
tions presented in that reference, we provide here a concise and much more pedagogical
presentation of the main results of that work, reviewing the concepts that are necessary
to understand them and discussing the implications and potential applications of this
important contribution towards the completion of LQG. The new numerical approach
allows for recursive application of the Hamiltonian constraint on spin networks, yielding
perturbative expansions of constraint-generated operators. A key feature is a bijection
between spin networks and functions of lists, on which the action of the Hamiltonian
is implemented as a functional. We explain how the applicability of this approach may
reach beyond LQG. For the 3-valent case, akin to Ref. [34], the derivations update those in
Refs. [35,36]. Furthermore, we discuss the first complete calculations of the action of the
Hamiltonian on spin networks of valence four.

This work focus on the numerical (reference-frame-free) study of graph-changing
canonical LQG, computing volume expectation values of two perturbatively transformed
4-valent spin networks as an illustrative application with important physical consequences.
The results are then compared with their counterparts originating from a graph-preserving
Hamiltonian, and we present concrete indication that the latter fails to capture the proper
dynamics in LQG. These results provide the missing reference point to devise and test
approximations to the graph-changing dynamics, and should enable us to perform certain
calculations without approximations. Lastly, we discuss the construction of an infinite
family of solutions to the Hamiltonian constraint. Until now, no solutions were known
without additional assumptions [37–39]. Performing graph-changing computations opens
a range of possibilities, including checks about how graph-changing formulations affect
semi-classical predictions [40,41].
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VGC(N)<VGP(N)<V(0) VGP(N)<V(0)

V(0)

Figure 1. The dipole model as an example of a spin network. The corresponding spin network
consists of two 4-valent nodes sharing each of their four links. Its dual is formed by two tetrahedra
with faces that are pairwise glued (in four dimensions). These tetrahedra represent quanta of volume
in a discretized geometry. The unitary formed by exponentiating the Hamiltonian with the lapse N
as a perturbative parameter transforms the dipole model differently when graph-changing (left) or
graph-preserving (right) dynamics are considered. All figures in this work are based on figures from
Ref. [33].

Using canonical variables consisting of densitized triads and su(2)-connections [8,42,43],
the gravitational action can be rewritten (up to a Legendre term) as a sum over smeared
constraints associated with three kinds of symmetries: gauge invariance, diffeomorphisms,
and time reparametrization [5,44–46]. This system can be quantized “à la Dirac", promoting
the constraints to operators [5,47]. The gauge constraints are satisfied by considering only spin
networks in which all nodes correspond to spin singlets (also called intertwiners). For spin
networks embedded in manifolds, diffeomorphisms can be understood as (invertible analytic)
deformations of graphs. To satisfy the diffeomorphism constraints, one considers equivalence
classes of (dual) spin networks [5,48]; all graphs related by these deformations should be
superposed. The last constraint, referred to as Hamiltonian, dictates the dynamics. Here, we
will consider the so-called Euclidean version of this constraint, as a first but fundamental step
towards the determination of its Lorentzian counterpart. The solutions to all those constraints
provide the physical states. Finding these states without any approximations or additional
assumptions has remained an open problem in LQG.

According to our comments above, in pure gravity we consider the Hamiltonian [35,45]:

Ĉs = lim
⊠→0

∑
⊠

iNϵijk

3l2
0

tr
{

ĥ[αji]− ĥ[αij], ĥ[pk]V̂ĥ−1[pk]
}

. (1)

Brackets denote the anticommutator, ϵijk is the completely anti-symmetric symbol, l0 is
the Planck length, and tr is the trace. The operators in Equation (1) are the volume V̂
and the holonomies ĥ[p], parallel-transport unitaries over the path p. A partition of the
considered manifold in three dimensions into tetrahedra is represented by ⊠, with sizes
approaching zero, ⊠ → 0, while their number diverges. As a result, only tetrahedra with
vertices at spin network nodes and spanned by αij and pk contribute, and no tetrahedron
contains more than one node [44,45]. The prefactor N = N⊠ is given by the evaluation
at each node of the lapse of the spacetime foliation (or triangulation thereof). This lapse
modulates the action of the constraint in each tetrahedron. Since we can study each node
separately, only one N⊠ = N contributes in our following considerations. The loops αij and
αji = α−1

