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A major hurdle for building a large-scale quantum computer is increasing the number of qubits while
maintaining connectivity between them. In trapped-ion devices, this connectivity can be achieved by moving
subregisters consisting of a few ions across the processor. Here, we focus on an architecture, which we refer to
as the quantum spring array (QSA), that is based on a rectangular two-dimensional lattice of linear strings of
ions. Connectivity between adjacent ion strings can be controlled by adjusting their separation. This requires
control of trapping potentials along two directions, one along the axis of the ion string and one radial to it.
In this work, we investigate key elements of the QSA architecture along both directions: We show that the
coupling rate between neighboring lattice sites increases with the number of ions per site and the motion of
the coupled system can be resilient to electrical noise, both being key requisites for fast and high-fidelity
quantum gate operations. The coherence of the coupling is assessed and an entangling gate between qubits
stored in radially separated trapping regions is demonstrated. Moreover, we demonstrate control over radio-
frequency signals to adjust the radial separation, and thus the coupling rate, between strings. We further
present constructions for the implementation of parallelized, transversal gate operations, and map the QSA
architecture to code primitives for fault-tolerant quantum error correction, providing a step towards a quantum
processor architecture that is optimized for large-scale operation.

DOI: 10.1103/b9s1-6r44 Subject Areas: Atomic and Molecular Physics,
Quantum Information

I. INTRODUCTION

Ion traps are among the most promising platforms to host
quantum computers and simulators. A prominent approach
towards scaling ion-based quantum computers to a large
numbers of ions is that of the quantum charge coupled
device (QCCD) architecture [1,2], in which different zones
in a microfabricated surface ion trap are used for dedicated
tasks such as qubit storage and interaction. In the QCCD
architecture, independent trapping regions contain linear

strings of ions confined in an individual potential well.
Each ion string is considered a quantum subregister and
connectivity between qubits in different subregisters
requires physical transport of the ions corresponding to
the respective subregisters. These reorganization operations
require usually splitting and merging of ion crystals [3,4].
For a scalable system, these one-dimensional trapping
regions need to be transferred into a higher-dimensional
arrangement of interconnected qubit registers. In the
QCCD approach, any higher-dimensional architecture
requires additional operations such as ion-crystal rotations
[5,6], and transport operations through junctions [7–9].
Altering the configuration of the subregisters is chal-

lenging to implement: during splitting and merging oper-
ations, ion strings are subjected to a decreased confining
potential, making them more susceptible to motional
excitation due to electrical noise, which limits the perfor-
mance of subsequent operations [4]. Also, these operations
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are very sensitive to electric stray fields caused by imperfect
trap surfaces. Furthermore, ions that are transported
through junctions cannot avoid experiencing an increase
in residual rf field and lowered rf confinement [10], and
junctions must be carefully designed to limit this type of
effects. These transport operations require a significant
portion of the total execution time of a quantum circuit
[2,11]. While operations such as splitting, merging, rotation
and transport through junctions have been demonstrated for
ion chains with up to four ions [11], the complexity
increases for larger numbers of ions per register.
Here we focus on an alternate method to scaling up

trapped-ion quantum processors that does not rely on
transport of ions between trapping regions: a two-
dimensional lattice of ion traps [12–15]. The well-
established core building block on each lattice site in this
architecture remains a one-dimensional chain of ions. Full
ion-to-ion connectivity within such a chain, schematically
shown in Fig. 1(a), can be achieved by individually
addressed laser pulses. Entanglement within a lattice site
is mediated by the chain’s common mode of motion. The
quantum processor is then built up from a physical 2D lattice
configuration of these chains [16,17]. Connectivity between
neighboring lattice sites, and thus subregisters, is achieved
through Coulomb interaction between the individual ion

chains, as shown in Fig. 1(b). This level of connectivity
permits universal scalable quantum computation and thereby
the execution of arbitrary quantum algorithms, but avoids the
complications involved in multi-ion splitting, merging, and
junction transport. We refer to this coupled-lattice architec-
ture as a quantum spring array (QSA).
In the QSA architecture, the default configuration has

negligible coupling between ion chains by setting a large-
enough distance between them. Interaction between
chains is enabled by moving two chains of ions close
to each other, though without merging them into a single
potential well. Because of the geometrical configuration
of linear ion traps, the two orthogonal directions of
shuttling require two different types of control. As
schematically depicted in Fig. 1(c), these directions are
denoted as axial and radial, referring to their orientation
with respect to the 1D ion string.
Coherent coupling between subregisters is a crucial

element of scalable quantum information processing.
The QSA architecture avoids the necessity of splitting
and merging of ion chains, and shuttling through junctions.
This also relaxes the constraint that the subregisters are
limited to a small numbers of ions. In fact, in the QSA
approach, larger register sizes are advantageous, as it
enhances coupling between neighbors [18].
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FIG. 1. Overview of the main features of the proposed QSA architecture. (a) A chain of ionic qubits are confined in a single well of an
ion trap, with full connectivity between all qubits. (b) Multiple separate trapping regions are distributed over a 2D lattice. Trapping sites
have connectivity between nearest neighbors. (c) A shuttling-based approach is used to bring ion chains close enough to couple them,
with an interaction constant kint, symbolically depicted in purple as springs. Axial shuttling is achieved by displacing an ion string along
a linear trap’s rf null, and radial shuttling is achieved by displacing the rf null itself. When coupled, all-to-all connectivity between ions
in separate strings is enabled; the use of such an architecture for quantum error correction codes, and the ability to apply transversal
operations between chains of ions, as depicted in (d), are both theoretically investigated in this work. (e) Experimental highlights
discussed in this work include: (i) the favorable scaling of coupling rate with number of ions, (ii) the insensitivity to electric field noise of
the double well stretch mode of the coupled-ion system compared to the common mode, and (iii) generation of an entangled state,
jSSi þ jDDi, in radially separated ions, mediated by an oscillatory exchange of motion between two separated wells.
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In this work, we demonstrate these advantages by
investigating interaction between ion chains along both
the axial and radial directions. A theoretical foundation for
these interactions is laid out in Sec. II. For our experimental
demonstrations, we use trapped 40Caþ ions on two separate
types of surface traps, each with an electrode layout
specifically suited for one of the two schemes. While axial
coupling and entanglement between ions in different
potential wells has previously been observed [18–20], here
we highlight the increased coupling rate that emerges from
large ion crystals [Fig. 1(e)(i)] and show that the coupled
ion strings contain usable motional modes that are resilient
to electric field noise [Fig. 1(e)(ii)]. These features are
discussed for the axial direction in Sec. III, and for the
radial direction in Sec. IV. Our work furthermore presents
the first realization of coherent coupling and entangling
gate operations [Fig. 1(e)(iii)] in radially separated linear
traps, signifying an important step towards control of qubits
in two dimensions (also Sec. IV). On the route towards
scalable control of 2D trap arrays, we demonstrate that
through control of rf voltages, we are able to adjust the
separation, and thus coupling rate, between neighboring ion
strings (Sec. V). Finally, we introduce a new method for
implementing parallel transversal entangling gates that is
specifically designed for the presented 2D architecture
and explore avenues to harness the potential of the QSA
architecture for scalable quantum computation, specifically
within the context of quantum error correction (QEC)
(Sec. VI). Here, the overhead of shuttling operations can
be minimized by matching the QEC code to the given
architecture. As an example, we investigate mapping of
concatenated quantum codes onto the QSA architecture,
providing a pathway to error-corrected and universal
logical quantum computation.

II. THEORY: INTERACTION BETWEEN
SEPARATED ION CHAINS

This section provides an overview of the principles of
coupled charges in separated harmonic potentials. We
introduce the two orientations of coupling used in this
work (axial and radial) and show how the coupling rate
depends on the number of trapped charges for each
orientation. We also numerically investigate the motional
mode structure of coupled charges, and introduce a model
that determines sensitivity of these modes to voltage noise
on the trap electrodes.
Trapped ion qubits are usually stored in subregisters

comprising of one-dimensional ion chains, whose axis is
aligned with the so-called rf null [21,22]. This region
coincides with a minimum in the effective trapping poten-
tial experienced by ions in the radio frequency field created
by the trap electrodes. Ion transport along the one-
dimensional rf null is referred to as axial shuttling. This
can be achieved through control of the static trapping fields
which are known as dc potentials. While some deviation of

the ions’ positions from the rf null is permissible [5],
excursions of several micrometers are detrimental to the
performance of ions as a string of qubits, since the larger
amplitude of the rf field destabilizes ion chains [23,24].
Thus, two-dimensional ion transport requires a second
distinct strategy of manipulation of trapping potentials:
We implement radial shuttling by altering the position of
the rf null itself. The transport strategies are schematically
depicted in Fig. 2(a).
In both axial and radial transport strategies, the aim is

to bring two (pseudo)potential minima, each containing a
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FIG. 2. (a) Schematic depiction of an ion trap layout that
enables axial (purple arrows) and radial (blue arrows) shuttling to
adjust the separation between trapping sites in two dimensions.
The direction of separation êd lies along the (b) axial and
(c) radial direction with respect to the ion chain’s axial mode
of oscillation leading, respectively, to axial and radial coupling of
ion chains. In both cases, coupled ions exhibit shared axial modes
of motion, and can oscillate in phase (COM), or out of phase
(STR). In this work, the two means of coupling are investigated in
separate ion traps, whose layouts are shown in (d) and (e).
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group of ions, towards each other, though without merging
them into a single well. This allows separated ion chains to
experience an enhanced coupling through Coulomb inter-
action, facilitating entangling gate operations. In this
section, we describe the formalism for coupling of ion
chains in separate potential wells as a function of the spatial
distribution and charge of the ion chains, and orientation of
their modes of oscillation.

A. Coupling rate of separated charges

An approximate way to model the coupling of separated
ion chains is to assume that the interaction potential is that
of a dipole-dipole interaction of point charges [18,19]. The
interaction potential is given by

V int ¼
Q1Q2

4πϵ0

r⃗1 · r⃗2 − 3ðr⃗1 · êdÞðr⃗2 · êdÞ
d3

ð1Þ

with Qf1;2g the total charge in each of the two wells, ϵ0 the
dielectric constant in vacuum, and r⃗f1;2g the displacement
of the chains from their equilibrium positions. Here, d is the
distance between charges, and êd the unit vector in the
direction of separation.
In this work, we consider the well-to-well interaction of

ions through their axial motion, the mode of motion that
aligns with the axis of the rf null(s). Here, we choose to
define the axial direction to lie along the z axis. We choose
this mode instead of radial modes of motion, since it
typically has longer coherence times as it is defined by
static voltages, and has a stronger coupling to laser fields
than the radial modes. The stronger coupling to the laser
field is due to the higher Lamb-Dicke parameter associated
with the lower trap frequency. For the trap geometries
presented in this work, the axial modes of each well are
parallel, such that r⃗1 · r⃗2 ¼ jr⃗1jjr⃗2j. The axis of well-to-well
separation, given by êd, is parallel to the axial modes in
axial shuttling and perpendicular to the axial modes in
radial shuttling. In other words, the interaction is repre-
sented by dipole-dipole coupling with dipoles oscillating
either in the direction of separation or perpendicular to it.
These coupling directions, shown schematically in
Figs. 2(b) and 2(c), are referred to as axial and radial
coupling (of axial modes), respectively. The second frac-
tion in Eq. (1) reduces to κjr⃗1jjr⃗2j=d3, with κ ¼ −2 for axial
coupling and κ ¼ 1 for radial coupling. The interaction
potential can thus be written as V int ¼ kintjr1jjr2j, where kint
is an interaction constant analogous to a spring constant,
given by

kint ¼ κ
Q1Q2

4πϵ0d3
: ð2Þ

The motion of a collection of n trapped ions with massm
and charge q in a single potential well can be expressed

as that of a harmonic oscillator. The curvature ϕz of
the confining potential defines the uncoupled common
oscillation frequency along the axial direction as
ωz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qϕz=m

p
. Thus, two chains of ions trapped in

separate wells can be described as two coupled harmonic
oscillators, with an interaction potential given by Eq. (1).
We consider the case that the collection of ions in both

wells contain the same number n of identical ions, and thus
have the same overall charge Q ¼ nq and mass nm.
Furthermore, we assume the axial curvature ϕz to be
identical in both wells. Neglecting internal degrees of
freedom within individual ion chains, the total potential
energy relevant to the system’s axial modes of motion is
given by Vz ¼ ϕzðr2z;1 þ r2z;2Þ=2þ V int, where rz;1 and rz;2
represent the axial displacement of the first and second
chain. Mode analysis in the basis ðrz;1; rz;2Þ results in two
distinct eigenmodes, (1, 1) and ð1;−1Þ in which ions in the
separate wells oscillate in and out of phase with each other,
respectively. These modes are schematically depicted in
Figs. 2(b) and 2(c). In both cases, both chains of ions
contribute equally to the mode, making these modes ideal
channels for the transfer of quantum information between
wells. The frequencies of these modes are given by

ωcom;str ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
z �

kint
nm

r
ð3Þ

with a “þ” for the in-phase [common (COM)] mode, and a
“−” for the out-of-phase [stretch (STR)] mode. The differ-
ence in frequency of these modes, Ωc ¼ jωcom − ωstrj, is
commonly referred to as the coupling rate. For a small
interaction potential, jkintj ≪ mnω2

z , the coupling rate can
be expressed as [18,19]

Ωc ¼
jκjnq2

4πϵ0mωzd3
: ð4Þ

The coupling rate presents an upper bound to the rate at
which motional information can be exchanged between
wells, and is in practice an upper bound for the rate at which
entanglement between wells can be achieved.
The model of Eq. (4) predicts a linear increase in

coupling with an increasing number of ions n.
Entangling operations therefore benefit from being imple-
mented on larger registers of qubits if the main error source
is qubit dephasing, as the duration of the operation
decreases, reducing the computation time and the suscep-
tibility to decoherence. However, the presented model for
coupling strength is only exactly valid for two separated
point charges, as it neglects the spatial extent of the ion
chain, which becomes relevant when the extent of the
chains is comparable to their separation. Numerical meth-
ods, outlined below, are required to obtain coupling rates
for arbitrary numbers of ions per well.
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B. Coupling rate of ion strings

A 2D array of trapped ion chains requires a trapping
potential that is periodic in two dimensions. We analyze a
simpler model which more closely resembles the exper-
imental setting discussed in further sections: we consider a
double-well potential along either the axial or radial axis.
We use the coordinate system fx; y; zg, as depicted in
Figs. 2(d) and 2(e), and denote positions as r⃗ ¼ ðrx; ry; rzÞ.
The lowest-order polynomial representation of a symmetric
double-well potential that confines ion chains in two
separated trapping regions in three dimensions is given by

