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Coherent information as a mixed-state topological order parameter of fermions
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Quantum error correction protects quantum information against decoherence, provided the noise strength
remains below a critical threshold. This threshold marks the critical point for the decoding phase transition. Here,
we connect this transition in the toric code to a topological phase transition in disordered Majorana fermions at
high temperatures. A quantum memory in the error-correctable phase is captured by the presence of a Majorana
zero mode, trapped in vortex defects associated with twisted boundary conditions. These results are established
by expressing the coherent information, which measures the amount of recoverable quantum information in
a given noisy code, in terms of a mixed-state topological order parameter of fermions. Our work hints at a
broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological
phase transitions in symmetry-protected fermion matter.
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I. INTRODUCTION

Quantum states are susceptible to decoherence and noise,
which can introduce errors and drive the system toward
a mixed state, thereby degrading the quantum information
content. Quantum error correction (QEC) is thus essential
to preserve quantum information and protect it against er-
rors [1–3]. This process involves encoding logical qubits into
entangled states across multiple physical qubits, making logi-
cal states thereby indistinguishable at the local level. However,
this protection of logical quantum information against noise
lasts only up to a certain code- and noise-model-dependent
error threshold, beyond which any decoding algorithm will
fail, thus marking a decoding phase transition [4–12]. This
transition is pivotal for determining the boundary of function-
ing fault-tolerant quantum computing [1–3], making its study
critical for advancing practical scalable quantum information
processing.

A classic result in QEC concerns the critical error thresh-
old of the toric code under bit-flip or phase errors: Here,
the error threshold of the noisy QEC code has been con-
nected to the phase transition in the random-bond Ising
model (RBIM) [4]. Subsequent works have established sim-
ilar connections to classical disordered statistical mechanics
models for other QEC codes and noise models [5–9,11–16].
Recently, the connection between quantum information and
statistical mechanics models has been further strengthened:
Reference [17] demonstrates a direct mapping of information
theoretic quantities to the RBIM. One of these is the coherent
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information (CI), a measure for the amount of recoverable in-
formation within logical qubits under decoherence [18,19]. A
classic result in condensed matter physics, on the other hand,
concerns the mapping of the RBIM to disordered Majorana
fermions [20–28] in symmetry class D [29], the one with the
least amount of physical symmetries: number conservation,
time reversal, and chiral symmetry are all absent. This map-
ping has been established only for the bulk of the system
and in the thermodynamic limit. Nevertheless, this mapping
suggests a connection of the information content in the toric
code to the physics of topological superconductors.

In this work, we uncover this connection and make it
precise, based on a mapping of the CI to disordered Majo-
rana fermions, which is exact for any system size N (i.e.,
the number of physical qubits in the error correction code).
More broadly, this connects the various above threads under
the common umbrella of the CI, giving rise to the triptych
displayed in Fig. 1. In particular, the decoding phase transition
in the toric code corresponds to a topological phase transition
in the fermion system in the following way:

(1) The error-correctable phase coincides with the Majo-
rana topological phase.

(2) The code space with recoverable quantum information
content corresponds to the presence of a Majorana zero mode
(MZM) due to bulk-vortex correspondence.

(3) The error threshold equals the point of zero vortex
fugacity.

The key technical ingredient enabling these statements is
the exact nature of the mapping of the CI for any finite N , but
also in the thermodynamic limit N → ∞. Importantly, this
allows us to carefully track the boundary conditions of the
decohered toric code, which encode the quantum information
content measured by the CI. In the Majorana representa-
tion, these boundary conditions surface in a way that allows
us to interpret the coherent information as a mixed-state
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FIG. 1. Overview of different representations of the CI for the
toric code under both bit-flip and phase errors. Here, the CI measures
the residual information that is recoverable under decoherence, with
the zero point of the CI marking the decoding phase transition. This
point acquires different physical interpretations in different represen-
tations: It corresponds to the critical error threshold in the decohered
toric code (representation 1) and the low/high-temperature self-dual
point in the random-bond Ising model (representation 2) [17]. In this
work, we create a link to symmetry-protected topological quantum
matter in terms of disordered Majorana fermions (representation 3).
In this representation, the coherent information is directly tied to a
mixed-state topological order parameter of fermions under twisted
boundary conditions. The decoding phase transition is described by a
topological phase transition of fermions in a mixed quantum state. A
nontrivial quantum memory in the error-correctable phase is captured
by the presence of a Majorana zero mode, induced by vortex defects
associated with the boundary conditions. For a further summary of
results, see Sec. IV and Fig. 11.

topological order parameter (MSTOP) of fermions [30].
Specifically, this order parameter is given by the expectation
value of the fermion parity operator of a finite-temperature,
disordered Majorana system under twisted spatial boundary
conditions. This parity probe operator can be viewed as a
temporal boundary condition in a finite-temperature parti-
tion function, corresponding to the insertion of a temporal
Z2 gauge flux. The spatial boundary conditions instead cor-
respond to the insertion of a spatial Z2 gauge flux. They
create topological defects such as vortices, in turn trapping
Majorana zero modes in the topologically nontrivial and error-
correctable phase.

These findings create a link between the robustness
of quantum information and the mixed-state topology of
fermions. Three features of the phase transition in the
fermion representation are particularly worth pointing out:
(1) The mixed-state topological transition proceeds without
any thermodynamic singularities, such as the divergence of a
correlation length. Rather, its defining feature is the loss of
two Majorana zero modes, once the critical error threshold
of the quantum memory is exceeded. This rationalizes the
loss of two qubits of information as a boundary effect—
the two logical qubits of the toric code are lost in a bulk
of N physical qubits—while the extensive thermodynamics
remains unaffected thereby. (2) The thermodynamic limit
N → ∞ is needed to suppress hybridization of Majorana zero
modes trapped in defects. This corresponds to the sealing of
quantum information to two logical qubits, which occurs only
in the thermodynamic limit. (3) The mixed-state topological
order parameter—the expectation value of the fermion parity
operator—is linear in the state, but global in nature. In this

FIG. 2. Summary of the relation between the CI zero crossing
point, the critical point, and the self-dual point. The CI zero point
[Ic(p, N ) = 0] can depend on both the error rate p and the system
size N , as schematically illustrated by the blue line in panel (a).
Mapping the decohered toric code to a disordered Majorana model
reveals the physical meaning of Ic = 0 as the zero vortex fugacity
point. The zero vortex fugacity point rapidly converges to a RG fixed
point, leading to an emergent coincidence between the CI zero point
and the critical point in the thermodynamic limit [p = pc, red star in
panel (a); double arrow connecting the CI zero point and the critical
point in panel (b), labeled by “N → ∞”]. Additionally, we find an
exact correspondence between the CI zero point and the self-dual
point in the RBIM for any system size N [blue frame in panel
(a); double arrow in panel (b), labeled by “∀N”], where the RBIM
arises from a statistical mechanics mapping of the CI. Together, these
results establish the relation between the CI zero point, the critical
point, and the self-dual point, as shown in panel (b).

way, it is able to resolve the nonlocally encoded information.
In this representation, it is thus not the nonlinearity in the
density matrix that matters for the resolution of the decoding
transition (as is the case for the CI in terms of the original toric
code density matrix), but rather the ability to formulate order
parameters that capture the topological properties of the state.