ij of opposite orientations are formed by segments tangent to two links (labeled i
and j), connected by an additional link that produces a graph-changing effect (see Figure 2).
The path pk corresponds to a segment tangent to another link from the node, to which
the label k is assigned. The holonomies in Equation (1) couple additional spins to the
links on which the Hamiltonian acts. Lastly, the volume operator gives the number of
quanta of volume, which depends on the spins of the links connected to nodes of valence
higher or equal to four [27]. This provides an interpretation of spin networks as duals to
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triangulations, associating a link with each face, and a node with each tetrahedron (see
Figure 1). The volume also depends on the relative arrangement of links at each node [27];
therefore, we restrict our analysis to spin networks with links oriented along the faces of a
tetrahedron (so that each triplet of links is linearly independent). The effect of the volume
or the constraint on these spin networks should not be influenced by diffeomorphisms (or
averaging over them) [45]. Likewise, the matrix elements of any geometric operator, such
as lengths or dihedral angles, evaluated on diffeomorphism-averaged (dual) spin networks,
should be diffeomorphism-invariant quantities that can be calculated by choosing any
representative from a family of diffeomorphism-equivalent spin networks, since the extent
of these quantities is determined by the link spins.

f({j1, j2, j3, j4, j1, j2, j3, j4, i, 0, ...})
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Figure 2. A 4-valent spin network node (center), with its assigned ghost function above, is mapped
under the action of the Hamiltonian into six modified structures which contain inner loops. Ghost
functions containing the lists encoding such spin networks are given. Double arrows emphasize the
reversible character of the Hamiltonian, and the numbers within them highlight the location of the
added loop. All figures in this work are based on figures of Ref. [33].

The constraint Ĉs has the same action as the symmetric Hamiltonian proposed by
Thiemann [46]; when acting at a node, whenever the Hamiltonian introduces a loop in
the location where the deepest inner loop is, these loops become coupled. As a result,
the spin of a loop link can be decreased, leading to link removal when its spin reaches zero.
In Ref. [46], it is explained that this is a subtle caveat, crucial to obtain a formally symmetric
operator on spin networks given by unitary holonomies and the volume, and guarantees
that the domain of this Hamiltonian operator is densely defined.

Transforming spin networks according to the symmetric Hamiltonian demands storing
information about superpositions of different graphs with spins assigned to their links,
while allowing them to assume increasingly more complex structures resulting from loops
added by the Hamiltonian closer and closer to the central nodes. The proposed solution is
to store spin and location information as ordered lists, each in one-to-one relation with an
spin network [33]. This allows for the construction of a vector space of abstract functions
for which the arguments are these lists. These are called ghost functions because they
are never assigned a functional form. If si = {si,1, si,2, . . .} denotes lists encoding spin
networks, the functions f (si) are endowed with the inner product I[ f (si), f (sj)] = δij.
The Hamiltonian is then coded as a linear functional that acts on ghost functions by reading
and changing their arguments—Cs[ f (si)] = ∑j cj(si) f (sj) for coefficients cj originating
from the action of Equation (1) on 3-valent or 4-valent spin networks and derived from
Ref. [33]. Linearity implies Cs[∑i ci f (si)] = ∑i ciCs[ f (si)]; thus, the functional can be
used recursively.

We focus our discussion on the study of 4-valent spin networks with an inner virtual
link, four external legs, and an arbitrary number of inner loops. By connecting links
belonging to each possible pair of directions, the inner loops can be arranged in six different
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manners (cf. Figure 2). We label such inner-loop locations from 1 to 6, connecting links
along the respective pairs {p1, p3}, {p2, p3}, {p2, p4}, {p1, p4}, {p1, p2}, and {p3, p4}. In the
central spin network of Figure 2, ji is the link spin along direction pi. The manner in which
Equation (1) can attach new loops is affected by the presence of inner loops in certain
locations. If a loop is present, e.g., in location 1 (placed between directions p1 and p3),
the constraint attaches a new loop in the same location by coupling its holonomies with
the already existing loop links, without changing the graph, but altering the spins of these
links (with the exception of the case in which the spin of the connecting link becomes
zero, changing the graph as a consequence of the link removal). The Hamiltonian also
forms inner loops in all other locations, but the presence of a loop in location 1 implies
that loops in locations 2, 4, 5, and 6 (sharing a common link with loop 1) need to be
introduced further inwards, relative to the loop in location 1. Meanwhile, a loop introduced
in location 3 is unaffected by that loop and can be located at similar depth. Consequently,
successive application of Equation (1) generates graphs with progressively deeper inner
loops at depths dependent on loop positions. Figure 3 shows a pseudocode exemplifying
the addition/removal of loops.

Innermost loop present?

No! Yes! Where?