Vax ¼
1

2
αr2z þ

1

4!
βr4z þ

1

2
ϕxr2x þ

1

2
ϕyr2y ð5Þ

for axial coupling as in Fig. 2(b), and

Vrad ¼
1

2
αr2x þ

1

4!
βr4x þ

1

2
ϕyr2y þ

1

2
ϕzr2z ð6Þ

for radial coupling as in Fig. 2(c). In both cases, α and β are
the second and fourth order curvatures along the double-
well axis, and ϕfx;y;zg are the second order curvatures along
the remaining axes. The parameters α and β define a double
well that confines positively charged particles when β > 0
and α < 0. The separation of the wells is uniquely defined
by these parameters, as d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−24α=β
p

, and each well has a
local second order coefficient αw ¼ −2α. The local curva-
ture sets the secular frequency ω of an ion trapped along the
axis of the double well, ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qαw=m
p

, though it should be
noted that if the well contains multiple ions, the motional
frequency can deviate from this value due to the spatial
extent of the ion crystal in an anharmonic potential. In our
surface traps, we can independently control the curvature
parameters α, β, and ϕfx;y;zg through a predetermined and
calibrated set of dc and rf electrode voltages.
To determine the coupling rate between ions in separate

wells, we first determine the equilibrium positions of all

ions in both strings, r⃗ðiÞmin. These positions are found by
numerically minimizing the system’s total potential energy
VT , given by

VT ¼
X
i

�
Vax=radðr⃗ðiÞminÞ þ

1

2

X
j≠i

VCoulðr⃗ðiÞmin; r⃗
ðjÞ
minÞ
�

ð7Þ

with VCoulðr⃗ðiÞmin; r⃗
ðjÞ
minÞ the Coulomb interaction between

ions i and j. Mode vectors ν⃗ðlÞ of modes indexed l are found
by calculating the eigenvectors of the Hessian H of VT ,
with terms

Hi;j ¼
δ2VT

δrðiÞk δrðjÞk

�����
r⃗min

; ð8Þ

for all ions i, j in all directions k∈ fx; y; zg. The square
roots of the eigenvalues of H=m are the mode frequencies,
ωðlÞ. For the potentials given by Eqs. (5) and (6), each
eigenvector represents displacements of ions in only a
single of three axes and can thus be classified as being axial
modes (along the axis of the ion string, the z axis) or radial
modes (perpendicular to the ion string, the x and y axes).
The mode structure that arises from two strings of ions in

a double well is similar to the set of modes that an ion string
would have if only one of the wells were occupied.
However, for each isolated single-well (sw) mode l with

mode vector ν⃗ðlÞsw, there exist two double-well (dw) modes,
which can be expressed as superpositions of the modes in

the two wells. In one of these modes, ν⃗ðlÞdw;ip, ion pairs in
separate wells oscillate in-phase (ip) with each other, while

in the other mode they oscillate out-of-phase (oop), ν⃗ðlÞdw;oop.

The frequencies of these modes,ωðlÞ
ν⃗;ip and ω

ðlÞ
ν⃗;oop, are similar

to those of the isolated single-well frequency but, crucially,

have a non-zero difference, jωðlÞ
ν⃗;ip − ωðlÞ

ν⃗;oopj ¼ ΩðlÞ
ν⃗ . As in

the point charge model of the previous section, ΩðlÞ
ν⃗ is a

coupling rate that sets an effective lower bound to
information transfer time between wells, for a chosen
mode ν⃗ðlÞ. As an example, in Appendix A we discuss in
detail the axial mode structure of two axially and radially
coupled ion strings.
In this work we look, in particular, at the eigenvectors

in which the two ion chains collectively oscillate in phase
and out of phase with each other, as depicted in Figs. 2(b)

and 2(c). These modes, ν⃗ð0Þdw;ip and ν⃗ð0Þdw;oop, can be viewed as
being derived from the lowest order, l ¼ 0, single-well

mode ν⃗ð0Þsw , typically referred to as the common or center-of-
mass mode. A feature of using these modes for ion
coupling is the simplification of the overall mode structure
of two separated strings, which can be effectively treated as
two coupled harmonic oscillators, without the need to
consider internal degrees of freedom within the chain.
Since the coupling rate scales inversely with the frequency,
and axial modes have lower frequencies than radial ones,
we use the axial modes of motion for the well-to-well
coupling experiments presented in this work.

For these modes, the coupling rate Ωc ¼ Ωð0Þ
ν⃗ is given

by the difference between the in-phase and out-of-phase

frequencies, jωð0Þ
ν⃗;ip − ωð0Þ

ν⃗;oopj ¼ jωstr − ωcomj. An effective
interaction constant kint between the chains can be obtained
from the inverse of Eq. (3),

kint ¼
1

2
nmΩc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

z −Ω2
c

q
; ð9Þ

where ωz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2qα=m

p
for axial coupling and ωz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qϕz=m
p

for radial coupling.
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Figure 3 displays coupling rates using the numerical
approach, calculated as a function of the number of ions per
well for various well-to-well separations, for coupling of
axial modes along the axial and radial directions. The
curvatures α, β, and ϕx;y;z are set to ensure that the chains
of ions align along the z axis, as depicted in Figs. 2(b)
and 2(c). Furthermore, in each configuration, the potential
curvatures are set to produce an uncoupled axial common
mode frequency of each ion chain of 400 kHz.
The numerical calculations presented in Fig. 3 show that

axial coupling benefits from a superlinear scaling with
the number of ions, a notable increase with respect to the
predicted linear scaling of the point-charge model [Eq. (4)].
This deviation is a natural consequence of the nonlinear
Coulomb interaction acting stronger on ions that are closer
to each other than the well-to-well separation. This favor-
able scaling allows for coupling of larger registers of qubits
in separate wells at timescales similar to that which can be
achieved for fully merged and split crystals, while avoiding
the complications involved in such operations. We further
note that, using the numerical methods described above,
we obtain that the influence of stray electric fields on
coupling between ion chains in an anharmonic potential is
negligible compared to the increase in coupling rate, with
increasing ion number. For radial coupling, on the other
hand, the scaling is sublinear, since the distance between
ions in different wells is on average larger than the point-
model separation.
The potentials given by Eqs. (5) and (6) are experimen-

tally realized with a set of dc and rf voltages that are
predetermined using electrostatic simulations of our trap
models. In practice, trap potentials will deviate from

desired potentials due to limits in numeral precision in
the electrostatic simulation, tolerances in the fabrication of
the traps, and unaccounted stray fields. The most notable
effect of this experimental imperfection is that the axial
field curvatures at the position of the two ion chains may
not be equal. As a result, the motional frequencies of
uncoupled chains, ωz;1 and ωz;2, are not necessarily on
resonance. The resulting mode frequencies deviate from
those given by Eq. (3), and are instead given by

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2

4
þ ω2

m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2int
n2m2

þ Δω2ω2
m

rs
; ð10Þ

in which we have used the difference frequency Δω ¼
ωz;2 − ωz;1 and the mean frequency ωm ¼ ðωz;1 þ ωz;2Þ=2.
The resulting mode functions are given by

ν⃗ð0Þω� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p ∓ χ
�
2

r �
−χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

q
; 1
�
; ð11Þ

with χ ¼ nmωmΔω=kint.
For a large difference in frequencies of the two harmonic

oscillators, Δω ≫ kint=ðnmωmÞ, (i.e., χ → ∞) eigenmodes
are ð−1; 0Þ and (0,1) and thus the wells are not coupled.
When the harmonic oscillators are tuned into resonance,
Δω ¼ 0 (i.e., χ → 0), the two coupled modes, ð1; 1Þ= ffiffiffi

2
p

and ð−1; 1Þ= ffiffiffi
2

p
at frequencies ωcom and ωstr emerge.

The frequency response of ωþ and ω− as a function of
Δω exhibits an avoided crossing around Δω ¼ 0. The
avoided crossing is a useful experimental feature, as it
allows us to accurately determine the coupling rate, by
measuring the motional frequencies ωþ and ω− of the
double-well system while varying Δω. The coupling rate at
resonance is given by the minimum value of jωþ − ω−j.

C. Mode heating of coupled ion strings

Anomalous heating is a common affliction in ion traps,
and is exacerbated in surface traps, as ions are in relatively
close proximity to electrodes which may carry voltage
noise [25–29]. The rate of excitation of an individual mode
is dependent on the projection of the electric field noise at
the position of the ions onto the mode’s eigenvector.
As described in Sec. II A, the coupled ion strings exhibit

an in-phase (common) and out-of phase (stretch) mode of
oscillation. The common mode, with mode vector (1, 1) can
be excited if field noise is homogeneous over the two ion
positions. The stretch mode with mode vector ð−1; 1Þ, on
the other hand, cannot be excited with a homogeneous field
and only responds to unequal fields at the ion positions.
Since the ion-electrode distance is typically larger than the
separation between the coupled ion chains, the electric field
noise is predominantly homogeneous. The stretch mode is
therefore less susceptible to mode heating, making it a good
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FIG. 3. Simulated coupling rate as a function of number of ions
per well, for various separations of the individual wells. The
common mode frequency of the individual wells is set to 400 kHz
for each point. If the axis of separation is along the ion chains’
axial direction (axial coupling, left), the coupling of axial modes
scales almost quadratically with number of ions, while for a
separation along the radial direction (radial coupling, right) the
scaling is sublinear. Dashed lines are the coupling rates predicted
from the point-charge model [Eq. (4)], which has a linear scaling
with number of ions.
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choice for use in entangling operations. The fact that the
stretch mode (and other higher-order modes) have lower
heating rates is well known for chains of ions in a single
well [30]. However, for single-well chains of more than 2
ions, ions participate unequally in such modes, making
them less suitable for entangling operations. In the double-
well approach, the two chains of ions equally participate in
the stretch mode, and furthermore benefit from the same
low motional frequency as their bare common modes.
In the following, we present a model for estimating mode

heating due to voltage noise. We first determine the ions’

equilibrium positions r⃗ðiÞmin for a known single- or double-
well potential, following the procedure outlined in
Sec. II B. We then determine the axial electric field

component Ekðr⃗ðiÞminÞ per volt for each independent dc
electrode k, analyzed at each ion position. This field is
obtained using finite-element electrostatic field simula-
tions. We cast this field at multiple ion positions into the
vector E⃗k. The contribution of a noisy electric field to mode
heating is determined by its projection onto that mode,
given by E⃗k;kn ¼ ðE⃗k · ν⃗nÞνn!. The heating rate Γn;k of a
mode n due to electrode k is proportional to the square of
the total force applied to the chain by E⃗k;kn, given by

ðqPi jEðiÞ
k;knjÞ2, and inversely proportional with the mass of

the chain [25]. We thus have a prediction for heating rate
per voltage noise, for each electrode, for a given trap
geometry. The total heating rate of mode n is the sum of
that of each electrode, Γn ¼

P
k Γn;k. We experimentally

investigate heating of coupled ion strings due to electric
field noise in Secs. III C and IV C.

III. WELL-TO-WELL COUPLING
IN THE AXIAL DIRECTION

In this section, we experimentally investigate well-to-
well coupling of ion strings along the axial direction. We
show how the coupling rate scales with number of ions per
well, observe coherent exchange of motion between wells,
and investigate sensitivity of the double-well system to
electric field noise. For these experiments, the slotted
surface trap schematically shown in Fig. 4(a) is used.
A set of static voltages on electrodes that flank the
trapping region [marked “dc” in Fig. 4(a)] are used to
generate a symmetric double-well potential along the z axis
[Fig. 4(b)], given by the quadratic and quartic potential
terms in Eq. (5), α and β.

A. Coupling rate in the axial direction

The coupling rate between ion chains in separate wells is
obtained by experimentally determining the mode frequen-
cies of the sets of ions in individual wells. As described in
Sec. II B, these frequencies, ωþ and ω−, exhibit an avoided
crossing when scanned across resonance, and the minimum
frequency difference determines the coupling rate Ωc.

The motional frequencies of ions in both wells can be
tuned by introducing a homogeneous field Ez in the axial
direction, which alters the double well potential to Vax ¼
−Ezrz þ αr2z=2þ βr4z=4! (neglecting field components in
the x and y directions). As with the double-well potential,
this additional field is produced by adding a predetermined
and calibrated set of voltages to the trap electrodes. For
harmonically confined ions, such a field would ordinarily
not change the motional frequency. However, since the
local trapping potential around each well is anharmonic, this
field generates a change in motional frequencies of approx-
imately equal magnitude but opposite sign in the two wells.
Applying a homogeneous field therefore allows us to bring
the two motional frequencies in and out of resonance, and is
by approximation linearly proportional to varying the single
well frequency difference Δω in Eqs. (10) and (11), while
keeping the mean frequency ωm constant. We can then
deduce the coupling rate by observing the magnitude of the
avoided crossing at Δω ¼ 0.
Figure 5(a) displays an example of an avoided crossing

measurement, obtained by sideband spectroscopy, in which
we detect ions’ excitation when optically probing near
motional sidebands. The color mapping represents the

FIG. 4. (a) Electrode layout of the trap used for the axial
coupling experiments. (b) Double-well potential along the trap
axis. The plots show the same data, at different scales. In this
particular example, local trap frequencies are 830 kHz, with a
double well separation of 89 μm.
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mean excitation of all ions from only one of the two wells.
The two wells each contain n ¼ 6 ions, and are separated
by d ¼ 65 μm. The motional frequencies of the chains are
about 400 kHz. We vary both the laser frequency (vertical
axis, displayed as detuning from the carrier frequency)
and the applied field (horizontal axis). The plot shows both
how the detuning between wells, Δω, affects the motional
frequencies as given by Eq. (10) and how it affects the
magnitude of participation in each mode, as given by
Eq. (11). The magnitude of the applied stray field at which
the avoided crossing occurs, ≈1.11 V m−1, is not zero.
This discrepancy is caused by stray fields from patch
potentials on the trap surface, and limited numerical
precision when calculating voltages to generate the double-
well potential.
Motional frequencies for each axial field setting in

Fig. 5(a) are obtained by fitting the data to a Gaussian
function. The measured center frequencies are compared to
a model function based on Eq. (10), given by

ω� ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ − dÞ2=4þ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ bðγ − dÞ2

qr
; ð12Þ

with a…d fit parameters, and γ the applied field. The
coupling frequency Ωc is inferred from a least-squares
regression between the measured data and the model, with

Ωc ¼ ωþðγ ¼ dÞ − ω−ðγ ¼ dÞ ¼ a
� ffiffiffiffiffiffiffiffiffiffiffi

bþ c
p

−
ffiffiffiffiffiffiffiffiffiffiffi
b − c

p �
:

ð13Þ

In the example of Fig. 5(a), we find Ωc ¼ 2π 19ð2Þ kHz.
Figure 5(b) displays the measured coupling rate obtained

from multiple avoided crossing measurements. Here, we
vary the number of ions per well (n ¼ 2, 4, and 6), and the
separation between wells. The mean motional frequency
of the wells ωm has been fixed for all configurations to be
2π 400 kHz. Note that since the common mode frequency
in an anharmonic potential is dependent on the number of
ions, the double-well potential parameters α and β must
be adjusted as a function of ion number to counteract
this dependence.
The solid lines in Fig. 5(b) are numerically calculated

values for the coupling rate. No free parameters are used in
obtaining simulated values, solely the well-to-well sepa-
ration and the mean common mode frequency. With an
R-square value of 0.95, the simulated and measured values
are in agreement.
At a separation of 56 μm, we measure a coupling rate

of 2π 39ð3Þ kHz between two wells containing 6 ions each.
In contrast to the dipole-dipole interaction model which
predicts a linear scaling with number of ions, this is a
sixteen-fold improvement over the predicted 2π 2.5 kHz
coupling that would be achieved for a configuration with 1
ion per well with the same separation and motional
frequency.