Furthermore, resulting from these findings, we obtain two
important corollaries (see Fig. 2). The first of these exports
insights from many-body theory to quantum information: The
tiny finite-size effects of the error threshold observed in the
toric code are rationalized from the above highlighted con-
nection to the zero vortex fugacity point: As established in
quantum Hall physics, this is a renormalization group (RG)
fixed point, to which the flow converges rapidly and becomes
size insensitive; see Fig. 2(a) and Refs. [23,31–38]. The con-
nection to universal renormalization group flows suggests that
the small finite-size effects should also be present in more
general stabilizer codes, and we provide numerical evidence
for this hypothesis [39]. In the context of practical QEC,
this corroborates that the CI constitutes a powerful tool to
accurately determine fundamental critical error thresholds of
noisy QEC codes already from small (i.e., low distance) code
instances, as observed in Ref. [40]. The second corollary
operates in reverse [Fig. 2(b)]: Our results on the CI imply
that the critical point in the RBIM is self-dual. This follows
from combining the two independently derived facts that (1)
for arbitrary system size N , the zero crossing point of the CI
coincides with the self-dual point in the RBIM, and (2), in
thermodynamic limit, that zero crossing coincides with the
critical point of this model (also that of the Majorana model,
but relevant here is the former). This connection has been
conjectured for a long time [41,42] and was used to develop
techniques for locating the critical point [43]. However, its
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FIG. 3. Coherent information setup (a) and its dependence on
the error rate p for a single qubit under bit-flip and phase errors
(b). In panel (a), Q represents the quantum memory with density
matrix ρQ, purified to |�RQ〉 by introducing a reference qubit R,
i.e., ρQ = TrR(|�RQ〉〈�RQ|). Decoherence occurs due to coupling
with the environment E , evolving the initial state |�RQ〉 ⊗ |0E 〉 to
|�RQ′E ′ 〉 = UQE |�RQ〉 ⊗ |0E 〉. In panel (b), Ic and I (2, 3)

c represent the
coherent information and its Rényi-2, 3 counterparts, respectively,
both of which decrease monotonically with p.

demonstration, enabled by the connection to the information
theoretic CI, is unique to the best of our knowledge.

This paper is organized as follows: In Sec. II, we review
quantum error correction using the CI and apply it to two
examples: (1) a decohered qubit and (2) the decohered toric
code, mapped to the RBIM. In Sec. III, we show that the
CI zero point identifies the self-dual point of the RBIM. In
Sec. IV, we introduce the Majorana representation for the CI
and reveal its connection to the mixed-state topological order
parameter. In Sec. V, we present numerical results for the CI
in other topological stabilizer codes. We conclude in Sec. VI.

II. QUANTUM ERROR CORRECTION VIA COHERENT
INFORMATION

A key concept for the present work is the CI [1,18,
19,40,44–51], denoted by Ic. It quantifies the information of
a quantum code retained after exposure to noise. Therefore,
Ic determines error correctability [18,44]: Quantum error cor-
rection is achievable if and only if the residual information
(Ic) equals the initially stored information (SQ), a condition
equivalent to the Knill-Laflamme criterion (see Appendix A
for details). Importantly, Ic decreases monotonically with the
error rate, reflecting increased information leakage through
noisy channels in line with the quantum data processing in-
equality [1].

We next provide the quantitative definition of CI and apply
it to a single qubit undergoing bit-flip and phase errors, for an
illustration. We then extend this to the decohered toric code,
reviewing its connection to the RBIM [4,17].

A. Coherent information: Generalities

We define the CI for a quantum code Q using the setup
in Fig. 3(a) and derive the formula for the error correction
condition. To assess the information in Q, we introduce a
reference system R, which we maximally entangle with Q; we
denote this state by |�RQ〉. We then define the reduced density
matrices ρR/Q of subsystems R/Q and their von Neumann
entropies before the interaction with the environment,

ρQ/R = TrR/Q(|�RQ〉〈�RQ|). (1)

The von Neumann entropy of Q is

SQ ≡ −TrQ(ρQ log2 ρQ) = SR, (2)

where SR ≡ −TrR(ρR log2 ρR). The equality SQ = SR holds
since |�RQ〉 is pure, so SR reflects the initially stored infor-
mation. An alternative way of looking at the situation is to say
that |�RQ〉 is a purification of ρQ.

During the interaction with the environment, information
may leak to the latter, captured by the quantum mutual infor-
mation between R and E ′,

Im(R : E ′) ≡ SR + SE ′ − SRE ′ , (3)

where primes (e.g., E ′) indicate postinteraction states. Specif-
ically, interaction evolves Q and E into Q′ and E ′ via a unitary
transformation UQE ,

ρQ′/E ′/RQ′ ≡ TrR,E/R,Q/E ′ [UQE (|�RQE 〉〈�RQE |)U †
QE ], (4)

where the slash notation in the subscript (e.g., Q′/E ′/RQ′)
indicates that the expression applies to any of the options
separated by the slash. |�RQE 〉 ≡ |�RQ〉 ⊗ |0E 〉 as there is
no initial entanglement between RQ and E . ρR remains un-
changed since UQE acts only on Q and E . The CI, measuring
how much information remains in Q, is thus defined by sub-
tracting the leaked information (Im) from the initially stored
one (SR),

Ic ≡ SR − Im(R : E ′) = SQ′ − SRQ′ , (5)

where the second equality follows from the purity of the state
UQE |�RQE 〉, i.e., SE ′ = SRQ′ and SRE ′ = SQ′ . Thus, successful
quantum error correction is possible if and only if

Ic = SQ, (6)

indicating the stored information remains intact despite the
noise.

We then utilize the replica trick to compute the von Neu-
mann entropy SQ′ and SRQ′ of the CI, illustrated in the single
qubit example below:

Ic = lim
n→1+

I (n)
c , (7)

where n is the replica index. The Rényi-n CI is defined as

I (n)
c = S(n)

Q′ − S(n)
RQ′ ,

S(n)
RQ′/Q′ = − 1

n − 1
log2 Trρn

RQ′/Q′ . (8)

We now evaluate the Rényi-n CI I (n)
c and Ic for a single

qubit under a bit-flip and a phase channel with error rate
p, elucidating two key tools used later on—the replica trick
and the monotonic behavior of the CI Ic as a function of
p. We start from a maximally entangled Bell state, |�RQ〉 =
(|0Q0R〉 + |1Q1R〉)/

√
2, where Q (system) and R (reference)

are both single qubits. Working in the stabilizer formalism,
we have

ρRQ = 1
4

(
I + σ x

Q ⊗ σ x
R

)(
I + σ z

Q ⊗ σ z
R

)
, ρQ = 1

2 I. (9)

Applying the bit-flip and phase channels, we get

ρRQ′/Q′ = EZ ◦ EX [ρRQ/Q], (10)
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where

EX/Z [ρ] = (1 − p)ρ + p σ
x/z
Q ρ σ

x/z
Q (11)

and σ
x/z
Q are Pauli matrices acting on Q. This yields

S(n)
RQ′ = − 2

n − 1
log2 [(1 − p)n + pn], S(n)

Q′ = 1, (12)

and thus we obtain

I (n)
c = 2

n − 1
log2 [(1 − p)n + pn] + 1. (13)

In the n → 1+ limit, we find the CI

Ic = 2[p log2 p + (1 − p) log2 (1 − p)] + 1. (14)

Clearly, Ic decreases monotonically with increasing error rate
[see Fig. 3(b)], in accordance with the quantum data process-
ing inequality [1].