Add loops in	

all 6 

locations:	

-Update s5-s9 	

for innermost	

spins	

-Update     

s10-s13 for 

added loops

Location 1 (s10=1)

Update 

innermost-	

loop spins:       

s5-s9 and s11

Yes? Update 

innermost-	

loop spins:    

s5-s9 and s15

Add loops w/	

overlapping 

edges to loop 1:	

-si→si+4 for i>9	

-Update s5-s9 	

for innermost	

spins	

-Update s10-s13	

for added loops	

No? Add loop 

at location 3:	

-si→si+4 for i>9	

-Update s5-s9 	

for innermost

spins	

-Update s10-s13	

for added loops	

Connecting link 

got spin s11 = 0? Connecting link 

got spin s15 = 0?
Remove loop:	

si+4→si for i>9 Remove loop:	

si+4→si for i>13

2nd deepest loop in location 3 (s14=3)?

Figure 3. Pseudocode exemplifying the implementation of the Hamiltonian. The code first checks
whether an inner loop is present. If absent, it generates a linear combination of graphs with inner
loops introduced in all six locations, with spin 1/2 on the newly created link. If present, a series
of steps is followed for each possible location (the case for location 1 is explicitly shown, while for
other locations similar rules are implied by the dashed-line continuation of the diagram to the right).
Namely, coupling a new loop at the innermost-loop location merely alters spins without affecting
the graphs. If the spin of the connecting link becomes zero, it is removed, and the inner-loop data in
the corresponding list is shifted to the left by four entries. Also, inner loops are introduced (deeper)
in all other positions, but if a loop was inserted at position 3 right before adding one at position 1
(these loops share no links), it either removes its extra link or changes spins. The diagram displays
examples of the simplest spin networks (orange graphs) for which the rules apply. All figures in this
work are based on figures of Ref. [33].

The (ghost function) lists have the spins of the outermost links as their first four entries.
The next four entries are the innermost spins adjacent to the central (virtual) link, i.e., along
directions p1, p2, p3, and p4. The ninth entry is the spin of this central virtual link. In case
the spin network has no inner loops, the remaining entries have vanishing values (see
Figure 2). Otherwise, the innermost-loop data are encoded in the next four entries, and each
following inner loop, in decreasing depth order, is described by an additional quartet of
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entries. In each quartet, the first two entries store, respectively, the loop location and the
spin of its connecting link, while the other two store the spins adjacent to (but not contained
in) the loop along the directions it connects. When the constraint creates a new loop, it
shifts all entries from the tenth position onwards four places to the right, so that inner-loop
entries are moved down in the order of depth to allow for inclusion of data of the new loop.
The new spins adjacent to the central nodes are encoded in entries fifth–eighth, and the
new central spin is encoded in the ninth entry. Information about the added innermost
loop occupies entries tenth–thirteenth. Although spin networks and their encoding lists
become increasingly complex, the constraint acts only upon the two deepest inner loops of
a 4-valent spin network. Since the information about these two loops is stored in entries
fifth to seventeenth, the coefficients cj(si) in Cs[ f (si)] = ∑j cj(si) f (sj) depend solely on
those entries, avoiding the search for data scattered among large lists.

The constraint is implemented as a map between non-normalized spin networks. So,
normalization is required after its recursive action. The “normalizer” functional linearly
implements this according to f (si) → [dj1 dj2 dj3 dj4 ∏k d−1

k ] f (si) [33], where dj = 2j + 1.
Here, ji represent the spins of the outermost legs, and k runs over the spins of all spin
network links, including the outermost ones. To achieve this, the normalizer reads in each
ghost function argument the first six entries and the jth, (j − 1)th, and (j − 2)th entries for
j = 4n + 9 (n ∈ N).

One possible way of understanding the dynamics generated by the Hamiltonian is by
investigating the change it causes on geometrical operators for some fiducial spin networks.
For this purpose, the code constructed in Ref. [33] also implements a volume functional.
It only sees the spins adjacent to the central spin network link. These spins fix the size of
the matrix generated by the volume operator. The volume maps a 4-valent spin network
with a central spin i into a linear combination of 4-valent spin networks with all possible
spins for the central links that are allowed by triangularity, so that the size of the matrix
it generates runs from min{|j′1 − j′3|, |j′2 − j′4|} to max{j′1 + j′3, j′2 + j′4} (for innermost spins
j′1, j′2, j′3, and j′4), and the matrix indices correspond to the input and output values of the
spin of the central link. The volume is derived from an intermediate operator acting on the
spin networks. Its matrix needs to be diagonalized so that the absolute value and square
root of its entries can be taken before the application of the inverse of the diagonalizing
transformation, giving volume matrix elements on the basis of 4-valent spin network
states [33].