B. Exchange of motional excitation
in the axial direction

A prerequisite for coherent control of qubits in separate
wells, such as entangling operations, is that motional
excitation can be coherently exchanged between the two
wells. This section details the experimental observation of
coherent exchange of motional excitation of ion strings in
separate wells.
As described in Sec. II, we consider the motion char-

acterized by the displacement of the string of ions in each
well, r⃗ ¼ ðrz;1; rz;2Þ. When on resonance, eigenmodes
of oscillation are given by ν⃗com ¼ 1=

ffiffiffi
2

p ð1; 1Þ and
ν⃗str ¼ 1=

ffiffiffi
2

p ð1;−1Þ, and have frequencies separated by
the coupling rate, Ωc. A displacement of ions in the first
well, rz;1 ¼ λ is written in terms of eigenmodes as
λ=

ffiffiffi
2

p ðν⃗com þ ν⃗strÞ, which has a free evolution given by

r⃗ ¼ λffiffiffi
2

p ½sin ððωm − Ωc=2ÞtÞν⃗com
þ sin ððωm þΩc=2ÞtÞν⃗str�: ð14Þ
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FIG. 5. (a) Example of the avoided crossing in the coupling rate
measurement for n ¼ 6 ions per well. (b) Measured coupling rate
for various numbers n of ions per well, and various separations.
Lines are simulated values. Insets display chains of ions detected
with an EMCCD camera. The error bars represent the 95% con-
fidence interval coming from the fits to the avoided crossing
measurements using Eq. (12).
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Applying trigonometric identities gives

r⃗ ¼ λ

�
cos

�
Ωct
2

�
sinðωmtÞ; − sin

�
Ωct
2

�
cosðωmtÞ

�
ð15Þ

from which we see both ion chains oscillating at the trap
frequency ωm, though with an amplitude modulated at a
rate Ωc=2. An excitation applied to ion chain 1 is therefore
fully transferred to ion chain 2 after a time texc ¼ π=Ωc, and
returned at 2texc. A similar treatment of exchange of
motional excitation can be made with a quantum mechani-
cal description of the coupled harmonic oscillator system
[20]. In such a system, it can be shown that the mean local
phonon number oscillates between wells.
We directly observe this exchange of excitation in

our experiment. We use a system of two ions per well,
separated by 58 μm, at a motional frequency of 460 kHz.
We measure a coupling rate of 2π 5 kHz with a measure-
ment similar to that in Fig. 5(a). The experimental protocol
is as follows: Ions are first cooled to near the motional
ground state using sideband cooling. After ground-state
cooling, we determine the initial mean mode occupation to
be approximately 0.7 phonons for both the common and
stretch modes of the double-well system. After ground-
state cooling, a 397 nm pulse is applied to ions in only one
of the wells (which wewill call the first well), exciting them
to the 4P1=2 level. Spontaneous decay to the 4S1=2 level
induces random momentum kicks, exciting the motion of
those ions. Spontaneous decay can also occur to the
metastable 3D3=2 state with a branching ratio of about
1=16, where population is trapped, and the ion has left the
heating cycle. A duration of 5 μs of the 397 nm pulse
ensures that > 99.9% of population has been shelved to
the 3D3=2 level, from where it is hidden from subsequent
operations.
At this stage, the photon recoil has excited the motion of

the ions in the first well, while those in the second remain
near the motional ground state, corresponding to the initial
condition of Eq. (15). We probe the motional excitation of
the second well by analyzing optical excitation from red
or blue sideband pulses, detuned from the 4S1=2 to 3D5=2

transition by the mean motional frequency. The mean
phonon number in the second well is inferred by comparing
the excitation of both sidebands to numerical models of
excitation as a function of energy stored in the well. Since
the ions in the left well are hidden from these analysis
pulses, they do not need to be considered in the numerical
models. The sideband excitation pulse is on for a duration
of 15 μs. The total duration of motional excitation and
analysis, 20 μs, is shorter than the expected energy
exchange time, texc ≈ 100 μs, but is not negligible. Since
excitation transfer also occurs during these pulses, we
expect a reduction in contrast in the amplitude of the
phonon exchange measurement.

Figure 6 displays the measured energy of the ions in the
second well, E2ðtÞ, expressed in terms of phonons,
n2ðtÞ ¼ E2ðtÞ=ℏωz, as a function of wait time t between
excitation of the first well, and analysis of the second. The
expected oscillatory exchange of energy is apparent. The
red line is a least-squares fit between the measured data
and the model

n2ðtÞ ¼
1

2
½ðn1ð0Þ − n2ð0ÞÞ cos ðΩctþ ϕÞ exp ð−t=τdÞ

þ n1ð0Þ þ n2ð0Þ� ð16Þ

with t the experimental wait time and all other variables
free fitting parameters. n1ð0Þ and n2ð0Þ represent the first
and second well’s initial energy, expressed in phonon
number, Ωc is the coupling rate, ϕ is a phase offset
caused by non-zero duration of the state preparation and
analysis pulses, and τd represents a decay in contrast due to
motional decoherence. From the fit we determine a cou-
pling rate of Ωc ¼ 2π 4.7ð1Þ kHz, in good agreement with
the coupling rate measured through spectroscopy (as in
the previous section) and with the numerically predicted
value, 2π 4.9 kHz.

C. Heating rates of axial modes

Entangling gates used for quantum information require
the motional states of the chain of ions to be coherent, since
the motional modes act as a data bus. Motional heating due
to electric field fluctuations diminishes motional coherence
and is a common issue in surface traps [25–29]. In this
section, we investigate the properties of mode heating of
ion crystals confined in a double-well potential.
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FIG. 6. Demonstration of exchange of motional excitation
between two axially coupled sets of two ions. After ions in
one well are excited, the excitation of ions in the second well is
measured as a function of delay time between excitation and
measurement. The error bars represent a 95% confidence interval
in the least-squares regression between measured data and the
numerical models. The solid line is a sinusoidal fit, with a decay
parameter included. A coupling rate of Ωc ¼ 2π 4.7ð1Þ kHz is
inferred from the rate of excitation transfer.
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Figure 7 displays the results of heating rate measure-
ments for various ion numbers measured via excitation of
the motional sidebands [25]. In all measurements the
frequency of the measured mode is set to 450 kHz. For
the double-well data, the wells are separated by 50 μm. The
blue data points are a set of control measurements in which
ions are trapped in a single well. These measurements have
been performed to confirm the expected linear scaling of
the single-well heating rate with number of ions [25]. The
single particle data is furthermore employed to calibrate a
technical noise model of electrode voltage noise, which is
used to determine a simulated expected heating rate for
the other measured configurations. The noise model is
described in Sec. II C. It assumes technical voltage noise
that is uncorrelated between different electrodes but has the
same noise amplitude on all electrodes. Results from the
model are marked as crosses in Fig. 7.
Double-well heating rates have been taken with four ions

per well. The heating rate of the common mode of motion,
2.4(4) ph/ms (purple circle in Fig. 7), is similar to that
expected from an 8-ion single-well model, 2.7 ph/ms
(dashed line). However, the measured heating rate lies
lower than this value, which can be attributed to the spatial
distribution of charges: The estimated heating rate when
taking the spatial extent of the ion chain into account is
1.8 ph/ms (purple cross). The stretch mode, in contrast,
has roughly an order of magnitude lower heating rate,
0.2(1) ph/ms (red circle), in agreement with the predicted
value of 0.1 ph/ms (red cross).
The fact that the stretch mode of motion exhibits a lower

heating rate than the common mode is well known for
single-well ion crystals (exemplified by the yellow data
point in Fig. 7). We have demonstrated here that this
concept continues to hold even when ion crystals are

spatially separated, which highlights the benefit of using
the stretch mode for well-to-well entangling operations,
compared to merging and splitting protocols, which are
inherently sensitive to mode heating.
The double-well stretch mode has the property that its

motional frequency remains as low as the common mode
frequency. In contrast, in single-well ion crystals the stretch
mode has a factor

ffiffiffi
3

p
higher frequency. This, in combi-

nation with the fact that in a multi-ion stretch mode with
more than two ions, ions unequally contribute to the mode
(i.e., have unequal Lamb-Dicke parameters), makes the use
of the stretch mode and higher order modes for entangling
operations impractical. The double-well stretch mode is
much less affected by these disadvantages even for large
numbers of ions per well and is a good candidate for
mediating entangling operations due to its low heating rate.

IV. WELL-TO-WELL COUPLING
IN THE RADIAL DIRECTION

In this section, we demonstrate coupling, phonon
exchange, and entanglement of radially separated ions in
two linear ion traps. Furthermore, we verify that the stretch
mode of oscillation of coupled ions in a radial double-well
potential is more resilient to electric field noise compared to
the common mode.
We realize the following experiments with the trap

depicted in Fig. 8(a), which features 3 colinear rf electrodes
and a total of 12 dc electrodes distributed on a single
aluminum metal layer on top of a fused silica substrate.
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FIG. 7. Heating rates for various configurations of ions, in a
single well or double well. Circles are measured data, and error
bars are propagated from 95% confidence intervals in the least-
squares regression between measured data and the model
functions. Crosses are simulated values, using the single ion
data as a calibration reference. The dashed line represents a linear
scaling of heating rate with number of ions, following a single-
well model, also using the single ion data as a reference.

FIG. 8. Overview of the trap used for radial coupling experi-
ments. (a) Schematic trap design. The unlabeled electrodes in
gray are the dc electrodes used for confinement and control of the
two trapping sites. (b) Cross section of the total potential along
the radial direction x, 80 μm above the trap surface corresponding
to the orange dashed line in (a), generated by applying an rf
voltage of 140 V peak to peak at 19 MHz on the rf electrodes. The
resulting radial frequency along x is 2.4 MHz in both trapping
sites. (c) Cross section of the total potential along the axial
direction z [blue line in (a)], with an axial frequency of 1 MHz.
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As discussed in Sec. II, ion strings are stored at the
minimum of the effective trapping potential generated by
the rf electric field, commonly referred to as the null of the
rf pseudopotential. For the trap in Fig. 8(a), similar to those
documented in Refs. [12,31–33], the presence of three rf
electrodes in a plane results in a pseudopotential landscape
that is characterized by having two minima, as shown in
Fig. 8(b). For our particular trap, we have determined the
well-to-well separation to be d ≈ 29 μm along the radial
direction x, at a height above the surface of 80 μm. A
predetermined set of voltages on the dc electrodes allow us
to generate individually controllable confining potentials
along the axial direction of each of the linear traps, as
shown in Fig. 8(c) for the right trapping site.

A. Coupling of radially separated ions

The coupling of axial modes of oscillation of ions
located in a radially separated double-well potential is
demonstrated by measuring the axial mode frequencies of a
system of one ion in each well as a function of the well-to-
well axial frequency detuning. As discussed in Sec. III A,
upon scanning the motional frequencies of the two wells
through resonance, the axial mode spectrum exhibits an
avoided crossing, and the minimum frequency difference
represents the coupling rate Ωc when the two wells are
resonant. We change the axial frequency in the two wells
using two sets of dc voltages, each of which controls the
potential curvature in one of the two potential wells,
without affecting that of the other. We vary the axial
curvature of both wells in opposite directions and obtain
the frequency of the axial modes via sideband spectros-
copy. We read out the electronic state of the ions by
collecting their fluorescence light with a photomultiplier
tube (PMT). By filtering out the light from the right well
with an aperture, we observe the axial mode of only the ion

in the left well, which splits into two as its mode frequency
approaches resonance with that of the right well.
The measured spectra of the ion in the left well are

shown in Fig. 9, as a function of the expected left well axial
frequency extracted from the potential curvature, in the
absence of well-to-well coupling. We obtain the motional
frequencies for each axial curvature by fitting experimental
data with a double Gaussian function. As explained in
Sec. III A, we compare the extracted mode frequencies with
Eq. (12) and obtain the coupling rate Ωc. For n ¼ 1 ion in
each well trapped at an axial frequency of 540 kHz,
we obtain a coupling rate Ωc ¼ 2π 6.6ð3Þ kHz. This value
is in good agreement with that calculated using Eq. (4),
2π 7.0 kHz.