B. Coherent information for the decohered toric code

We next apply the CI concept to the toric code, a classic
example of topological order and quantum memory [17]. The
toric code is a many-body system with degenerate ground
states forming a robust code space consisting of two logical
qubits, where logical operations are executed by nonlocal
operators, as local perturbations cannot cause change between
ground states. Calculating the CI in Eq. (5) requires therefore
two reference qubits, each maximally entangled with one of
the nonlocal logical qubits. Here, we will elaborate that this
process links to twisted boundary conditions (or equivalently,
flux insertion) in a many-body system. This perspective will
be leveraged to—and fruitful for—the fermion representation
constructed in the subsequent section.

1. Coherent information for the toric code

We briefly recapitulate some basics of the toric code and
define the corresponding density matrix with/without refer-
ence qubits, ρRQ/Q [see Eqs. (19) and (21)]. Its code space is
spanned by four degenerate ground states of the Hamiltonian
on a square lattice with N sites and periodic boundary con-
ditions, which provides a quantum memory. The Hamiltonian
is [52]

HTC = −
∑

s

As −
∑

p

Bp, (15)

where the subscripts “s” and “p” denote vertices (or stars) and
plaquettes, respectively [see Fig. 4(a)]. The operators As and
Bp commute and are defined as

As =
∏
l∈s

σ z
l , Bp =

∏
l∈p

σ x
l , (16)

with the Pauli matrices σ
x/z
l residing on the bond l . These

operators satisfy ∏
∀s

As =
∏
∀p

Bp = I, (17)

indicating that only 2N − 2 of As and Bp are independent.
Thus, the ground states of HTC span a four-dimensional code
space, as they are the +1 eigenvectors of As and Bp, leaving

As
Bp

As = − 1

As = − 1

SX

SZ

S(f)
X

S(f+1)
X

(a)

(c)

(b)

(d)

Ly2

Ly1

Lx2

Lx1

FIG. 4. Illustration of the toric code: Panel (a) shows the stabiliz-
ers As and Bp in the toric code Hamiltonian [Eq. (15)], as well as the
noncontractible loops in the x and y directions, Lx1/2 and Ly1/2 . Panel
(b) depicts a string excitation with As = −1 at both ends. Applying
Bp (blue shaded area) changes the string’s shape, while keeping the
ends intact. Panel (c) plots error chains or string excitations created
by chains of bit-flip (SX ) or phase (SZ ) errors. The error-corrupted
density matrix ρQ′/RQ′ [Eq. (22)] represents a weighted ensemble of
these chains. Panel (d) illustrates that in the Rényi-n entropy [used
for the Rényi-n CI in Eq. (26)], an error chain (e.g., SX ) contributes
only when S ( f )

X and S ( f +1)
X in adjacent replicas form a closed loop.

4 = 22N/22N−2 states unconstrained. The numerator 22N rep-
resents the Hilbert space dimension, while the denominator
22N−2 accounts for the constraints from As/Bp. Thus, the code
space encodes two logical qubits with logical operators,

X1 ≡
∏

l∈Lx1

σ x
l , Z1 ≡

∏
l∈Ly2

σ z
l ,

X2 ≡
∏

l∈Ly1

σ x
l , Z2 ≡

∏
l∈Lx2

σ z
l , (18)

where Lx1/2/y1/2 are noncontractible loops along the x/y direc-
tion of the torus [see Fig. 4(a)], arising from the symmetries
of HTC, i.e., [H, X1/2] = [H, Z1/2] = 0.

The density matrix ρRQ is defined by maximally entangling
the logical qubits with reference qubits R, giving

ρRQ = ρ0
R1Q × ρ0

R2Q ×
(∏

∀s

Ps

)
×
⎛
⎝∏

∀p

Pp

⎞
⎠,

ρ0
R1/2Q ≡ 1

4

(
I + X1/2 ⊗ σ x

R1/2

)(
I + Z1/2 ⊗ σ z

R1/2

)
, (19)

where σ
x/z
R1/2

are Pauli matrices acting on reference qubits

R1/R2 and ρ0
R1/2Q is the maximally entangled Bell state. The

projectors Ps/p project onto the +1 eigenstates of As/Bp,

Ps = 1
2 (I + As), Pp = 1

2 (I + Bp). (20)
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ρQ is obtained from ρRQ by tracing out R, yielding

ρQ ≡
(

1

2
I

)
×
(

1

2
I

)
×
(∏

∀s

Ps

)
×
⎛
⎝∏

∀p

Pp

⎞
⎠. (21)

We now derive ρRQ′/Q′ [see Eq. (24)], which results from
error-corrupted ρRQ/Q. These errors manifest as excitations of
HTC, driving the system away from its initial state. Error cor-
rection requires to detect these excitations. This is feasible due
to the high degree of symmetries 0 = [As, HTC] = [Bp, HTC],
allowing one to label all excitations by the symmetry charge of
As or Bp. However, these excitations are nonlocal, e.g., string
excitations with negative As/Bp charges at their ends [see
Fig. 4(b) for an illustration]. This nonlocality complicates er-
ror syndrome identification, potentially hindering correction.
For example, under thermal noise, string excitations of vary-
ing lengths are equally probable, making correction inevitably
alter the code space—a phenomenon known as the thermal
fragility of the toric code [53]. In contrast, local errors have
a finite threshold because they differentiate string excitations
by assigning string tension. Specifically, we consider the local
bit-flip and phase error channels (denoted by EX, l and EZ, l ),
giving rise to the following error-corrupted density matrix:

ρRQ′/Q′ = ◦∀l (EZ, l ◦ EX, l )[ρRQ/Q], (22)

and similar to Eq. (11),

EX/Z, l [ρ] = (1 − p)ρ + p σ
x/z
l ρ σ

x/z
l . (23)

This density matrix ρRQ′/Q′ represents an ensemble of string
excitations (or error chains) weighted by the string length [4]:

ρRQ′/Q′ =
∑
{SX }

∑
{SZ }

Pm[SZ ]Pe[SX ]

×Wm[SZ ]We[SX ]ρRQ/QWe[SX ]Wm[SZ ], (24)

where SZ (SX ) denotes strings on the (dual) lattice with
lengths |SZ | (|SX |) [see Fig. 4(c)]. The operators We[SX ] =∏

l∈SX
σ x

l and Wm[SZ ] = ∏
l∈SZ

σ z
l generate e and m ex-

citations on top of the ground state, respectively, with
probabilities

Pe[SX ] = (1 − p)N ×
(

p

1 − p

)|SX |
,

Pm[SZ ] = (1 − p)N ×
(

p

1 − p

)|SZ |
. (25)

The exponents |SX | and |SZ | reflect the string tension
− ln[p/(1 − p)], suppressing longer error chains [54].