In general, solutions to the constraint (1), which provide physical states in LQG in
the absence of matter, remained unknown until now. Some solutions were found (a) in
the presence of a semi-classical massive scalar field [37], (b) using the Temperley–Lieb
algebra [21,38] and (c) using an incomplete Hamiltonian [49], yet none hold in the case
we study. The existence of certain classes of diffeomorphism-invariant solutions was
also proven, but none were explicitly constructed [39]. Using the coded Hamiltonian,
it has been possible to perform a search for states annihilated by it. The protocol runs
over semi-natural spins within [0, 7/2] on each link of an spin network without inner
loops [33]. Only gauge-invariant states are allowed. Within the investigated spin range, we
have found a solution only for vanishing j1, j2, j3, j4, and i, suggesting that spin networks
with zero innermost spins connected to the intertwiners provide solutions. On the other
hand, when the Hamiltonian acts on a linear combination of spin networks that cannot be
related by inner-loop couplings, it produces a new linear combination of spin networks
orthogonal to the initial state |s0⟩. Denoting |si⟩ the state generated by i loop insertions on
|s0⟩, with ⟨si|sj⟩ = δij and Ĉs|s0⟩ = c∗1 |s1⟩, we have

Ĉs|si⟩ = ci|si−1⟩+ c∗i+1|si+1⟩ = ⟨si−1|Ĉs|si⟩|si−1⟩+ ⟨si+1|Ĉs|si⟩|si+1⟩. (2)
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Therefore, from |s0⟩, the following solution is found [33]:

|E0⟩ = |s0⟩+ ∑
i≥1

(−1)i
[ i

∏
j=1

⟨s2j−1|Ĉs|s2j−2⟩
⟨s2j−1|Ĉs|s2j⟩

]
|s2j⟩ . (3)

Note that convergence of this series is not necessary. In fact, a suitable habitat for the
infinite family of solutions of the form (2) (corresponding to the infinite possibilities for
the choice of |s0⟩) is the algebraic dual of the linear span of spin network states, a dual
which contains states of infinite norm. If all relevant solutions belong to this dual space, it
would suffice to endow it with a convenient (alternative) inner product (and average over
diffeomorphims) to build a true Hilbert space of physical states.

We turn now to a discussion of the validity of the graph-preserving approximation
commonly used in the literature. By perturbatively transforming spin networks, we
estimate how the expectation value of the volume transforms when confronting graph-
changing with graph-preserving dynamics. We consider N as our perturbation parame-
ter, and expand (volume matrix elements generated with states evolved by) the unitary
Û = exp[−iĈs(N)] [50] up to the third and fourth order for graph-changing and graph-
preserving scenarios, respectively, disregarding contributions of higher-order terms. It
is worth remarking that, since Û is a unitary, its action preserves the norm of our states,
which therefore remains the same at any order in our truncations. On the other hand, notice
that in our calculations odd-order terms do not contribute to the expectation values of
observables. Indeed, when transforming states, any spin network graph can only be recov-
ered after an even number of applications of the graph-changing constraint. Furthermore,
the volume operator does not affect the graphs of spin networks it acts on. As a result,
in the graph-changing scenario ⟨Ĉn

s V̂ lĈm
s ⟩ = 0 for n + m odd and any l ∈ N, including zero.

For graph-preserving dynamics, however, an odd number of applications of the constraint
can recover the original spin network, depending on its connectivity [33]. We consider
a ladder-type spin network (or a chain-like spin network, if one accounts for the spatial
arrangement of the links) with intertwiners that are connected by their upper or lower
pairs of legs and loops which are coupled solely above and below the fiducial intertwiner,
disregarding large loops that could be coupled from the sides (which can favor departures
from the graph-changing results).