B. Phonon exchange between radially separated ions

As introduced in Sec. III B, coherent exchange of
motional excitation from one well to another is a prerequi-
site to perform well-to-well entangling operations. In this
section we present phonon exchange between two ions
located in two radially separated linear traps.
The experiment consist of injecting one phonon in one

of the two wells, and the observation of phonon transfer
from one well to the other as a function of the wait time
after the phonon injection. In contrast to the axial phonon
exchange presented in Sec. III B, we do not have the
means to individually address ions with laser beams in
our setup.
Instead, we realize selective phonon injection by imple-

menting fast in-sequence voltage switching on the trap’s
dc electrodes, allowing us to tune the motional frequencies
of the two wells in and out of resonance. The two wells
become spectrally resolved when out of resonance,
allowing us to perform ion-selective operations through
sideband pulses. We have opted not to use this method of
phonon injection in the axial motional excitation measure-
ments of Sec. III B due to the limited bandwidth voltage
switching induced by electrical filters in our dc lines.
We cool the ions to near the motional ground state via

sideband cooling. Subsequently, we tune the two wells out
of resonance, and inject one phonon in a target well with a
blue sideband π pulse. We then tune the two wells on
resonance, enabling phonon exchange between the two
ions. After a given wait time, we detune the wells from
resonance again, and use a blue sideband π pulse on the
target ion. If a phonon is present in the target well, this
pulse reverses the excitation of the first pulse, deexciting
the ion. If, on the other hand, the phonon was transferred to
the other well, no deexcitation occurs.
The result of the phonon exchange measurement for a

system of one ion per well, at an axial frequency of
540 kHz is shown in Fig. 10. Switching the wells into
resonance does not happen instantaneously, as the adjusted
voltages pass through electronic filters. Therefore, there is
an intermediate time during which the two wells are near,
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Ωc = 2π 6.6 kHz

FIG. 9. Avoided crossing measurement for n ¼ 1 ion per well
at an axial frequency of 540 kHz. The measurement shows
spectra of the ion on the left well as a function of the expected left
well axial frequency from the potential curvature, in the absence
of well-to-well coupling.
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but not on, resonance. We have independently determined
that the motional frequencies settle to a steady state at
approximately 130 μs, after which phonon exchange is
expected to occur at a constant rate. Wait times prior to this
are indicated by the faded region before 130 μs in Fig. 10.
The solid line in Fig. 10 represents a least-squares fit of a

model equivalent to the one used in Sec. III B, Eq. (16).
Data from the first 130 μs are not included in the fit. We
infer a coupling rate Ωc ¼ 2π 10.92ð2Þ kHz. This value
differs from the value obtained from the avoided crossing
measurement in the previous section, 2π 6.6ð3Þ kHz. This
discrepancy comes from the fact that the frequencies of
the two wells were intentionally set to be marginally off
resonance. This detuning from resonance was introduced to
counter a reduction in phonon exchange contrast caused
by the nonzero switching time, in which partial phonon
exchange occurs before resonance is reached. This effect is
discussed in more detail in Appendix B.
The controlled exchange of quanta of motion between

ions provides a means to map or transfer information
about the ions’ electronic state. This can, for example,
be used in quantum logic spectroscopy [35–37] or the
generation of entanglement between qubits. For example,
in Fig. 10, at wait times corresponding to 0.5 excitation
probability, a phonon is in a superposition of being in
the left and right well. The coherence of this motional
superposition can be estimated by mapping the motion of
the individual wells to the ions’ electronic states, creating
an entangled state. This protocol is demonstrated in
Appendix C.

C. Heating rates of radially coupled axial modes

As has been introduced in theory in Sec. II C, the modes
of a set of coupled ions in a double-well potential are
unequally affected by electric field noise. In particular, for
typical trapping geometries, the stretch mode of motion is
considerably less sensitive to electric field noise compared to
the common mode. This has been experimentally shown for
ions coupled along the axial direction in Sec. III C. In this
section, we discuss measurements of heating rates of modes
emerging from ions coupled along the radial direction.
The heating rate measurements are taken for one ion

per well, with an axial motional frequency of 740 kHz.
Figure 11(a) shows examples of excitation spectra of the
red sideband for various wait times. Spectra are obtained
by detecting the state of only one of two ions, while the
sideband pulse is applied to both. The emergence of peaks
in the red sideband spectrum with an increase in wait time
are indicative of an increase in phonon number. Notably,
the common mode of motion increases at a higher rate
than the stretch mode. By comparing data with numerical
models, we obtain phonon numbers as a function of wait
time, shown in Fig. 11(b). From linear fits of the data,
we obtain heating rates of 18(3) and 2.6(4) ph/s for the
common and stretch modes, respectively.
Simulations that assume uncorrelated voltage noise on

the trap electrodes, as discussed in Sec. II C, predict that for
ions separated by 29 μm, the ratio of common and stretch
mode heating rates is 16. Our measured ratio, 8.4, deviates
from this prediction, which indicates that ion heating rates
in our trap are not limited by the technical voltage noise
described in our noise model. Regardless, the stretch mode
heating rate is still lower than that of the common mode of
motion of a single-well two-ion system, which we have
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FIG. 10. Demonstration of phonon exchange between axial
modes of oscillation of two radially coupled wells. The wells
have one ion in each. The solid line is a sinusoidal fit, with a
decay parameter included. The grayed out data before 130 μs is
not included in the fit as the motional frequencies of the two wells
have not settled after switching dc voltages. From the rate of
phonon transfer we infer a coupling rate Ωc ¼ 2π10.92ð2Þ kHz.
The error bars represent the 95% confidence interval of the
mean excitation probability resulting from quantum projection
noise [34].
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FIG. 11. Results of heating rate measurements for radially
separated ions. (a) Spectra around the red sideband transition
depict the emergence of peaks as wait time between state
preparation and sideband analysis increases. Notably, the
stretch mode heats up less than the common mode. (b) Phonon
numbers are extracted from spectra such as in (a) for various
wait times. Error bars are 95% confidence intervals from the
least-squares regression between measured data and the model
function. Heating rates of 18(3) and 2.6(4) ph/s are obtained
from linear fits.
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measured to be 7 ph/s. This demonstrates the advantage of
using well-to-well coupling for ion connectivity as opposed
to merging ions into a single well.

D. Entanglement of radially separated ions

The generation of entanglement across quantum registers
[20] is an essential tool for the proposed 2D trap array
architecture. In this section, we present the realization of an
entangling gate of two radially coupled ions, located in two
distinct linear traps. We encode the entangled quantum
information in the internal electronic states of the 40Caþ
ions, 4S1=2ðm ¼ −1=2Þ and 3D5=2ðm ¼ −1=2Þ, from here
on using the shorthand notation S and D.
To generate entanglement, we employ a Mølmer-

Sørensen (MS) gate operation [38], one of the prevailing
techniques for entanglement generation for optical qubits.
The driving mechanism of the gate is to employ a
bichromatic laser pulse, where the frequency of each tone
is detuned by an equal but opposite amount from a red and
blue motional sideband transition. During the gate the
collective vibrational motion of the ions is excited, under-
going a circular trajectory in phase space. To eliminate
unwanted spin and motional entanglement at the end of the
gate, the phase space trajectory has to form a closed loop.
This condition is met at gate durations of t ¼ 2πn1=δ1, with
n1 a nonzero integer with the same sign as δ1. In typical
single-well two-qubit gates on the axial common mode, the
detuning from the motional mode, and thus the gate time,
can be freely chosen (within experimental limitations such
as available laser power and qubit coherence time) as all
other axial modes are spectrally decoupled. In our double-
well gate, we must account for the presence of two
motional modes, separated in frequency by the coupling
rate Ωc=2π. In Appendix E we describe different ways of
implementing an MS gate in the presence of two closely
spaced motional modes, and present simulations that
determine the most advantageous gate scheme, considering
ion heating as the most prominent source of decoherence in
the system.
Among the methods of ensuring motional phase-space

loops of multiple modes are closed at the end of a gate
[39–43], a straightforward technique is to choose the
detuning such that the gate duration obeys both t ¼
2πn1=δ1 and t ¼ 2πn2=δ2, with δ2 ¼ Ωc þ δ1 the detuning
from the second mode, and n2 another nonzero integer. As
discussed in Appendix E, this restriction consequently
limits the gate time to a multiple of 2π=Ωc. The
gate presented in this section is applied to a double-well
system with one ion per well with a coupling rate of
Ωc ¼ 2π 5.3 kHz. Guided by the numerical simulations
in Appendix E, we have chosen δ1 ¼ −Ωc ¼ δ2=2 and set
the gate duration to t ¼ −2π=δ1 ¼ −4π=δ2 ¼ 190 μs. The
results of the MS gate are shown in Fig. 12.
In Fig. 12(a) we show the state evolution of both ions,

as a function of the length of the bichromatic laser pulse.

We observe state populations corresponding to the
entangled state 1=

ffiffiffi
2

p ðjSSi þ jDDiÞ at a pulse duration
of 190 μs. In Fig. 12(b) we show the mean populations
of the two ions, calculated from 8700 repetitions of the
sequence at this wait time, from which we extract a mean
population of P ¼ PSS þ PDD ¼ 0.86ð1Þ.
In Fig. 12(c) we show the parity of the final state as a

function of the phase of the analysis pulse. The parity
contrast corresponds to a visibility of 0.85(2), from which
we calculate an entangled state fidelity of FTot ¼ 0.86ð1Þ
[44]. To identify the dominating error source, we charac-
terized coherence times in our system via Ramsey spec-
troscopy, finding 1/e coherence times of 700ð40Þ μs on the
optical qubit and 10(1) ms on the axial motion, suggesting
that the leading source of error is represented by the 729 nm
laser dephasing. We have conducted numerical simulations
of the gate, in which we consider optical dephasing to be
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FIG. 12. Mølmer-Sørensen (MS) gate on two radially separated
ions. (a) Measured two-ion populations, as a function of gate
duration. Solid lines are simulated data, taking into account
estimated qubit decoherence measured in our system. (b) Mean
populations, taken at a pulse duration of 190 μs, corresponding to
the dashed line in (a). A mean population of P ¼ PjSSi þ PjDDi ¼
0.86ð1Þ is measured. Averages and their 95% confidence inter-
vals, shown by the error bars, are taken from 8700 repetitions of
the experimental sequence. (c) The contrast in parity analysis
indicates a visibility of 0.85(2). The error bars represent the
95% confidence intervals for each measured phase and are
extracted from quantum projection noise [34].
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the only source of decoherence. These simulations, dis-
played as solid lines in Fig. 12(a), predict a gate fidelity of
0.85(1), in good agreement with our experimental result.

V. ION TRANSPORT IN THE RADIAL DIRECTION

In this section, we investigate a novel type of trapped-ion
transport operation, transport along the radial direction.
We show that we can control the distance between two
radially separated ion chains by altering the rf voltages, and
measure the coupling rate between chains of various
numbers of ions depending on their separation.

A. Concept and experimental implementation

Radial transport of ion strings is a key element of the
QSA architecture as altering the distance between linear ion
traps enables radial connectivity between neighboring sites
in the 2D ion trap array. In this section, we demonstrate
control over the radial distance between two parallel linear
traps by varying the rf confinement, and validate the
theoretical model for radial coupling of axial modes of
two ion chains, presented in Sec. II, as a function of chain
separation and number of ions per well.
We realize these experiments with the trap shown in

Fig. 13. The trap design is conceptually similar to the one
introduced in Sec. IV, but the inner and outer rf electrodes,
rf1 and rf2, have widths of 75 and 255 μm and are
separated by 115 μm. This configuration produces a
pseudopotential landscape with two rf minima separated
by 110 μm, when the electrodes rf1 and rf2 have the same
rf amplitude. A more detailed description of the trap can be
found in Appendix D.
The aim of this experiment is to control the distance

between these rf minima, which depends on the ratio
between the voltage amplitudes of the signals applied to
the inner and outer rf electrodes, ζ ¼ Vrf1=Vrf2. Moreover,
the position of the rf pseudopotential minima depends

on the relative phase between the rf signals,
which should be in phase to avoid inducing excess
micromotion [23].
Radial shuttling of ions is thus achieved by independ-

ently controlling both the amplitude and phase of the rf
voltage applied to the inner and outer rf electrodes, using
two rf sources and resonators. In practice, controlling the
phase of both rf fields is necessary during rf transport,
as the relative phase between the rf signals on the trap
electrodes changes when varying the rf ratio ζ. This change
is a result of the coupling between the two resonators, and
of an overall change in the rf circuitry parameters induced
by temperature changes. The details about the double
resonator circuitry are provided in Appendix D. During
rf transport, while the rf ratio is changed, the dc voltages
used to confine the ions axially have to be adjusted to keep
the dc and rf potential minima overlapped, and to com-
pensate for changes in stray fields along the shuttling path.

B. Characterization of radial shuttling

We verify our control over the double-well pseudopo-
tential by measuring how the well-to-well distance and
radial trap frequencies depend on the rf ratio ζ. We keep the
axial motional frequency constant at ωz ¼ 2π 540 kHz for
all experimental settings.
The distance between ions is determined by analyzing

images of the ions. To obtain this distance, the magnifi-
cation of the camera must be known. This is calibrated as
follows: two ions are placed in a single well, and their axial
trap frequency is measured using conventional sideband
spectroscopy. The separation between ions, in pixels, is
then related to the analytically expected separation for
given trap frequencies [45].
In Fig. 14(a) we show how the well-to-well distance

depends on ζ by adjusting the separation between d ¼ 15
and 110 μm. The separation d ≈ 15 μm is the lowest
achievable separation below which the two wells merge
into a single one. This limit is due to the discrete minimum
step size of the rf sources of 0.1 dB. The results presented
are in good agreement with the pseudopotential simulations
up to a constant scaling factor of 1.039(5), which can be
explained by systematic errors in the measurement of the
rf voltage on the trap.
In Fig. 14(b) we show the frequency dependence of the

radial mode of oscillation, aligned along the x direction, as
a function of ζ. We determine this frequency by applying an
oscillating signal that is resonant with the ions’ motional
frequency to one of the trap dc electrodes. This process,
colloquially known as “tickling” [46], excites the motion of
a trapped ion to an extent that it appears as a larger spot on
the camera. This tickling method is used as opposed to the
previously mentioned sideband spectroscopy, because it
reduces ambiguity in determining radial modes.
In varying ζ, only the inner rf voltage is changed,

while the outer rf electrodes are kept at a constant voltage.

RF2 RF1

x
z
y
50 μm

RF2DC DCrf 2 rf 1

x
z
y
50 μm

rf 2dc dc

FIG. 13. Schematic design of the trap used for radial transport.
The inner and outer rf electrodes are labeled rf1 and rf2,
respectively, as they are driven by two independent rf signals.
The electrodes in gray are the dc electrodes used for confinement
and control of the two trapping sites.
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The rf ratios of the data presented in Fig. 14(b), include
the scaling factor determined from the data in (a). We show
that the measured radial frequencies decrease according to
simulations. The presented measurements indicate that we
understand and can control the rf double-well pseudopoten-
tial, allowing us to tune the radial distance between the two
wells, and thus control the coupling rate of ion chains.