2. Coherent information and the random-bond Ising model

For the decohered toric code, the Rényi-n CI can be repre-
sented via the (n − 1)-flavor RBIM [17],

I (n)
c = − 2

n − 1
log2

∑
α Z (n)

RM, α[K]

2n−1Z (n)
RM[K]

. (26)

Here, α = PP, AP, PA, AA denotes the four possible combina-
tions of periodic (P) and antiperiodic (A) boundary conditions
in x and y directions, for each flavor f of Ising spins on a
torus. We will suppress the PP index for the periodic boundary

η = − 1 ηxx

ηyy

(a) (b)

FIG. 5. Illustration of (a) the equivalence of antiperiodic bound-
ary conditions with a Z2 flux line insertion, and (b) the RBIM in the
one-site limit. In panel (a), an antiperiodic boundary along the y axis
is equivalent to a Z2 flux line (η = −1) along the x axis, resulting in∏

〈i, j〉∈Ly
ηi j = −1 for any noncontractible loop in the y direction. In

panel (b), the hollow circle represents the Ising spin, with the Z2 flux
lines ηxx and ηyy changing the interaction sign (green double line).

sector, unless stated otherwise. Z (n)
RM, α , the partition function

for the (n − 1)-flavor RBIM with α-boundary conditions, is

Z (n)
RM, α[K] ≡

∑
{σ=±1, η=±1}

P[η; K]e−H (n)
RM, α [η; K],

H (n)
RM, α[η; K] ≡ −K

n−1∑
f =1

∑
〈i, j〉

ηi jσ
( f )
i σ

( f )
j , (27)

where p = e−K/2 cosh K and ηi j = ±1 is a random bond
drawn from the distribution

P[η; K] =
∏
〈i, j〉

eKηi j

2 cosh (K )
. (28)

Key properties of this spin model are the (n − 1)-flavor Ising
spins and a random-bond η, which reflects the topological
order of the toric code: In the Rényi entropy, error chains
across adjacent replica indices must form a closed loop [see
Fig. 4(d) for an illustration and Appendix B for more details].

Additionally, this RBIM features a Z2 gauge symmetry, an
aspect that will be key for the discussion below. In fact, ηi j

is a Z2 gauge field [55] coupled to matter (Ising spins), with
gauge transformation defined by

σ
( f )
i → σ

( f )
i τi, ηi j → τiηi jτ j, τi = ±1, (29)

which leaves H (n)
RM, α invariant. The CI is thus tied to the

free energy of the Z2 flux line, as the α-boundary condition
corresponds to inserting such a flux line [see Fig. 5(a) for an
illustration]. This connection becomes particularly transparent
in the single-site limit of the RBIM [see Fig. 5(b)], where
the code space corresponds to different boundary-condition
sectors. In this limit, I (n)

c becomes

I (n)
c = − 2

n − 1
log2

⎧⎨
⎩
∑

η

P[η]

[
eK (ηxx+ηyy )

(2 cosh K )2

](n−1)
⎫⎬
⎭+ 2,

(30)
using

Z (n)
RM[K]

N=1⇒
∑
{η}

P[η]e(n−1)K(ηxx+ηyy ),

∑
α

Z (n)
RM, α[K]

N=1⇒ (2 cosh K )2(n−1). (31)
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(a) (b)Coherent Information Renyi-  Coherent Information2

FIG. 6. Numerical results for the CI (a) and Rényi-2 CI (b) in
the decohered toric code, calculated using the RBIM partition func-
tion. The crossing point of these two quantities at different system
sizes shows only tiny finite-size effects, marking the critical point of
the decoding phase transition. In the alternative representation as a
class D Majorana (Sec. IV), this point aligns with the phase bound-
ary identified by the MSTOP, defined as sign[

∏
α〈(−)Q̂〉α], where

“α” represents periodic/antiperiodic boundary conditions and (−1)Q̂

denotes the fermion parity.

(31)Here, ηxx, ηyy = ±1 function both as Z2 flux lines
and as different boundary conditions. Thus, we confirm
that I (n)

c represents the free energy of the Z2 flux lines,
since eK (ηxx+ηyy )/(2 cosh K )2 is the corresponding Boltzmann
weight. Additionally, this expression matches the Rényi-n CI
for two decoupled qubits [Eq. (26)] with p = e−K/2 cosh K ,
indicating that the code space consists of different boundary-
condition sectors.

3. Numerical results for coherent information

Figure 6 presents numerical results for the CI and its Rényi-
2 counterpart. The data show that the CI for different system
sizes crosses at a common point with only tiny finite-size drift,
reproducing the optimal error threshold. This phenomenon
extends beyond the toric code and has been observed in var-
ious code models [40], e.g., planar codes, color codes, and
quantum low-density parity check codes. We will rationalize
this from two perspectives, duality in the RBIM (Sec. III) and
via the topological phase transition in disordered Majorana
fermions (Sec. IV).

III. COHERENT INFORMATION AND DUALITY

We now link CI to the low/high-temperature duality (see,
e.g., Ref. [56]). Our main result here is a duality relation
between the (n − 1)-flavor RBIM on a torus (Z (n)

RM) and its dual
(Z̃ (n)

RM), which holds for an arbitrary number of sites N ,

2n−1Z̃ (n)
RM[K] =

∑
{α}

Z (n)
RM, α[K]. (32)

This involves distinct boundary-condition sectors in the
dual model, setting it apart from previous results (e.g.,
Refs. [41–43,57]), which focus solely on the thermodynamic
limit. At the same time, this is a crucial stepping stone for the
mapping to fermions established below.

The boundary conditions are crucial for error correc-
tion, as they encode logical information, as previously
shown. The occurrence of different boundary-condition sec-
tors affords a simple picture: In the low-temperature regime
(K � 1), Z (n)

RM[K] features domain-wall excitations over 2n−1

Low  expansionT(a) High  expansionT(b)

FIG. 7. Low-temperature expansion (a) and high-temperature ex-
pansion (b) in the Ising model on a square lattice: The partition
function for the Ising model is ZIM[J] = ∑

{σ } e
∑

〈i, j〉 Jσiσ j , where the
Ising spins are represented by hollow circles and the gray dashed
lines indicate the dual lattice. In the low-temperature limit (J � 1),
this partition function contains domain-wall excitations above the
ground state [indicated by the blue dashed line in panel (a)], with
energy proportional to the domain-wall perimeter, 2J|C|. In the high-
temperature limit (J � 1), the partition function is expressed as a
sum over different loop configurations due to the expansion [red solid
line in panel (b)]: ZIM = (cosh J )2N

∑
{σ }
∏

〈i, j〉(1 + tanh Jσiσ j ).

degenerate ground states (all spins up/down for each flavor)
[see Fig. 7(a) for an illustration via the Ising model]. On the
dual lattice, these domain walls correspond to contractible
loop configurations. Conversely, the high-temperature ex-
pansion of Z̃ (n)

RM[K] includes all loop excitations, including
noncontractible ones [see Fig. 7(b)]. The mismatch in loop
configurations is captured by different boundary conditions in
the high- and low-temperature expansions, with an extra factor
of 2n−1 accounting for the degenerate ground states. Finally, in
the n = 2 case, we recover the self-dual relation for the Ising
model (ZIM,α) [58],

2Z̃IM[J] =
∑

α

ZIM,α[J], (33)

where ZIM,α[J] = ∑
{σ } eJ

∑
〈i, j〉 σiσ j , and it corresponds to

the Rényi-2 RBIM Z (2)
RM,α[K] via tanh J = (tanh K )2 (see

Sec. III B for details).
Equation (32) connects the Rényi-n CI zero point to the

self-dual point. Applying it to Eq. (26), we find

I (n)
c = − 2

n − 1
log2

Z̃ (n)
RM[K]

Z (n)
RM[K]

, (34)

confirming the coincidence of the self-dual point (K = KSD)
and I (n)

c = 0,

K = KSD : Z (n)
RM[KSD] = Z̃ (n)

RM[KSD] ⇐⇒ I (n)
c = 0. (35)

Assuming (1) only two phases and (2) identical forms
for the model and its dual, the self-dual point coincides
with the critical point, as argued by Kramers and Wannier: In
the thermodynamic limit, the partition function’s singularity
occurs solely at the critical point, which is necessarily at
the self-dual point. However, this exact alignment between
the self-dual and critical points holds only for certain replica
indices (e.g., n = 2, 3, ∞) as assumption (2) may not hold
for other indices.