Figure 4 shows the expectation values of the volume as a function of the lapse N for
two fiducial spin networks of the form displayed in the center of Figure 2. The chosen
spin networks have j1 = j2 = j3 = j4 = 1/2 and i = 0 or i = 1 (red and green curves,
respectively). Unexpectedly, the curves coincide for the two spin networks transformed
under graph-changing dynamics. The volumes surprisingly decrease with increasing |N|
for |N| ≲ 1/2. For the graph-preserving case, the volume increases when |N| ≳ 1/2
due to fourth-order contributions (although the validity of the results for such values
of |N| is questionable in our perturbative approach), and a similar trend is expected for
graph-changing dynamics. This represents the first quantitative evidence that graph-
preserving approximations lead to departures from the graph-changing dynamics and fail
to capture certain symmetries of the system, such as volume degeneracy. The fact that the
change already appears at the variation rate around the zero value of the lapse supports
the validity of the result, independently of the range of applicability of our perturbative
approach. Furthermore, the fact that ⟨V̂Ĉm

s̃ ⟩ ̸= 0 can happen in the graph-preserving
case for m odd, leading to asymmetries in the volume dependence on the lapse N (and
consequently also on the proper time T =

∫
dtN(t) [50]), clearly shows the severe effects

of the graph-preserving approximation.
Although the spin networks considered in the above calculations are not solutions to

the Hamiltonian constraint in vacuo, they can describe the gravitational part of physical
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states for certain types of matter content, such as a suitable scalar field or nonrotational
dust, that may serve as a clock [17,51]. In fact, the results translate directly into the case of
Gaussian dust [51]. Consequently, the different volume profiles in the graph-changing and
graph-preserving approaches can greatly influence the cosmological phenomenology [5,52],
leading to different expansion rates and inflationary regimes, or in black hole evolution,
modifying the black-to-white hole transition time [53,54]. It is also worth commenting
that, even though only the Euclidean Hamiltonian has been implemented in our analysis,
in flat cosmological scenarios this Hamiltonian becomes proportional to the full Lorentzian
one [55]. Therefore, one expects the analyzed evolution to capture genuine dynamical
features of this type of system.

Figure 4. Lapse dependence of the dimensionless volume expectation value. The curves are shown
for two spin networks with j1 = j2 = j3 = j4 = 1/2, ε = 0, and i = 0 (red curves), or i = 1 (green
curves). We compare graph-changing (solid) and graph-preserving (dashed) Hamiltonians, for which
expectation values are calculated up to the third and fourth order in N, respectively. Inset: curves for
the volume variance. All figures in this work are based on figures in Ref. [33].

Summarizing, the work that we have reviewed and discussed here is the first solid
proposal to introduce numerical tools capable of solving problems involving large super-
positions of (changing) graphs. The coded Hamiltonian introduced in Ref. [33] provides
quantitative data for the volume, identifying some possible symmetries of the graph-
changing dynamics and showing that it significantly departs from the graph-preserving
one. The new numerical avenues open in LQG also allow for the unique finding of new
(infinite) families of solutions to the graph-changing Hamiltonian in the absence of matter.
The numerics follow the first complete action of the Hamiltonian on 4-valent spin networks
(see details in Ref. [33]). These advances enable a new generation of LQG calculations in
which approximations are either avoided or better controlled, making it possible to analyze
observable properties of quantum geometries, which could eventually be measurable in
future experiments [56,57] or quantum simulations.

Finally, let us comment that we expect this computational approach to be useful
also beyond LQG. A similar use of ghost functions can be helpful for processes with
pair production in cosmology [58] (if one introduces a cut-off in the excitations), even
on classical backgrounds, since in these systems the Hamiltonian dynamics increases the
(finite) number of degrees of freedom that must be considered in each step. One such system
in which the background can be treated exactly in loop quantum cosmology is the Gowdy
model [59] (with a cut-off). Our methods can be further extended to treat nonlinear systems
of particles confined to lattices (or graphs), in which the number, type, and location of the
particles is changed by the Hamiltonian (e.g., lattice gauge theories [60]). More generally,
the considered methods can find applications to problems with infinite-dimensional Hilbert
spaces spanned by an unstable basis under evolution, but for which the Hamiltonian
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relates only a finite number of elements per step. Concretely, some amendments to the
code should allow for studies of Levin–Wen-type Hamiltonians, which involve graph-
changing operations on spin networks, prior to imposing constraints enforcing topological
equivalence (akin to the normalizer) [61–64]. Additionally, computations in many-body
systems for states with energy constraints could also be facilitated by encoding the locations
and excitation levels in ghost functions [65]. Lastly, we emphasize that, although the
presented code is not optimally scalable or efficient when handling spin networks with
high spins (cf. Section X of Ref. [33]), scalability and efficiency are an issue for almost any
initial numerical breakthrough in every field of physics. Nonetheless, a computationally
optimized C ++ version of the code is currently being developed to make use of several
compute nodes and shows a preliminary speed-up of at least four orders of magnitude
for the presented calculations, highlighting how much potential for improvement and
development the presented approach still has.
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