C. Scaling of radial coupling rate

The coupling rate between ion chains in separate wells is
determined experimentally by detecting the motional mode
frequency of the ions in the two wells. As described in
Sec. II, the mode spectrum of two coupled oscillators splits
into an in-phase (common) and out-of-phase (stretch) mode
of oscillation. When the wells are tuned on resonance,
the frequency difference of these modes is given by the
coupling rate Ωc.
Ideally, we would determine the wells’ motional mode

frequencies via resolved 729 nm laser spectroscopy, as
described in Sec. III A. However, in this dual-resonator
driven trap, the ion heating rates are on the order of tens of
phonons per ms, which enhances the coupling to motional
modes and complicates the overall mode spectra. This
makes an accurate determination of coupling rates on the
order of kHz using laser spectroscopy impractical.
Instead, we determine mode frequencies via the rf-

tickling method described above. We select the dc electro-
des such that the field produced by the applied rf signal has
an overlap with both the in-phase and out-of-phase axial
modes of oscillation of ions in the radial double well. When
the rf signal is on resonance with an axial mode, it increases
its energy, and we can detect the driven motion by

measuring the width of the ion crystals on a CCD camera.
When the two wells are on resonance, a scan of the rf
tickling frequency excites the coupled system’s common
and stretch modes at different frequencies, where the
frequency difference indicates the coupling rate. If the
wells are properly tuned on resonance, the ions in both
wells are expected to participate equally in the excitation of
both modes.
We perform such measurement for the n ¼ 3 ions per

well system shown in Fig. 15(a). The width of the ion’s
image, as detected on the EMCCD camera, is displayed as a
function of the rf tickling frequency in Fig. 15(b). Both
modes of oscillation are present simultaneously in the
two wells, indicating that they are coupled. The unequal
excitation of the two modes, seen as differing widths of the
peaks in Fig. 15(b), is due to the unequal spatial overlap
between the applied rf tickling field and the mode vector.
The frequency separation between the modes gives the
coupling rate, estimated to be Ωc ¼ 2π 6.4ð3Þ kHz.
Following the above-mentioned approach, we collect the

measured coupling rates for double-well configurations
of up to n ¼ 3 ions per well, for different well-to-well
distances and axial frequencies varying between 238 and
312 kHz. The results are shown in Fig. 15(c), and are
compared to simulated values, computed with the approach
described in Sec. II. We measure coupling rates as high as
Ωc ¼ 2π 15 kHz for one ion per well at a well-to-well
distance of 29 μm, and coupling rates between 2π 5 and
2π 10 kHz for configurations of two or more ions per well.

FIG. 14. Characterization of radial transport. (a) Measurement
of the well-to-well separation along the x axis and comparison
with simulations. The insets are camera images of ions at the
corresponding values of rf ratio ζ. Here, error bars are
95% confidence intervals propagated from the least-squares
regression between measured ion-images and the double-
Gaussian model function used for fitting. (b) Measurement
and simulations of the radial frequency parallel to the trap
surface, as a function of ζ, for a constant axial frequency of
ωz ¼ 2π 540 kHz. The error bars are smaller than the markers,
as the measurements’ uncertainty is of the order of 1 kHz, and
are thus not shown in the plot.
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FIG. 15. rf coupling measurement with rf tickling. (a) EMCCD
image of ions trapped in a radial double well, with three ions per
well. (b) Width of the ion’s image on the EMCCD camera, as a
function of the rf tickling frequency. The participation of the ion
motion to the two coupled modes in both wells is detected.
(c) Well-to-well coupling Ωc as a function of distance d between
wells, and number of ions per well. The measurements are taken
for axial frequencies ranging from 238 to 312 kHz. The lines in
the plot represent radial coupling simulations for different ion
numbers at a fixed axial frequency of 262.2 kHz, i.e., the mean of
the axial frequencies used in the measurements. The error bars
represent the 95% confidence interval propagated from the fit
error to the measured spectra.
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The measured coupling rates agree within 10% with the
simulated values.
Despite the good agreement with theory, the coupling

measurement described in the previous paragraph does not
unambiguously prove that the two wells are coupled, as we
did not observe the full avoided crossing that indicates the
emergence of the coupled modes. To confirm that the
radially separated ions are coupled, we measure the relative
phase of the ion motion in the two wells for both the
interwell common and stretch mode. More specifically, we
perform photon correlation measurements using a PMT
and a time tagger, using the rf tickling signal as a trigger.
The velocity of the ions in the two wells is modulated at the
frequency of the rf tickling signal. Therefore, the ions’
Doppler-shift dependent fluorescence rate is likewise
modulated. Thus, when correlating PMT photon detection
counts with the rf tickling signal, this modulation appears
as a sinusoidal signal. These signals are obtained separately
for the two wells by means of an adjustable aperture which
is aligned to one of the two wells at a time. In our
measurements, we determine both the amplitude and phase
of the correlation signals. In the case of the common mode
of motion, the detected phases are expected to be equal,
whereas for excitation of the stretch mode, the signals are
expected to be out of phase.
In the photon correlation measurements, we trap one ion

per well, keeping the wells separated by 33 μm, and setting
the axial frequency to ωz ≈ 2π 225 kHz. The results of
these measurements are shown in Fig. 16, which displays
the mean amplitude of the correlation signals of the two
wells, as a function of the rf tickling frequency. The colors
of the data points indicate the relative phase between the
signals of the twowells. As expected, we observe one mode
of oscillation in which the ions oscillate in phase with each

other, and another in which they oscillate out of phase. The
measured mode splitting agrees with the simulated value
of 2π 10 kHz.

VI. QUANTUM ERROR CORRECTION
IN THE QSA ARCHITECTURE

The previous sections focused on the experimental
demonstration of the primitives of the QSA architecture.
Specifically, we demonstrated transfer of information
between separated ion crystals in two dimensions, and
entanglement of ions located in two different wells along
the radial direction. In the following, we provide blueprints
for future experimental implementations, showing how the
two-dimensional connectivity of the QSA architecture can
be utilized for efficient quantum error correction (QEC) and
fault-tolerant quantum computing (QC).
Scalable quantum computing relies on the ability to

reliably detect and correct errors that may have corrupted
the information stored in a qubit [47,48]. To do so, quantum
information is encoded across multiple physical qubits,
which constitute a logical qubit. Errors on physical qubits
can be corrected by performing QEC and, thereby, the
information encoded in a logical state can be protected
[49,50]. In the QSA architecture, we propose to encode a
logical state in a single chain of ions, stored in a single
potential well. The capability to tune the interaction
strength between separated ion chains, enabled by the
combination of axial and radial shuttling, opens up the
possibility to carry out operations between logical states
in separate potential wells, and implement quantum error
correction as well as logical operations on encoded states in
a resource efficient manner. Operations between separate
logical qubits are normally carried out in a sequential
manner, as pairs of ions pertaining to distinct logical qubits
are entangled consecutively. The QSA architecture, on the
other hand, opens up the possibility to perform parallel
transversal entangling gates between two radially separated
ion chains, enabling faster and modular implementations of
error correction gadgets.
In the following, we first introduce a new method for

implementing the parallel transversal gates by adopting a
different entanglement scheme, and demonstrate the gen-
eral feasibility of this implementation on the QSA archi-
tecture with numerical simulations. We then explain how
these gates can be utilized for QEC codes and fault-tolerant
QC, specifying examples of possible code constructions
and the layout of efficient QEC codes, tailored to the QSA
architecture.

A. Parallel transversal gate operations

In this section, we present a scheme for the implemen-
tation of a transversal entangling gate that operates simul-
taneously between selected pairs of ions in radially
separated potential wells. We start by exploiting an idea
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FIG. 16. Phase resolved photon correlation signals of each well,
as a function of the rf tickling frequency. The plot shows the mean
amplitude of the correlation signals collected in the two wells,
and the dashed line is a guide-to-the-eye double-Gaussian fit. For
the stretch mode, the ion in one well oscillates out of phase with
respect to the one in the other well. For the common mode, the
ions in the two wells oscillate in phase.
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presented in the context of tunable frustration in ion spin
ladders [51,52]. In combination with refocusing sequences,
this enables the implementation of parallel gate operations
without requiring sequential addressing of specific ion
pairs. The general idea is to exploit the anisotropy of the
effective ion-ion interactions that underlie the aforemen-
tioned geometric-phase entangling gates. We show how
these couplings can be designed in such a way that
undesired intra-well couplings get geometrically canceled
by either aligning the laser beams or tilting the crystal
plane, while the effect of undesired inter-well terms that
would break the transversality of the logical gate can be
minimized by applying specific spin-echo sequences.
We consider a double-well configuration, where ions are

located in the xz plane forming two strings along the z
direction, and each string resides in one of the two wells
along the x direction, being thus radially separated. To
realize a transversal gate operation between two strings of
ions, only the interactions between opposite ion pairs in
separate wells should contribute, whereas all the other
interactions should cancel out. We consider a parameter
regime that aligns with the capabilities of the architecture
presented with ϕz < α ≈ ϕy for the potential curvatures
ϕy;ϕz; α as defined in Eq. (6). In this setting, which is
discussed in detail in Sec. II and Appendix E, we find two
closely spaced axial modes of oscillation that are separated
from higher-frequency modes. Achieving a transversal gate
following the previous Mølmer-Sørensen scheme on opti-
cal qubits would require the usage of beam deflectors that
couple the desired qubit pair to the motional modes that
mediate the entangling gate, together with a sequential
schedule that ensures that different qubit pairs do not talk to
the motional modes simultaneously, as this would induce
couplings that break transversality. As discussed in
Appendix F, it is possible to find a promising transversal
gate by switching to a light-shift scheme [53–57], which
uses a different laser-beam arrangement. By applying a pair
of quasiresonant laser beams that are not copropagating
and induce a cross-beam ac-Stark shift, we can derive an
effective Hamiltonian [51,52] that describes the qubit-qubit
interactions in the considered parameter regime with well-
separated axial modes

Heff ¼
X
k

X
j≠k

Jeffjk ZjZk: ð17Þ

Here, Z is the Pauli-Z operator, and the effective
coupling matrix Jeffij between ion i and j reads

Jeffij ∝ cos
�
Δk⃗L · r⃗0ij

�
; ð18Þ

where the wave vector Δk⃗L ¼ k⃗1 − k⃗2 characterizing the
crossed-beam ac-Stark shift is given by the difference
between the wave vectors of the individual laser beams

k⃗1 and k⃗2, and lies in the yz plane. Finally, r⃗0ij is the distance
vector between the equilibrium positions of ion i and j.
Notably, the interaction between pairs of ions depends on

the geometric factor Jeffij ∝ cos ðΔk⃗L · r⃗0ijÞ. This means that
one can control the effective interactions between ions by
choosing the effective wave vector Δk⃗L appropriately.
More specifically, if the ions are localized along the y
direction, such that r0i;y ≈ 0 for all ions as a result of a large
curvature ϕy, and if the effective wave vector lies within the
yz plane, then the effective interaction Jeffij can be controlled
by tuning the z component of the wave vector since
Δk⃗L · r⃗0ij ≈ ΔkL;zðzi − zjÞ. The interaction between ions i
and j can therefore be suppressed in a targeted way by
choosing ΔkL;z ¼ ð2pþ 1Þ · ðπ=½2jzi − zjj�Þ for any inte-
ger p. One can now realize that, for adjacent ions i and j,
the interaction between the ion i and its nearest neighbor j
along the z direction, as well as its next-to-next-to nearest
neighbor, etc., can be completely suppressed for equidis-
tantly spaced ions within a well.
To demonstrate the concept of such a geometric sup-

pression of intrawell couplings, we exemplarily consider
two strings with two ions each. For the following theory
analysis, we set the parametersωz=2π¼0.613,ωy=2π¼2.1,
ωx=2π ¼ 2 MHz, where the frequencies are set by the local
curvatures α ¼ mω2

z=q, ϕx;y ¼ mω2
x;y=q. We define lz=d ¼

6=31 where lz is the typical length scale for the distance
between ions along the z direction lz ¼ ðe2=mϕzÞ1=3.
Analogously to case 3 in Appendix E, we choose a laser
beatnote of δ ¼ Ωc=2, where Ωc ¼ jωstr − ωcomj is the
frequency gap between the axial common mode and the
axial stretch mode. Rather than exciting sidebands,
this beam configuration induces a state-dependent dipole
force that couples the qubits and the two nearby in-phase
and out-of-phase common motional modes. As shown in
Appendix A for two radially coupled ion strings with
4 ions in each, we remark that, for sufficient distances
between the two wells, the other motional modes are
sufficiently separated in frequency space so that their
contribution to the interaction and the residual spin-
motion entanglement can be neglected. In this case, one
only has to carefully time the gate so that the correspond-
ing trajectories in phase space are closed, as already
demonstrated for the Mølmer-Sørensen scheme.
We consider an initial state jψ0i ¼⊗2n

i¼1 jþii with
the number of ions per well n ¼ 2 in this case, and the
indexing of Fig. 17(a). We define the state fidelity
F ¼ jhψ idealjUeff jψ0ij2 as the overlap with the ideally
obtained state, where Ueff ¼ e−iHeff t corresponds to
the evolution due to the effective Hamiltonian Heff
[Eq. (17)], with a final time t in which both phase-
space trajectories get closed. jψ ideali ¼ Uidealjψ0i ¼Q

n
j¼1 ðj þj þjþni − ij −j −jþniÞ=

ffiffiffi
2

p
is the state under

the ideal transversal evolution Uideal¼
Q

n
j¼1e

−iðπ=4ÞZjZjþn .
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We numerically determine the coupling matrices Jeffij for
nonsuppressed and geometrically suppressed interactions
between ions as given by Eq. (F3), which are shown in
Figs. 17(a) and 17(b). For a fixed gate time t ¼ 2π=δ, we
vary the two-photon Rabi frequency Ω, as defined by
Eq. (F1), and numerically calculate the fidelity F, which is
shown in the top panel of Fig. 17. We find that, indeed, the
next-nearest neighbor interactions are suppressed in the
considered regime, thus implementing the desired trans-
versal gate operation between the two pairs of qubits.
As a next step, we extend the presented concept to larger

strings of ions, where not only next-nearest neighbor
interactions contribute but also ions are not necessarily
spaced equidistantly. First, a quartic axial contribution is
added to the initial trapping potential V0

rad [Eq. (6)] in order
to achieve equidistant spacing between ions along this axis
[58] Vrad ¼ V0

rad þ γr4z=4!, where we define dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!ϕz=γ

p
in alignment with Sec. II B. For fixed parameters α;ϕz, and
d, we minimize the inhomogeneity in the interwell spacings
by finding the optimal value of lz=dz. In the following,
we exemplarily consider two strings of 4 ions each,

and numerically find equidistant spacing along the z axis
for a quartic axial contribution with lz=dz ¼ 0.43, for
the above specified parameters. We simulate the effective
Hamiltonian presented in Eq. (17) for these parameters and
again determine the state fidelity, which is shown in
Fig. 18. We find that, even if the nearest-neighbor and
next-to-next-nearest-neighbor interactions along the z axis
are geometrically suppressed by setting ΔkL;z ¼ ð2pþ 1Þ ·
ðπ=½2jz1 − z2j�Þ, the fidelity does not exceed F ≈ 0.17. This
limitation is due to nonvanishing next-nearest-neighbor
couplings depicted by dashed red lines in Fig. 18(b),
which cannot be canceled geometrically. However, these
unwanted residual couplings now have a structure that
allows us to suppress them by adding a simple dynamical
decoupling technique, which has been similarly used for
Mølmer-Sørensen gates [38]. After an evolution time t=2,