We will now quantitatively define the dual model [i.e.,
Z̃ (n)

RM in Eq. (54) and Z̃IM in Eq. (38)] and derive the duality
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relation in Eq. (32) using the Wu-Wang method [59]. This
method provides a systematic approach for duality transfor-
mations by connecting the low/high-temperature expansions
with a Fourier transformation. We begin with the Rényi-2 CI
represented by Z (2)

RM, which reduces to the clean Ising model
(all bond variables η positive) and is analytically solvable. We
then take the limit n → 1+.

A. Duality transformation from Fourier transformation
in the Ising model

For clarity, we explain the Wu-Wang method—and intro-
duce the definition of the dual model—using the clean Ising
model. Furthermore, the Ising model is closely related to the
case n = 2; see Eq. (49) below. A key point here is that this
method, while previously used in the thermodynamic limit
only, is applicable to finite-size systems and allows us to
keep track of the boundary conditions, in turn encoding the
quantum information content. The Ising partition function is

ZIM, α[J] =
∑
{σ }

eJ
∑

〈i, j〉 σiσ j =
∑
{σ }

∏
〈i, j〉

xi j, α[J; φ], (36)

where xi j, α[J] = eJσiσ j represents interactions on the bond
〈i, j〉 for Ising spin σi with α-boundary condition. For later
convenience, we introduce the bond variable φi j ,

cos(πφi j ) ≡ σiσ j ⇒ xi j, α[J; φ] = eJ cos(πφi j ). (37)

We start by defining the dual model for the partition function
under periodic boundary conditions (ZIM[J]), and then obtain
the other cases by imposing twisted boundary conditions on
the Ising spins. Considering ZIM[J] in the low-temperature
phase (J � 1), φi j prefers homogeneous configurations, while
it fluctuates strongly in the high-temperature limit, such that
the partition sum converges slowly in this regime. This mo-
tivates defining the dual model Z̃IM[J], which describes the
opposite temperature limit with rapid convergence. It involves
variables x̃i j obtained from xi j[φ] via Fourier transformation,

Z̃IM[J] ≡ 2 ×
∑
{k}

∏
〈i, j〉

x̃i j[J; k]

=
(

eJ

√
2 cosh J̃

)2N ∑
{σ̃ }

eJ̃
∑

〈i, j〉 σ̃i σ̃ j . (38)

In the second line, we introduce Ising spins σ̃i = ±1 residing
at the dual lattice (solid square in Fig. 8), such that eiπki j =
σ̃iσ̃ j . The factor 2 in front of

∑
{k} accounts for the global

Z2 symmetry of the Ising spins, ensuring 2
∑

{k} = ∑
{σ̃ }. The

variable x̃i j is defined as

x̃i j[J; k] ≡ 1√
2

∑
φi j=0,1

eiπki jφi j xi j[J; φ]

= 1√
2

eJ

cosh J̃
xi j[J̃; k], (39)

with
∑

φi j=0,1 treating φi j at different bonds independently and

tanh J̃ = e−2J , which expresses the high/low-temperature du-
ality between ZIM[J] and Z̃IM[J]. For other sectors Z̃IM, α[J],
the variable follows the same form as xi j , but with its Ising
spins subjected to different boundary conditions.

FIG. 8. Definition of curl ∂paφ (∂p̃a k) on the (dual) lattice, with
hollow circles (solid squares) for (dual) Ising spins. Arrows indicate
the sign of φi j (ki j): positive for right/up, negative otherwise.

We now aim to establish an exact relation between ZIM and
its dual, i.e.,

2Z̃IM[J] =
∑

α

ZIM, α[J], (40)

where the different boundary conditions arise from the torus
topology, as explained below. We derive this result by express-
ing the bond variable x̃i j[J; k] of Z̃ (n)

RM in terms of xi j[J; φ]
and integrating out ki j . Detailed derivations are provided in
Appendix C, and we concentrate here on the key steps. Using
the definition of Z̃IM [Eq. (38)], we have

Z̃IM[J] = 2
∑

{k, φ}, ∂k=0 mod 2

∏
〈i, j〉

[
1√
2

eiπki jφi j xi j[J; φ]

]
. (41)

The ki j variables are subject to the curl-free constraint ∂k = 0
mod 2 for all contractible and noncontractible loops on the
dual lattice (see blue dashed lines in Fig. 8 for ∂p̃a k associated
with a dual plaquette). This constraint follows from the defini-
tion σ̃iσ̃ j = eiπki j , implying

∏
〈i, j〉∈C̃ eiπki j = 1 for any loop C̃

on the dual lattice with “mod 2” arising from the 2π ambiguity
in the exponent. The “mod 2” condition is implicit for all curls
(e.g., ∂p̃a k) and will be omitted hereafter. Summing over ki j

results in a product of Dirac-delta functions,

2
∑

{k}, ∂k=0

∏
〈i, j〉

eiπki jφi j = 1

2

∏
pa

[2δ(∂paφ)]. (42)

Here, ∂paφ represents the curl for plaquette pa (red solid line
in Fig. 8). The corresponding Dirac-delta functions δ(∂paφ)
impose in turn curl-free constraints on φi j , which can be
solved by introducing variables φi = 0, 1 on lattice sites, en-
suring ∂paφi j = 0, i.e., φi j = φi − φ j . However, on a torus,
nontrivial homology requires four boundary-condition sectors
beyond this local solution. Specifically, the number of in-
dependent φi j variables is #φi j = 22N/2N−1, with 22N from
the bonds and 2N−1 from the Dirac-delta constraints. The
number of independent φi variables is #φi = 2N/2, where
the factor of 1/2 accounts for the global shift symmetry
(φi → φi + 1). The mismatch between φi and φi j is thus
#φi/#φi j = 2N−1/(22N/2N−1) = 1/4, reflecting the four dis-
tinct boundary-condition sectors associated with the torus
topology.
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An intriguing aspect of the Ising model is that ZIM and
its dual Z̃IM share the same form (i.e., x̃i j[J] ∝ eJ̃σ̃i σ̃ j ). Based
on this and assuming only two phases exist, Kramers and
Wannier found that the critical point (J = Jc) coincides with
the self-dual point (J = JSD), as the partition function has a
singularity only at this point in the thermodynamic limit,

ZIM[JSD] = Z̃IM[JSD]. (43)

This condition holds when J = J̃ = JSD for any system size,
thereby determining the location of the critical point in the
thermodynamic limit,

N → ∞ : tanh Jc = tanh JSD =
√

2 − 1. (44)

B. Rényi-2 coherent information and Kramers-Wannier duality
in the Ising model

Via the self-duality relation in Eqs. (40) and (43), we
identify that the self-dual point coincides with the critical
point, as it is the only point that can exhibit a free energy
singularity under the assumption of two phases. Consequently,
the zero point of the Rényi-2 CI detects the critical point in
the thermodynamic limit, due to an exact relation between
Rényi-2 CI and self-duality implied by Eqs. (40) and (43),

I (2)
c = 2 log2

2ZIM[J]∑
α ZIM, α[J]

= −2 log2
Z̃IM[J]

ZIM[J]
, (45)

with

tanh J = (1 − 2p)2, (46)

which implies that

I (2)
c

∣∣
J=JSD

= 0, (47)

and thus in the thermodynamic limit, the critical point locates
at

N → ∞ :

{
Jc = JSD = arctanh(

√
2 − 1),

pc = 1
2 (1 −

√√
2 − 1).