(a) (b)
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3 4
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1 2

3 4

B

FIG. 17. State fidelity for transversal entangling gate operation
between 2 × 2 ions in radially separated wells as a function of the
frequency Ω for a fixed gate time ¼ 2π=δ. The coupling matrix
on the lower left (a) shows the effective coupling matrix for
ΔkL;z ¼ 2p · ðπ=½2jz1 − z2j�Þ, for which interactions between all
pairs of ions participate. In this case, the state fidelity (orange)
does not exceed ≈0.41. Undesired nearest-neighbor interactions
along the z direction are suppressed for ΔkL;z ¼ ð2pþ 1Þ ·
ðπ=½2jz1 − z2j�Þ (red), as shown in coupling matrix (b). Here,
we exemplarily set p ¼ 25.
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FIG. 18. Transversal entangling gate operation between 2 × 4

ions in radially separated wells. (a) Parallel ðCZÞ⊗4-gate operation,
that can be realized with the presented sequence and additional
single-qubit rotations. (b) Configuration of eight ions distributed in
two radially separated wells. All ions interact with each other
through Coulomb interaction. The green lines correspond to
the desired interactions that mediate the pairwise entangling gate
along the x direction. Nearest-neighbor and next-to-next-nearest
neighbor interactions along the z axis (red lines) can be geomet-
rically canceled by choosing ΔkL;z ¼ ð2pþ 1Þ · ðπ=½2jz1 − z2j�Þ.
Residual next-nearest-neighbor interactions (dashed red lines) can
be suppressed by employing a simple spin-echo sequence. (c) State
fidelity as a function of the frequency Ω for a fixed gate time
¼ 2π=δ. For ΔkL;z ¼ 2p · ðπ=½2jz1 − z2j�Þ, all qubits are coupled
to each other and the fidelity drops to F < 0.01 (blue). Geomet-
rically suppressing next-nearest neighbor interactions by setting
ΔkL;z ¼ ð2pþ 1Þ · ðπ=½2jz1 − z2j�Þ (orange), and then a single
spin-echo pulse (red), increases the fidelity to a value of 0.99.

M. VALENTINI et al. PHYS. REV. X 15, 041023 (2025)

041023-18



an Xπ pulse is applied only to the rightmost half of the
qubits, here 3, 4, 7, and 8, which rotates these qubits by an
angle π about the X axis. This inverts the sign of the next-
nearest-neighbor interaction and cancels these unwanted
contributions after another evolution time t=2. Overall,
the described gate leaves only the desired transversal
interactions along the x direction between pairs of opposing
ions belonging to different wells, resulting in a parallel gate
operation as illustrated in Fig. 18(a). In doing so, the fidelity
increases to a value of 0.99, as shown in red in Fig. 18(c).
We note that this simple refocusing boost requires the
first geometric-cancellation step as, otherwise, most of the
couplings represented by the red solid lines in Fig. 18(b)
would no longer vanish, severely limiting the achievable
fidelity. We also note that this technique can be generalized
to larger number of ions by increasing the complexity of
spin-echo type composite sequences [59–62].
The full entangling gate in this case takes t ≈ 180 μs,

which is a similar duration as the presented MS gate with
t ¼ 190 μs, and also on par with previously demonstrated
entangling gates on trapped ions [63,64]. We note, how-
ever, that our light-shift gate acts simultaneously over two
ion pairs, something that would require two-sequential MS
gates addressing each pair of qubits one at a time which
would, at the very least, double the duration to t ¼ 380 μs.
We expect this advantage to become even more pronounced
as the qubit number per string n increases. In fact,
following our previous arguments about the gate speed
being determined by the size of the avoided crossing
between the in- and out-of-phase modes, we expect that
its speed could be enhanced sublinearly when increasing n
(see the right panel of Fig. 3). Moreover, previous works
have shown that fidelities can be increased and gate times
decreased by increasing the efficiency of the dynamical
decoupling and by employing modulated laser fields to
couple to multiple motional modes [40,42,43] and to
reduce the residual qubit-oscillator entanglement [39,41].
A detailed analysis of the extension of this scheme to larger
ions crystals, relevant noise sources, and gate optimization
is left for future work.

B. Applications for QEC codes

To illustrate the potential power of the developed
trapped-ion architecture for scalable FT QEC, we outline
a few routes which can be naturally hosted and operated in
the 2D lattice structure of coupled traps. Our simulations
show the principle feasibility of implementing transversal
gate operations in the proposed 2D lattice architecture.
These gates open up the possibility to carry out logical
operations in a highly parallelized way: by coupling two
ion-chains in separate wells, it is possible to, for example,
apply controlled-NOT (CNOT) gates on pairs of qubits as
depicted on the left side of Fig. 19(a). This implements a
transversal two-qubit gate on specific codes, which can
often only be performed sequentially [64–67], but is a key

feature for modular QEC, such as Steane-type error
correction [48,68,69]. Here, logical auxiliary qubits are
coupled to the logical data qubit with a transversal CNOT

gate, which effectively copies errors from the data to the
auxiliary qubit, as depicted in Fig. 19(b). By measuring the
logical auxiliary qubit, one can directly extract the error
syndrome. Compared to other EC schemes, Steane-type
error correction requires the lowest possible number of two-
qubit gates and can outperform other state-of-the-art EC
protocols such as flag-based EC, as has been demonstrated
in recent experiments [64,67,70,71]. Transversal gates are
not only being used for error correction and decoding [71]
but also actively utilized for the parallelized implementa-
tion of logical operations [67] such as magic state injection
[72], distillation [73], or lattice surgery [74], which are key
components for universal quantum computing.
We now exemplarily consider the class of topologically

concatenated QEC codes, which are an ideally suited
candidate for parallelly executed gate operations on fully
controllable 2D lattices due to their inherent code structure.
As illustrated in Fig. 1, subsets of ions are confined in
separate wells on a 2D lattice, where each potential well can
represent a logical qubit of the lower concatenation level.
Within each of these wells, two-qubit gates can be carried
out between arbitrary pairs of qubits. The different logical
qubits are coupled by means of well-to-well entangling
gates and form the second layer of concatenation. This
architecture directly mimics the code structure of concat-
enated codes. One advantage of these quantum codes is
the scaling of the total failure probability: below a certain
threshold of the physical error rate, the failure probability is
suppressed doubly exponentially with each layer of con-
catenation, which enables practical FT quantum computing
below this threshold [47,48]. One example is the concat-
enated surface code, as exemplarily illustrated in Fig. 19(a).
When each physical qubit on a surface code lattice is
substituted by an ½ ½nc ¼ 4; kc ¼ 2; dc ¼ 2� � code, defined
by four-qubit stabilizers sX and sZ, where nc ¼ 4 physical
qubits encode kc ¼ 2 logical qubits with code distance
dc ¼ 2, one obtains the ½ ½4; 2; 2� �-concatenated code [75].
By concatenating the surface code and the ½ ½4; 2; 2� � code,
the stabilizer SjZ (S

i
X) defined on vertex i (plaquette j) of the

surface code lattice (blue, red) is transformed into a weight-
8 stabilizer SjσðSiσÞ with σ ¼ ZðXÞ (purple octagon) and the
additional stabilizers sðkÞσ (orange square) of the ½ ½4; 2; 2� �
code emerge on each replaced qubit.
Furthermore, by concatenating codes with complemen-

tary sets of transversal and, therefore FT gates, it is also
possible to implement a FT universal gate set [76–78].
Access to a FT universal set of gates allows the efficient
approximation of arbitrary operations [79] on encoded
states and poses a key requisite for error-corrected universal
quantum computing. For example, the logical H and CNOT

gate is transversal on the ½ ½7; 1; 3� � code, while the
½ ½15; 1; 3� � code has a transversal implementation of the
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non-Clifford T gate, which is required for universal
quantum computing. By replacing each qubit of the
½ ½7; 1; 3� � code with an instance of a ½ ½15; 1; 3� �, as
illustrated in Fig. 19(c), it is possible to access a full
universal set of gates fault-tolerantly: Single errors are
prevented from propagating onto multiple qubits on the
same encoded block by applying a nontransversal version
of the T gate on the ½ ½7; 1; 3� � code using only transversal
gates of the concatenated ½ ½15; 1; 3� � code [76]. Moreover,

concatenated codes have been found to efficiently protect
against biased noise [80], which is often present in ion trap
quantum processors [81].
Table I summarizes the minimal numbers of ions and

registers required for the proposed QEC protocols. The
embedding of these protocols on a fully connected two-
dimensional lattice architecture, in principle, enables the
implementation of scalable FT QEC and opens up a new
route towards FT universal quantum computing on an ion
trap quantum processor.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have proposed and realized the building
blocks of a so-called quantum spring array architecture,
where independent ion strings are arranged in a two-
dimensional array, and connectivity is achieved via axial
and radial ion transport. We have implemented and char-
acterized coupling between chains of ions in separate wells
in both the axial and radial directions with respect to the
axis along which ion crystals are confined. The coupling
rates of our system are compared to the results from
Refs. [18–20] in Table II. The coupling rates measured
in this work exceed those of previous works despite higher
separation between wells, owing to the higher number of
ions per well. We note that in Refs. [19,20] the ion species
under investigation is 9Beþ. Since the coupling rate

(a) Concatenated [[4, 2, 2]]-surface code
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(c) Towards universality: {H, T, CNOT}

...

FIG. 19. Applications of the 2D architecture for QEC codes. (a) Concatenated surface code: Every edge in the ½ ½nc ¼ ðd2c þ ðdc −
1Þ2Þ; 1; dc� � surface code (right) is replaced by a square that contains four qubits [75]. In doing so, one can construct a
½ ½n0c ¼ 4ðd2c þ ðdc − 1Þ2Þ; k0c ¼ 2; d0c ¼ 2dc� � code on a square-octagon lattice, where each cluster of four qubits resides in one
potential well (center). A single auxiliary qubit, depicted in gray (right), in a parity measurement may be replaced by four qubits
encoding a logical state of the ½ ½4; 2; 2� � code [75] (embedding, left). (b) Transversal CNOT gates enable efficient syndrome readout by
means of Steane-type EC [68]. An auxiliary logical qubit is prepared in jþiL using the same code as the data qubit and coupled to the
data qubit with a transversal CNOT gate. This copies X errors from the data onto the auxiliary qubit. By measuring the auxiliary qubit
projectively in the Z basis, one can infer the respective syndrome. Analogously, Z errors are corrected by preparing an auxiliary j0iL and
measuring in the X basis. These logical auxiliary qubits could be prepared in separate potential wells and readily be used as resource
states in the 2D lattice architecture. (c) By concatenating the two-dimensional ½ ½7; 1; 3� � and the three-dimensional ½ ½15; 1; 3� � color
code, one can implement a FT universal gate set {H, T, CNOT} [76–78].

TABLE I. Required minimal number of ions per well and
number of registers for different QEC protocols: Steane EC on the
½ ½7; 1; 3� � Steane code [64,68], which also corresponds to the
smallest 2D topological color code [82,83]; magic state injection
(MSI) on the ½ ½7; 1; 3� � [65,84,85]; the implementation of a
universal gate set by concatenating the ½ ½7; 1; 3� � code with the
½ ½15; 1; 3� � code [78]; and a general distance-d ½ ½4; 2; 2� �-surface
code [75]. The given numbers only correspond to the number of
required data qubits and registers, and do not take auxiliary qubits
into account.