(48)

Here, JSD is independent of system size and pc is the critical
error rate [see Fig. 6(b) for numerical results].

Quantitatively, the connection between the Ising model and
Z (2)

RM[K] is

Z (2)
RM[K] =

(
cosh K

cosh J

)2N

ZIM[J] (49)

and

(tanh K )2 = tanh J, (50)

which follows from integrating out the random bond vari-
ables:

Z (2)
RM[K] =

∑
{σ }

∏
〈i, j〉

⎡
⎣∑

ηi j

(
eKηi j

2 cosh K
eKηi jσiσ j

)⎤⎦
=
∑
{σ }

∏
〈i, j〉

(cosh K )[1 + (tanh K )2σiσ j]

=
(

cosh K

cosh J

)2N ∑
{σ }

eJ
∑

〈i, j〉 σiσ j . (51)

C. Duality for the random-bond Ising model

Unlike the Ising model, the RBIM, Z (n)
RM generally differs

from its dual Z̃ (n)
RM, so the Kramers-Wannier argument does not

apply. This suggests that the self-dual point and the critical
point may be unrelated. Nishimori conjectured that the self-
dual point coincides with the critical point based on numerical
results [41,42]. We will demonstrate the emergence of this
relation. Our argument has two independent ingredients: First,
in this section, we show that the zero crossing point of the
CI coincides with the self-dual point, for any system size.
Second, we show in Sec. IV in the Majorana representation
that the zero crossing point of the CI coincides with the critical
point in the thermodynamic limit. From this, we can conclude
that the self-dual and the critical points must coincide as the
system size gets larger.

The formula linking CI and duality is

I (n)
c = − 2

n − 1
log2

Z̃ (n)
RM[K]

Z (n)
RM[K]

, (52)

confirming that the self-dual point (i.e., K = KSD: Z̃ (n)
RM =

Z (n)
RM) coincides with the CI zero point. This follows by apply-

ing the following duality relation, which generalizes Eq. (40),
to Eq. (26):

2n−1Z̃ (n)
RM[K] =

∑
{α}

Z (n)
RM, α[K]. (53)

Here, 2n−1 represents the ground state degeneracy, reduc-
ing to 2 for the Ising model (n = 2). The right-hand side
term includes 4n−1 boundary-condition sectors, accounting for

the mismatch in the number of degrees of freedom, #φ
( f )
i

#φ
( f )
i j

=
[ 2N−1

22N /2N−1 ](n−1) = ( 1
4 )n−1 for (n − 1) Ising spin species.

We now derive the duality relation in Eq. (53), following
the approach used for the Ising model. We start by obtaining
the expression for the dual model Z̃ (n)

RM, α , and then derive the
relation by representing its bond variables in terms of those in
Z (n)

RM. The dual model is given as

Z̃ (n)
RM, α[K] = N (n)

∑
{σ̃ }

eK̃
∑

〈i, j〉 (
∑n−1

f =1 σ̃
( f )
i σ̃

( f )
j +∏n−1

f =1 σ̃
( f )
i σ̃

( f )
j ).

(54)

Here, σ̃
( f )
i represents the f th Ising spin at site i in the dual

lattice and

K̃ = − 1
2 ln tanh K. (55)

The prefactor is given by

N (n) ≡
(

eK

√
2 cosh K̃

)2N (n−1)

e−2NK̃ . (56)

For n = 2, this reproduces the Ising model, confirming its
self-dual nature. Specifically, we derive Eq. (54) by applying
a Fourier transformation to the bond variables. Parallel to the
Ising model [Eqs. (36) and (38)], we start from the periodic
boundary-condition sectors and represent Z (n)

RM and Z̃ (n)
RM as a

043009-8



COHERENT INFORMATION AS A MIXED-STATE … PHYSICAL REVIEW RESEARCH 7, 043009 (2025)

product of bond variables,

Z (n)
RM[K] = 2n−1

∑
{φ( f )}

∏
〈i, j〉

x(n)
RM, i j[K ; φ( f )],

Z̃ (n)
RM[K] = 2n−1

∑
{k( f )}

∏
〈i, j〉

x̃(n)
RM, i j[K ; k( f )]. (57)

Here, the bond variable x(n)
RBIM, i j is

x(n)
RM, i j[K ; φ( f )] =

∑
η

eKηi j

2 cosh K
eK

∑n−1
f =1 cos (πφ

( f )
i j ), (58)

while its dual variable x̃(n)
RM, i j , a Fourier transform of x(n)

RM, i j ,
is given by

x̃(n)
RM, i j[K ; k( f )] =

[(
eK

√
2 cosh K̃

)(n−1)

e−K̃

]

× eK̃
∑n−1

f =1 cos(πk( f )
i j )eK̃ cos(π

∑n−1
f =1 k( f )

i j ). (59)

This reproduces Eq. (54) with boundary conditions according
to the α index. Finally, we reproduce the duality relation
[Eq. (53)] by rewriting the bond variable x̃(n)

RM, i j[K ; k( f )] in

terms of x(n)
RM, i j[K ; φ( f )] and summing over k( f )

i j , analogously
to the Ising model [Eq. (42)].

IV. MAJORANA REPRESENTATION

In this section, we derive one of our main results: The
error-correctable phase in the toric code corresponds to the
topological phase in class D disordered Majorana fermions
with Z2 gauge fields. This is established by showing that the
CI acts as a mixed-state topological order parameter in the
fermion representation, introduced for all symmetry classes
in Ref. [30]; see Eqs. (68) and (78) for the key formulas.
This link is reflected in excitations: For example, e − m bound
states correspond to Majorana zero modes (with e/m for ex-
citations with As = −1/Bp = −1), and m excitations to Z2

vortices. At low error rates, e and m particles are sparsely
distributed, allowing the underlying string to be inferred by
pairing nearby particles. As the error probability increases,
the density of e and m particles rises, and long-length string
excitations become equally likely. Beyond a critical error rate,
the string connecting e and m particles becomes ambiguous,
rendering error correction impossible. In the disordered Majo-
rana representation, this corresponds to the proliferation of Z2

vortices, triggering a topological phase transition when their
density exceeds a critical value. Consequently, the wave func-
tion of Majorana zero modes trapped in vortices overlaps with
those due to disorder, lifting this state to finite energy. This
implies a connection between the bulk-vortex correspondence
in the Majorana representation and the error-correctable code
space in the toric code, which we will make precise below.

A. Representing information measures in terms
of Majorana fermions

We now derive the corresponding Majorana Hamiltonian
[Fig. 9(a) and Eq. (63)] and connect it to two information
theoretic quantities, the Rényi-2 CI I (n=2)

c and the full CI

γ(u)

γ(d)
γ(r)

t

t
γ(l)

η = ± 1{

t

(a) (b)

0

−0.2

0.2

0 12 − 1

FIG. 9. Hamiltonian ĤMH, α[t ; η] for class D Majorana fermions
in the presence of the Z2 gauge field η (green double line) (a), and
the spectrum of HMH, PP[t ; η = +1] as a function of t for all η

positive (b). In panel (a), each site contains four Majorana modes,
denoted by γ (u, d, r, l ). The intercell hopping constant is t (red solid
line), with arrows indicating the hopping direction, e.g., tγ (u)

r γ
(d )

r+êy
.

The intracell interaction terms have a coupling constant 1 (blue
dashed lines). Panel (b) shows the energy spectrum of a 16 × 16-site
HMH, PP[t ; η = +1], with a zero mode at t = √

2 − 1, while the
spectrum for HMH, α for α �= PP displays a finite-size gap.

Ic = I (n→1+ )
c . To this end, we first express these quantities as

an Ising model coupled to a Z2 gauge field η via Eqs. (26)
and (45), setting η = +1 homogeneously in the Rényi-2 case.
This yields [see Eq. (45)]

I (2)
c = 2 log2

2ZIM[J]∑
α ZIM,α[J]

, with tanh J = (1 − 2p)2,

(60)
while in the n → 1+ limit, Eq. (26) becomes

Ic = 2

〈〈
log2

2ZIM[K ; η]∑
α ZIM,α[K ; η]

〉〉
, with tanh K = (1 − 2p),

(61)
where the double bracket 〈〈· · · 〉〉 denotes averaging over
Z2 gauge field configurations with probability distribution
P[K ; η] = ∏

〈i, j〉(e
Kηi j /2 cosh K ), introduced to simplify the

notation for the sum over random bond configurations. The
Z2 gauge field η enters the Hamiltonian via minimal coupling

ZIM, α[K ; η] ≡
∑
{σ }

e−HIM, α[K ; η],

HIM, α[K ; η] ≡ −K
∑
〈i, j〉

ηi jσiσ j, (62)

preserving the Z2 gauge symmetry, σi → σiτi, ηi j → τiηi jτ j

for τi = ±1. As above, the subscript α refers to peri-
odic/antiperiodic boundary conditions (denoted by “PP, AP,
PA, AA”), with “PP” being the default unless explicitly stated
hereafter.

The Ising model has a Majorana representation [20–22,24–
28,56,60–63]. Here, we follow the method in Refs. [60,62]
(see Appendix D for details) to map ZIM to class D Majorana
fermions coupled to a Z2 gauge field. Unlike the Jordan-
Wigner transformation, this fermionization method is exact
for classical spin models, valid for any system size. The
resulting Majorana Hamiltonian is (see Fig. 9)

−iĤMH[t ; η] = Âinter + Âintra,1 + Âintra,2, (63)

which contains four Majorana modes per unit cell, labeled
γ̂ (u,d,l,r) for the four directions [up, down, left, and right; see
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Fig. 9(a)]. Âinter represents intercell hopping [red solid line in
Fig. 9(a)],

Âinter = t
(
ηr, r+êy γ̂

(u)
r γ̂

(d )
r+êy

+ ηr+êx, rγ̂
(l )

r+êx
γ̂ (r)

r

)
, (64)

and the α-boundary condition of γ̂ is implemented by chang-
ing the sign of the hopping constant across boundaries,
equivalent to inserting an extra Z2 flux line. Âintra,1 and Âintra,2

account for intracell couplings for nearest and next-nearest
neighbors [blue dashed lines in Fig. 9(a)], respectively,

Âintra, 1 = (
γ̂ (l )

r γ̂ (u)
r + γ̂ (d )

r γ̂ (l )
r + γ̂ (r)

r γ̂ (d )
r − γ̂ (u)

r γ̂ (r)
r

)
,

Âintra, 2 = (
γ̂ (u)

r γ̂ (d )
r + γ̂ (l )

r γ̂ (r)
r

)
. (65)

For the Rényi-2 and the CI cases, the hopping constant t in
ĤMH, α is, respectively,

I (2)
c : t → t2 = (1 − 2p)2,

Ic : t → t1 = (1 − 2p). (66)

Thus, I (2)
c [Eq. (60)] corresponds to clean class D Majorana

fermions with all η positive, while the CI [Eq. (61)] represents
a disordered one with random Z2 gauge fields. The corre-
sponding spectrum for the clean case [Fig. 9(b)] shows an
exact zero-energy point at t2 = √

2 − 1 for any system size,
leading to the critical error rate of the Rényi-2 CI,

pc = 1
2 (1 −

√√
2 − 1). (67)

This reproduces the result from the duality analysis.
In the remainder of this section, we focus on the CI

(n → 1+). In the Majorana representation, remarkably the CI
is related to fermion parity (see Appendix D for details), with
the exact formula valid for any system size,

Ic = 2 lim
β→0+

〈〈
log2

(
1 − 2

PPP[β, t1; η]∑
α Pα[β, t1; η]

)〉〉
, (68)

which is an even function of Pα , remaining invariant under the
transformation Pα → −Pα for all α. The high-temperature
limit (β → 0+) reflects the classical nature of the underlying
spin model. Here, Pα[β, t1; η] represents the expectation
value of the fermion parity operator (−)Q̂ for a class D Majo-
rana model [(−1)Q̂ = ∏

r

∏
a=u,d,l,r γ̂ (a)

r ], and

Pα[β, t1; η] ≡ Tr[e−βĤMH, α[t1; η](−)Q̂] ≡ 〈(−)Q̂〉α, (69)

with t1 given in Eq. (66). Importantly, the fermion par-
ity operator changes the temporal boundary condition of
Majorana fermions from antiperiodic to periodic. Physically,
it corresponds to inserting a temporal Z2 flux. On the other
hand, the index α tracks different spatial boundary conditions,
indicating the presence of a spatial Z2 flux. The building block
Pα can thus be interpreted as follows [30,64]: The temporal
flux is utilized to probe the (nonlinear) response of a system
subjected to spatial fluxes, i.e., twisted boundary conditions,
reflecting the presence or absence of topologically protected
zero modes induced by topological defects. This is detailed in
Sec. IV C below, where we also establish a precise connec-
tion to mixed-state topological order parameters for fermions,
likewise featuring the building blocks Pα .

While we relegate the derivation of Eq. (68) to Ap-
pendix D, it is worth sketching the key steps: The Ising
partition function [Eq. (60)] is reformulated as a Majorana
path integral, evaluating to a Pfaffian. This connects to Pα in
the high-temperature limit via

Pf(−iHMH, α[t1; η]) = lim
β→0+

(
1

β

)2N

Pα[β, t1; η], (70)

with HMH, α BEING the first quantized counterpart of ĤMH, α .
The prefactor β−2N balances the dimension of Pα and the
Pfaffian, and cancels out in the ratio PPP/

∑
α Pα relevant for

the CI. Equations (68) and (69) thus follow by recasting the
Pfaffian associated with the Ising partition function in terms of
a trace over the Majorana Hilbert space. Crucially, the fermion
parity operator arises naturally in this representation, reflect-
ing the bosonic nature of the spin model. This mechanism
explains the role of the fermion parity operator in the CI and
underlies the connection to the mixed-state topological order
parameter discussed below.

In the subsequent subsections, we further evaluate Eq. (68)
in the case of a single site, N = 1, and in the thermodynamic
limit N → ∞. The first case will sharpen the role of boundary
conditions, while in the second one, we establish an even more
direct relation of the CI to the mixed-state topological order
parameters of fermions. We also connect the zero crossing of
the CI to the point of vanishing vortex fugacity.