QEC protocol No. ions per well No. registers

Steane EC on ½ ½7; 1; 3� � 7 2
MSI on ½ ½7; 1; 3� � 7 2
Universal gate set 15 7
½ ½4; 2; 2� �-surface code 4 d2c þ ðdc − 1Þ2
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depends on the mass of the ion species [see Eq. (4)], a mass
and frequency independent comparison between the vari-
ous results can be made by expressing the interaction
between ions in separate wells in terms of the interaction
strength [see kint in Eq. (2)], which depends solely on the
charge distribution.
Several features of well-to-well coupling of ions have

been investigated in this work in two types of surface traps,
each dedicated to generating a double-well potential along
one of the two principle axes of the QSA. In a linear
segmented surface trap, we have demonstrated axial well-
to-well coupling rates of 39 kHz for 6 ions per well. We
have shown exchange of motional energy between the
axially separated wells and a reduced heating rate in the
double-well stretch mode of oscillation compared to that
of the common mode. In a surface trap containing two co-
linear trapping regions, the first implementation of radial
coupling has been shown. We harnessed this radial cou-
pling to show exchange of a single phonon between axial
modes of oscillation of ions located in a radial double well
potential. Furthermore, we have, for the first time, imple-
mented an entangling gate of radially coupled ions located
in two distinct linear traps.
We demonstrated the capability to control the distance

and thus the coupling rate between ions distributed in
adjacent linear traps in the array. The coupling rates for
these interactions between radially separated wells are up
to 15 kHz with of up to three ions per well. We observed a
high heating rate in the radial transport configuration
which is not fully understood. We speculate that it is
caused by uncorrelated phase and/or amplitude fluctua-
tions of the voltages applied to the rf electrodes. We
expect that we can overcome this technical obstacle with
low-noise electronics and resonators with higher quality
factors that decrease the bandwidth at which the noise is

affecting the motion. Nevertheless, we expect that ion
heating in the double-rf drive configuration used for
radial transport will be one of the main challenges for a
large-scale implementation. Thus, investigating the origin
and characterizing the effect of such noise is a sensible
goal for further experimental research.
Larger 2D-trap arrays will feature many trapping sites

distributed along several adjacent linear traps. Two rf
signals are sufficient to control the relative spacing between
all the linear traps in the array simultaneously. Still, more rf
signals could be delivered to the trap if independent control
of the spacing between specific linear traps in the array is
needed. Moreover, since all the trapping sites pertaining to
a linear trap will be moved simultaneously during the rf
transport operation, to avoid excess micromotion, local
compensation for stray fields will be needed. Further
investigation is necessary to characterize the length over
which locally addressable dc compensation is required,
although it is expected that this length is comparable to the
ion-surface distance.
In this work, two separate trap designs were used to

demonstrate axial and radial coupling. As a natural next
step, we will focus on the design and fabrication of surface
traps capable of controlling larger 2D arrays via both axial
and radial shuttling operations. Their design will be similar
to the one shown in Ref. [12]. In addition, these traps
will feature multiple trapping regions in both axes and will
allow the implementation of integrated voltage control
electronics and optical elements, as expected in all scalable
ion-trap quantum computing architectures. More specifi-
cally to the QSA, the implementation of transversal
entangling gates requires single ion addressing. We envi-
sion dedicated specific zones along the trap where single
ion addressing is realized via a combination of waveguides
and microlenses. These integrated optical components,
together with the shuttling capabilities of the QSA, would
allow one to achieve the required connectivity for trans-
versal gate operations between specified lattice sites.
This type of connectivity represents one of the integral

components of concatenated quantum error correction
(QEC) schemes. Furthermore, the code family of quantum
low density parity check (qLDPC) codes holds the promise
of constant encoding rates, thus enabling low-overhead fault-
tolerant quantum computing [86,87]. Although these codes
generally rely on nonlocal connectivity, certain qLDPC
codes can be embedded on a 2D architecture [88,89].
With this work we have shown that the connectivity

provided by the QSA architecture readily lends itself to
natural embeddings of such QEC schemes. In conjunction
with developing these QEC techniques, we explored
efficient implementations of parallel transversal gate oper-
ations between the physical qubits of each subregister.
Such operations have the potential to significantly improve
the efficiency of QEC primitives and thus to reduce the
overhead that is associated with fault-tolerant operations.

TABLE II. Summary of well-to-well coupling rates Ωc and
interaction constants kint.

Ions per
well

Separation
d (μm)

Coupling
Ωc=ð2πÞ
(kHz)

Interaction
constant kint
(keV m−2)

Axial

Ref. [19] 1 40 3.1 26

1 54 1.9 16
Ref. [18] 2 54 6 110

3 54 14 370

Ref. [20] 1 30 12 177

2 42 17 230
This work 4 52 25 650

6 56 39 1600

Radial
1 29 15 61

This work 2 41 7.5 61
3 51 6.4 77
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This will be the starting point for more detailed research on
QEC codes and fault-tolerant operations that are optimized
to the available physical operations.
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APPENDIX A: MODE STRUCTURE OF TWO
COUPLED ION STRINGS

In Sec. II we developed the model describing the
coupling of ion strings, but, throughout this work, we
focus only on the lowest order coupled axial modes of
motion. In this Appendix, we discuss the full axial mode
structure of two linear strings of ions with 4 ions in each,
coupled along the axial and radial directions. The modes
and mode frequencies are obtained by solving Eqs. (7)
and (8), as explained in the main text.
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FIG. 20. Normalized interaction strengths of axial modes, for
(a) axially coupled and (b) radially coupled ion strings of 4 ions
each. Wells in (a) are separated by 60 μm, while in (b) the well-to-
well separation is of 50 μm. The potential curvature is selected to
result in an axial frequency 400 kHz for a single trapped ion in
both cases.
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As an exemplary representative set of parameters, we
set the two wells to have a separation of 60 μm for the
case of axial coupling, and 50 μm for radial coupling.
The wells have an axial curvature that corresponds to an
axial frequency of 400 kHz if only a single 40Caþ ion
was trapped.
The normalized ion interaction strength for axially

coupled ion strings is depicted for each mode in Fig. 20(a).
Within a chain, each ion participates differently in each
mode, also for lowest order axial common mode. This
unequal participation stems from the anharmonicity of the
axial double-well potential. Still, for a given mode, the
participation is the same for each pair of ions that are
located symmetrically with respect to the center of the

double-well. In addition, the modes are grouped in pairs,
where in each of the modes the participation of the ions is
the same, except that opposing ions oscillate in phase or out
of phase. Figure 20(b) shows the normalized interaction
strengths of the ions in two radially coupled ion strings. For
the lowest order modes (which are the radially coupled
axial stretch and common modes of oscillation referred to
as ωstr;com in the main text), all the ions participate equally
in the oscillation and thus equally couple to a laser beam
illuminating the entire chain, making the implementation of
the transversal gate described in Sec. VI A feasible. Similar
to the axial coupling case, modes manifest in groups of two.
Figure 21 displays the dependence of the mode spectrum

as a function of the well-to-well separation for axial modes
of two axially and radially coupled wells with 4 ions in
each. Similarly, the axial curvature is set to correspond to
an axial frequency of 400 kHz if only a single 40Caþ ion
was trapped.
For the axial modes of the axially and radially coupled

wells [Figs. 21(a) and 21(b)], the mode spectrum for large
well-to-well separation is that of two independent wells,
set to have the same axial curvature. The mode frequencies
in the two wells are thus degenerate. As the separation
decreases and the coupling between ion chains increases,
each axial mode splits into two, where the splitting is higher
for lower mode frequencies. Figures 21(c) and 21(d) show
the dependence of the splitting between pairs of modes
depicted, respectively, in Figs. 21(a) and 21(b). The mode
splitting is larger for axially coupled wells in comparison to
the radially coupled ones. This difference emerges from the
spatial distributions of the ion chains in the axial and radial
double wells, described in Sec. II, leading to a deviation from
the distance scaling (d−3) predicted from the coupled point-
charge model.

APPENDIX B: PHONON TRANSFER
WITH DC VOLTAGE SWITCHING

In Sec. IV B we have demonstrated an exchange of
phonons between radially separated ions and in
Appendix C we show that this exchange can be used to
generate entanglement between those ions. In both cases,
this exchange involves tuning the motional frequencies of
the two wells out of resonance to allow addressed sideband
pulses to inject a phonon in a chosen well, and into
resonance to enable phonon exchange through well-to-well
coupling. In both the phonon exchange and entangling
measurements the rate of phonon exchange is higher than is
predicted from basic theoretical models. This is attributed
to having intentionally set the two wells to be near, but not
in, resonance for the exchange. The reason for this choice is
related to the fact that the switching in and out of resonance
does not happen instantaneously, but is gradual due to our
built-in electronic filters of the dc electrodes to which the
voltage changes are applied. The two wells therefore spend
some non-negligible time near resonance before settling to
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FIG. 21. Motional spectrum for the axial modes as a function of
well to well separation. (a) Motional frequency as a function of
the well-to-well separation for the case of 2 ion strings with
four ions in each distributed in an axial double-well potential.
(b) Motional frequency as a function of the well-to-well sepa-
ration for the case of 2 ion strings with four ions in each
distributed in a radial double-well potential. (c) Mode splitting for
the case (a). (d) Mode splitting for the case (b).
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a steady state on resonance. While the setting is at near
resonance, partial phonon exchange already takes place,
and disrupts the full transfer that would occur at resonance.
In this Appendix, we use numerical models to detail this
effect and further motivate why we have chosen to measure
phonon transfer with the two wells not perfectly resonant.
One of the parameters of the calculation is the rate at

which motional frequencies of the wells vary over time
after dc voltages are switched. We experimentally deter-
mine this value by taking spectra around the motional
sideband of a trapped ion as a function of wait time after
switching dc voltages. The probe time (50 μs) is not
negligibly small compared to the rate at which motional
frequencies change. Since the change in frequency during
the probe time is approximately linear, it can be assumed
that the measured frequency corresponds to the motional
frequency at half the probe time, 25 μs. The results of this
measurement are shown in Fig. 22. The dashed lines are fits
using an exponential decay model, f ¼ ffin − ðffin − finitÞ
expð−t=τon=offÞ, with finit and ffin the initial and final
frequencies, t the time after switching, and τon=off the
characteristic decay time when switching on/off resonance.
From the fits we determine τon¼37ð1Þ and τoff ¼49ð3Þ μs.
To examine how the nonzero switching time affects the

transfer of phonons between wells, we set up a model of
coupled harmonic oscillators. The model solves the follow-
ing differential equation

d2y⃗
dt2

¼
 
−ð2πf1ðtÞÞ2 þ k̃int k̃int

k̃int −ð2πf2ðtÞÞ2 þ k̃int

!
y⃗;

ðB1Þ

where y⃗ ¼ ðy1; y2Þ are the oscillator amplitudes of oscil-
lators 1 and 2, f1ðtÞ and f2ðtÞ their time dependent

oscillation frequencies, and k̃int ¼ kint=m the (mass inde-
pendent) coupling between them. The vector y⃗ is initialized
as (1,0), representing a phonon occupying the first oscil-
lator (well 1) and no phonons in the second (well 2).
Furthermore, we set dy⃗=dt ¼ ð0; 0Þ.
Using experimental parameters of the phonon exchange

measurement of Sec. IV B, we initialize oscillation frequen-
cies to f1ð0Þ ¼ 520 and f2ð0Þ ¼ 560 kHz, which repre-
sents the frequencies of the two wells in the detuned state.
The on-resonance coupling rate is set to 6.6 kHz, which
corresponds to k̃int ¼ 1.41 × 1011 s−2. At t ¼ 0, the dc
voltages are switched, and the wells exponentially
approach resonance with characteristic time τon ¼ 37 μs,
though are set to settle to a detuning that is not necessarily
on resonance, Δf ¼ f2ðtÞ − f1ðtÞ for t → ∞.
Figure 23(a) shows the results of such numerical

calculations, shown as a function of time for several final
detunings, Δf. The color plot on the left shows the phonon

Coupling 

switched on

μs

Coupling 

switched off

μs

FIG. 22. Characterization of switching time between voltage
sets. The plot shows the measured motional frequency of one
of the two wells, as a function of wait time after switching wells
out of and into resonance, where the error bars represent the
95% confidence interval of the fit to the motional spectra. Dashed
red lines are exponential decay fits, from which we extract
characteristic switching times.
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FIG. 23. Results of coupled harmonic oscillator simulations,
where two off-resonance oscillators are brought into resonance
towards a steady state with a certain “final” detuning. (a) The
image on the left displays the phonon occupation in well 2 for
various final detunings, as a function of wait time. Plots on the
right show characteristic examples at −7.5, 0, and 7.5 kHz.
(b) Because of the finite switching speed, the optimal phonon
transfer occurs at −6 kHz.

M. VALENTINI et al. PHYS. REV. X 15, 041023 (2025)

041023-24



occupation of well 2 as a function of time, where phonon
occupation is calculated as the square of the amplitude of
motion. The plots on the right show three examples of
phonon exchange, taken at final detunings of Δf ¼ −7.5,
0, and 7.5 kHz. The example at −7.5 kHz results in a
transfer frequency of Ωc ¼ 10 kHz, similar to what is
obtained from the radial phonon exchange measurement,
shown in Fig. 10. The data illustrates that bringing the two
wells perfectly on resonance does not result in maximal
phonon exchange contrast. Instead, it is beneficial to
overshoot resonance, and settle on a nonzero detuning of
the two wells.
Figure 23(b) shows the contrast in phonon exchange as

a function of the final detuning Δf. Also shown is the
maximum phonon occupation that well 2 reaches. Results
indicate that a maximum contrast in phonon exchange
is reached at a detuning between the wells of about
Δf ¼ −7 kHz. If an optimal transfer of motional informa-
tion from well 1 to well 2 is desired, the final detuning
should be set to about −6 kHz.

APPENDIX C: GENERATION OF
ENTANGLEMENT THROUGH

PHONON EXCHANGE

In Sec. IV B we have shown that motional excitation can
be coherently transported between two radially separated
ions. In this section, we show how this transfer can be used
to generate entanglement, an essential tool for the proposed
2D trap array architecture.
We encode the entangled quantum information in the

internal electronic states of the 40Caþ ions, 4S1=2ðm¼−1=2Þ
and 3D5=2ðm ¼ −1=2Þ, and use the shorthand notation S
andD. We use the basis jA1A2; n1n2i to describe the two-ion
system, where Ak ∈ fSk;Dkg represents the electronic states,
and nk the phonon occupation of ion k ¼ 1, 2. In the
entanglement generation sequence, we consider the two

wells on resonance in default operation, while we detune
them out of resonance to enable individual ion addressing
by applying either red or blue sideband pulses resonant
with a target well.
The experimental sequence, schematically shown in

Fig. 24(a), is described in Table III, where bsb and rsb
denote, respectively, that a blue or a red sideband pulse is
applied to ion k ¼ 1, 2. After the entanglement sequence,
we apply a carrier π=2 pulse, allowing us to alter the parity
of the Bell state. The contrast in parity as a function of
phase of this analysis pulse corresponds to the coherence of
the entangled state.
In Fig. 24(b) we show the state evolution of both ions

under the entanglement operation, as a function of the
time the ions are kept on resonance. Similarly to the
phonon exchange measurement described in Sec. IV B,
further explained in Appendix B, the two wells’ motional
frequencies require time to settle to a steady state after
switching the trap’s dc potentials. After settling, an
oscillatory behavior between the jS1S2i and jD1D2i states
is observed. Notably, we observe the entangled state
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FIG. 24. Entanglement of radially separated ions. (a) Measurement scheme, which relies on tuning the motional frequencies of the two
wells out of resonance to allow ion-selective phonon injection and removal with red and blue sideband (SB) pulses. (b) Measured two-
ion populations, as a function of duration that ions are kept in resonance, and phonon exchange can take place. (c) Mean populations,
taken at a wait time of 105 μs, corresponding to the shaded area of (b). A mean population of P ¼ PSS þ PDD ¼ 0.84ð1Þ is measured.
Averages and their 95% confidence intervals, shown by the error bars, are taken from 5000 repetitions of the experimental sequence.
(c) The contrast in parity analysis indicates a visibility of 0.79(3). Error bars represent the 95% confidence interval given by quantum
projection noise [34].

TABLE III. Sequence for entanglement generation through
well-to-well coupling. bsb and rsb are pulses applied to blue
and red sidebands, respectively.

Step Operation State

1 Initialize jS1S2; 0102i
2 π pulse bsb, ion 1 jD1S2; 1102i
3 Coupling on

4 Wait t ≈ π=ð2ΩcÞ 1ffiffi
2

p ðjD1S2; 1102i þ jD1S2; 0112iÞ
5 Coupling off

6 π pulse bsb, ion 1
π pulse rsb, ion 2

1ffiffi
2

p ðjS1S2; 0102i þ jD1D2; 0102iÞ

DEMONSTRATION OF TWO-DIMENSIONAL CONNECTIVITY … PHYS. REV. X 15, 041023 (2025)

041023-25



1=
ffiffiffi
2

p ðjD1D2i þ jS1S2iÞ at a wait time of 105 μs. In
Fig. 24(c) we show the mean populations of the two
ions, calculated from 5000 repetitions of the sequence at
this wait time, from which we extract a mean population
of P ¼ PSS þ PDD ¼ 0.84ð1Þ.
In Fig. 24(d) we show the parity of the final state as a

function of the phase of the analysis pulse. The parity
contrast corresponds to a visibility of 0.79(3), from
which we calculate an entangled state fidelity of
FTot ¼ 0.82ð2Þ [44].

APPENDIX D: DUAL RF CIRCUITRY

To realize rf shuttling experimentally, we operate the
trap shown in Fig. 25 in a cryostat, equipped with two
independent rf resonators which are driven by two phase-
locked rf sources, similar to the system presented in
Ref. [33]. One of the two resonators drives the inner rf
electrode, labeled rf1 in Fig. 25, while the other drives the
outer rf electrodes, rf2. The diagram and characterization of
the rf circuitry that supplies these electrodes is shown
in Fig. 26.

An rf voltage signal (Vrf1 for the inner rf electrode and
Vrf2 for the outer rf electrode) is fed into an rf amplifier A
and then delivered to the rf resonator via a transformer,
to decouple the ground of the amplifier from the ground
of the cryostat, to which the rest of the circuit is anchored.
A variable capacitor CMA, and a capacitor CMB, placed
respectively in series and in parallel to the input signal,
are used to match the impedance of the resonator circuit
to the 50 Ω impedance of the cable connecting the
amplifier to the cryostat. A coil with inductance LS is
used to attenuate any dc offset voltage. Afterward, the
rf signal reaches the resonator coil LR, and the trap
electrode CT, which together form a resonator circuit.
Being close to each other on the trap surface, the inner
and outer rf electrodes are capacitively coupled, with
coupling capacitance CC. The rf signal on the trap is
monitored via a capacitive voltage divider placed in
parallel to the trap electrode, consisting of the capacitors
CDA and CDB. The resonance frequency of the resonator
consisting of the inner rf electrode can be tuned with a
variable capacitor CR, which is placed in parallel to the
trap electrode. This allows us to match the resonance
frequency of the two resonators.
After tuning both the resonance frequency and imped-

ance matching of the two resonators, we measure the
transmission, reflection, and phase difference of Vrf1 and
Vrf2 while the cryostat is at a temperature of ≈10 K. The
measurements are performed using a single rf source
connected to the two resonators via an rf splitter,
to ensure that a signal with the same phase is fed at
the input of both resonators. The reflection of the signal is
measured through a bidirectional coupler inserted
between the output of the amplifiers and the transformers,
while the transmission is monitored via the in-cryo
capacitive dividers.
The results are shown in Fig. 26(b) as a function of the

signal frequency. Both the transmission and the reflection
curves indicate that the resonance frequency of the
two resonators differs by approximately 180 kHz.
Since both gain curves have a full width half maximum
of ≈ 300 kHz, we can drive the resonators at a frequency
corresponding to the average of the two resonance
frequencies (18.95 MHz), while still providing sufficient
voltage gain for both.

rf 2 rf 2rf1

100 m

x

z

y

rf2ff rf2ffrf1

100 m

x

z

y

FIG. 25. Schematic of the trap used in the rf transport experi-
ments, with n ¼ 3 ions trapped in each trapping site. Concep-
tually, the trap design is similar to the one presented in Sec. IVA.
In this case, the inner and outer rf electrodes, rf1 and rf2, have
widths of 75 and 255 μm and are separated by 115 μm. For rf
voltage ratios ζ ¼ Vrf1=Vrf2 > 0.8, the rf electrode design gen-
erates two rf minima separated in the x axis, about 130 μm above
the trap surface. The unlabeled electrodes are dc electrodes used
for generating axial confinement of ions in the two sites, and for
local micromotion compensation.
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APPENDIX E: MS GATE IN PRESENCE OF
CLOSELY SPACED MOTIONAL MODES

In Sec. IV we have implemented a Mølmer-Sørensen
(MS) gate between two ions located in two distinct linear
traps. In this Appendix, we present the details of perform-
ing an MS gate in the presence of two modes of oscillation
which are closely spaced in frequency, such that the laser
light non-negligibly couples to both modes simultaneously
while the gate is driven.
An MS gate is a geometric-phase gate in which ion-ion

entanglement is generated by applying a bichromatic laser
pulse with a specific frequency detuning from a collective
vibrational mode transition, and a target pulse area,
dependent on the chosen laser detuning [38].
While the pulse is applied, both modes of motion of the

ions undergo a circular trajectory in phase space during
which the spin and motional degrees of freedom of the
targeted ions are coupled. As mentioned in Sec. IV, to
eliminate spin-motion entanglement, the laser pulse length
has to be chosen such that the motional modes phase-space
trajectories are closed at the end of the gate. The gate time t
must thus simultaneously satisfy t ¼ 2πnm=δm for each
motional mode m [38], where δm is the frequency detuning

of the laser from the motional sideband transition.
Moreover, to obtain a maximally entangled state at the
end of the gate, the laser power has to be chosen so that the
phase-space area A subtended by the circular trajectories of
all the modes participating to the gate is A ¼ π=4 [38].
We consider now a system of two ions with two axial

modes of motion whose frequency separation is of the order
of the laser detuning δ. As shown in Fig. 27, with such a
motional mode spectrum we can distinguish three different
ways of driving an MS gate, depending on the laser
detuning with respect to the sideband transitions: red
detuned to both modes, blue detuned to both modes, and
in between the two. Each of these three scenarios presents a
trade-off in terms of gate time and laser power.
Concerning gate time, as mentioned above, the phase-

space trajectories of both the stretch and common modes
have to close simultaneously at the end of the gate, to avoid
unwanted residual spin-motion entanglement [90]. For the
first two scenarios, this happens just if the laser detuning
is set to δ ¼ nΩc with an integer n, red or blue detuned to
both modes respectively, where we recall that Ωc is the
frequency spacing between the two modes. For the third
case, instead, the condition that satisfies closing both
phase-space loops while minimizing the gate time is given
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FIG. 26. (a) rf circuitry. Two independent rf sources drive two distinct in-cryo resonators. The resonator circuit 1 drives the inner rf

electrode Cð1Þ
T , while resonator 2 drives the outer rf electrode Cð2Þ

T . A variable capacitor CR is soldered in parallel to one of the trap
electrodes, allowing us to match the resonance of the two resonators. (b) Resonator characterization. The colored circles in (a) denote the
location where the displayed measurements were performed, with respect to ground. The outer rf electrode resonator has a Q factor of
170, and the inner has a Q factor of 120. (c) Table of parameter values for schematic (a). The values of the shunt coil LS and of the
capacitances are taken from the components’ data sheets, except for CC, which is deduced from electrostatic simulations of the trap in
Fig. 25. The values of L1;2 are measured with an LCR meter.
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by δ ¼ Ωc=2, i.e., if the gate is driven exactly in the middle
between the two modes, still restricting the gate time to be
twice as large compared to the previous cases.
Concerning laser power, the sum of the areas sub-

tended by the phase-space trajectories for both stretch
and common mode have to add up to A ¼ π=4 to create a
maximally entangled state at the end of the gate [38]. For
the first two cases, as the laser detuning has the same
sign for both modes, the stretch and common modes will
have opposite contributions to the area enclosed by the
modes’ trajectories in phase space [91], as the two ions
move in phase for the common mode, and out of phase
for the stretch mode. For the third case instead, as the
laser detuning has opposite sign with respect to the two
modes, the two contributions will add up, resulting in
less laser power required to create a maximally
entangled state at the end of the gate compared to the
first two scenarios.
In the rest of the Appendix, we quantitatively compare

the three cases, focusing on the role that mode heating has
on the resulting gate fidelity. We thus conducted MS gate
simulations on a system of two ions, considering heating
rate as the only source of decoherence in the system. The
laser-ion interaction [90] is described by the following
interaction Hamiltonian

H1 ¼
Ω
2

X
i¼1;2

X
m¼1;2

σðiÞþ eiηða
†
mþamÞ

�
e−iðωeg−ωax;m−δmÞt

þ e−iðωegþωax;mþδmÞt
�
þ H:c:; ðE1Þ

where σðiÞþ describes the electronic excitation of the ith ion,
and a†m and am are the ladder operators relative to the
motional mode m. Moreover, the parameter ωeg is the
carrier transition frequency, ωax;m the motional mode
frequency, δm the laser detuning from the mth motional
mode, η the Lamb-Dicke factor, which we consider equal
for both ions, and Ω is the resonant Rabi frequency of the
ith ion in the laser field. We consider the two ions to have
an axial frequency ωax ¼ 2π 740 kHz, with a mode split-
ting Ωc ¼ 2π 5.2 kHz, and the stretch mode of oscillation
to be at a lower frequency compared to the common mode,
as would be the case for the axial modes of two radially
coupled ions. Moreover, we consider the stretch and
common mode heating rates the same as the ones measured
in Sec. IV C for an axial frequency of ωax ¼ 2π 740 kHz.
The gate infidelity results for the three cases described in
Fig. 27(b) are listed in Table IV.
For cases ① and ② the gate time t is half that of case ③, as

the laser detuning δ is twice as large for the first two
scenarios compared to the third. This comes at the expense
of more laser power for two reasons. First, the required
sideband Rabi frequency Ωsb is linearly proportional to the
detuning δ [90]. Second, as pointed out previously, for the
case ③ the geometric phases accumulated by the stretch and
common modes add up, while they subtract for the cases ①
and ②. The combination of these two effects results in a
total factor of 4 more laser power for the first two scenarios
compared to the third. Concerning gate fidelities, we can
observe how implementing the MS gate as explained in
case ①, and thus setting the laser bichromatic driving
farther away from the common mode, which displays a
higher heating rate, improves the gate fidelity by a factor of
almost 3 compared to case ② and by a factor of almost 2
compared to case ③.

APPENDIX F: EFFECTIVE HAMILTONIAN
FOR TRANSVERSAL GATES BETWEEN

RADIALLY SEPARATED WELLS

We can derive an effective Hamiltonian describing the
interactions for the considered parameter regime. As
discussed in Sec. II and Appendix E, we find two closely
spaced axial modes that are separated from higher-
frequency modes, meaning that we can drive them
by near-resonant lasers without affecting the other

TABLE IV. Summary of MS gate infidelity for a system of 1
ion per well, and radially coupled axial modes.

Heating
rates (ph/s)
(STR,
COM)

Gate infidelity
Case ①

(τ ¼ 190 μs,
Ωsb ≈ 3.7 kHz)

Gate infidelity
Case ②

(τ ¼ 190 μs,
Ωsb ≈ 3.7 kHz)

Gate infidelity
Case ③

(τ ¼ 380 μs,
Ωsb ≈ 0.9 kHz)

(2.6, 18) ≈0.13% ≈0.35% ≈0.2%

3

2

1

FIG. 27. Different approaches to performing a standard MS
gate on two closely spaced axial modes. The center peak
represents the carrier transition, while the ones symmetric to
the center represent the sideband transitions, with a separation
ofΩc. The dashed lines represent the frequencies of the two tones
of the bichromatic laser beam. δ is the laser detuning from the
nearest mode.
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higher-frequency modes. By tuning the difference between
the laser frequencies ΔωL ¼ ω1 − ω2 closely to these
axial vibrational frequencies, we can neglect all non-

resonant terms and obtain the Hamiltonian Hd ¼
ðΩ=2ÞPj Zje

iΔk⃗L·r⃗0j eiðΔk⃗L·Δr⃗j−ΔωLtÞ þ H:c: Here, Ω is the
gate amplitude of the two-photon carrier transition, Z is the
Pauli-Z matrix, r⃗0j is the equilibrium position of ion j, Δr⃗j
is the displacement of ion j from its equilibrium position,
and the effective wave vector Δk⃗L ¼ k⃗1 − k⃗2 ¼
kð0; sin θ; cos θÞ lies in the yz plane. As customary, one
can expand this expression for small Lamb-Dicke param-
eters ηα ¼ ΔkL;z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωax

α

p
, where m is the ion mass.

In the rotating wave approximation we obtain

Hd ¼ ðΩ=2ÞPj;m i eiΔ⃗kL·r⃗
0
jηmν

ðmÞ
j Zja

†
meiδmt þ H:c: Here,

jδmj ¼ jωax
m − ΔωLj is the detuning between the laser

beatnote ΔωL and the axial mode m, and νðmÞ
j is the

amplitude of the axial oscillations of ion j in the corre-
sponding axial mode m.
Using a Magnus expansion, one readily finds that

upon closure of the phase-space trajectories, the above
state-dependent dipole forces lead to an effective
Hamiltonian [52,92] that reads

Heff ¼
X
k

X
j≠k

Jeffjk ZjZk ðF1Þ

with the effective interaction Jeffjk between ion j and k is

Jeffjk ¼ χjk cos ðΔk⃗L · r⃗0jkÞ; ðF2Þ

χjk ¼ −
X
m

Ω2η2m
4mδm

νðmÞ
j νðmÞ

k : ðF3Þ

The effective interaction therefore depends on the geo-
metric factor Jeffjk ∝ cos ðΔk⃗L · r⃗0jkÞ, which lies at the core of
the idea for the geometric cancellation as discussed in the
main text. Instead of shaping the Jeffij matrix by allowing for
individual Rabi frequencies Ω → Ωj, or multiple beams to
control the detunings δα → δα;j, the condition for vanishing
interaction Jeffjk ¼ 0, i.e., geometric cancellation, is ΔkL;z ¼
ð2pþ 1Þ · ðπ=½2jz1 − z2j�Þ, which corresponds to an
angle θ ¼ arccos ½ð2pþ 1Þπ=ð2kjzj − zkjÞ� for the effec-

tive wave vector Δk⃗L ¼ k · ð0; sin θ; cos θÞ.
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