B. Illustration: coherent information in the single-site limit

We consider the limit of a single site, corresponding to two
logical qubits. In this limit, the Hamiltonian HMH, α becomes
(see Fig. 10 for the setup)

−iHMH, α[t1; ηxx, ηyy] = 1

2

⎛
⎜⎜⎜⎝

0 t1(−1)αyηyy + 1 −1 −1
−[t1(−1)αyηyy + 1] 0 −1 1

1 1 0 −[t1(−1)αx ηxx + 1]
1 −1 t1(−1)αx ηxx + 1 0

⎞
⎟⎟⎟⎠, (71)

where ηxx and ηyy denote the Z2 flux line along x and y directions, respectively. (αx, αy) is for boundary condition, with
αx/y = 0, 1 for periodic (0) and antiperiodic (1) boundary conditions along x/y direction. The fermion parity can be evaluated
explicitly via Eq. (70), i.e.,

lim
β→0+

[(
1

β

)2N

Pα

]
= Pf(−iHMH, α ) = −1

4
[t1(−1)αx ηxx + 1][t1(−1)αyηyy + 1] + 1

2
(72)
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FIG. 10. Illustration of a single-site class D superconductor
setup, showing the Hamiltonian structure with Z2 flux line ηxx (ηyy)
along the x (y) direction.

and

lim
β→0+

[∑
α

(
1

β

)2N

Pα

]
=
∑

α

Pf(−iHMH, α ) = 1, (73)

from which one can infer the CI,

Ic = 2

〈〈
log2

[
eK(ηxx+ηyy )

(2 cosh K )2

]〉〉
+ 2. (74)

This result matches the CI for two qubits under both bit-flip
and phase errors [Eq. (14)],

Ic = 4[p log2 p + (1 − p) log2 (1 − p)] + 2, (75)

by using the identity p = e−K/2 cosh K . This indicates that in
the Majorana representation, the code space consists of the
different boundary-condition sectors.

This toy model provides a physical interpretation of the
CI as the free energy cost of flux insertion. The Boltzmann
weight for the spatial flux ηxx (or ηyy) is eKηxx /2 cosh K (or
eKηyy/2 cosh K), resulting in an average free energy:〈〈

log2

(
eKηxx

2 cosh K

)〉〉
+
〈〈

log2

(
eKηyy

2 cosh K

)〉〉
. (76)

This relates to Eq. (74) up to a constant, confirming the above
interpretation.

C. Coherent information as a mixed-state topological order
parameter for class D Majorana fermions

Here, we consider the thermodynamic limit N → ∞ and
show that the CI equals a mixed-state topological order pa-
rameter for a class D Majorana model. We also connect the CI
to the bulk-vortex correspondence.

The simplifications obtained as N → ∞ equally rely on
facts from quantum information and topological matter: On
the one hand, as a quantum information quantity, Ic is bounded
by |Ic| � 2, reflecting the maximum information content of
the two logical qubits in the toric code. On the other hand, for
the gapped phase in the thermodynamic limit, boundary ef-
fects become negligible compared to the bulk, and thus the ab-
solute value of Pα[β, t1; η] remains constant under different
boundary conditions; in formulas, Pα = sign(Pα ) × |PPP|.

Hence, to ensure |Ic| � 2, all Pα �=PP are equal, allowing only
PPP or

∏
α �=PP Pα to change sign as the error rate varies. This

yields

1 − 2
PPP∑
α Pα

= 2−sign(
∏

α Pα ), (77)

which remains an even function of Pα (i.e., unchanged under
Pα → −Pα for all α). We thus establish a connection between
Ic and the mixed-state topological order parameter, defined as
〈〈sign(PPPPAA/PAPPPA)〉〉 [30], namely,

Ic = −2

〈〈
sign

(PPP[β, t1; η]PAA[β, t1; η]

PAP[β, t1; η]PPA[β, t1; η]

)〉〉
. (78)

More details on this invariant, from both the band theory and
field theory perspectives, can be found in Ref. [30]. Remark-
ably, the CI in the thermodynamic limit is shown to be a
topological invariant itself, and thus takes quantized values.
Specifically, the topological phase for mixed fermion states
is characterized by a negative value of the order parameter,
and thus corresponds to the error-correctable phase in the toric
code, with Ic = 2 indicating the information content of the two
logical qubits in the toric code.

To illustrate, we simplify Eq. (78) as

Ic = −2〈〈sign(PPP[β, t1; η])〉〉, (79)

by assuming two phases and self-averaging disorder. These
two assumptions, supported by numerical results (see Ap-
pendix E), imply that only PPP can change sign as a function
of p, as inferred from the boundary conditions: (1) p = 0:
PPP < 0 and Pα �=PP > 0; and (2) p = 1/2: Pα > 0 for all α.
Consequently, Eq. (79) connects the coherent information to
the sign of fermion parity, indicating the loss of Majorana zero
modes at the phase transition point.

The mixed-state topological phase exhibits bulk-vortex
correspondence, where the error-correctable code space in
the toric code is reflected in the Majorana representation
as a Majorana zero mode trapped in a vortex. This can be
seen from the following argument: The relative sign of the
fermion parity under different boundary conditions (enter-
ing as PPP/

∑
α Pα) probes the vortex braiding phase and

thus indicates whether an even or odd number of Majorana
zero modes are trapped in vortices. Namely, changing the
boundary condition corresponds to inserting a Z2 flux line
[see Fig. 11(a)], equivalent to dragging one vortex around
another before annihilation [66,67] [see Figs. 11(b)–11(d) for
an illustration]. Thus, the sign of Ic detects this vortex braiding
phase, acting as an order parameter for the bulk-vortex corre-
spondence. The braiding phase becomes ambiguous at Ic = 0,
marking the onset of a topological phase transition and thus
demonstrating the self-duality at the critical point, complet-
ing the discussion at the beginning of Sec. III C. Additional
numerical results are provided in Appendix E.

The connection of the CI to mixed-state topology of
fermions [30] established above allows for several further
insights that should be pointed out: First, the associated tran-
sitions proceed without thermodynamic singularities—while
for pure states, topological and thermodynamic phase transi-
tions coincide. What these order parameters detect is indeed
boundary effects, here, the loss of two Majorana zero modes.
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(a)

(d)

(b)

Exchange of two vortices(c)

FIG. 11. Twisted boundary condition (a) and vortex braiding
(b)–(d): A twisted boundary condition corresponds to the insertion
of a Z2 flux line [shaded area in panel (a)] and can be generated
by exchanging a pair of vortices (b)–(d). Each four-point star rep-
resents a vortex, where the Z2 gauge field η picks up a negative
sign around a plaquette [orange circle in panel (c)]. When two
vortices are exchanged (d), the fermion parity operator changes sign
depending on the number of MZMs in each vortex [65]: A negative
(positive) sign appears for an odd (even) number of MZMs, since
fermion parity is a product of Majorana operators. Hence, the relative
sign in fermion parity, evaluated with or without twisted boundary
conditions, captures the vortex braiding phase (d), reflecting the bulk-
vortex correspondence. This establishes the coherent information as
a topological order parameter, as it is tied to the fermion parity
operator and consequently encodes the vortex braiding phase.

This aligns with the fact that the physics of the decoding
phase transition is associated with the loss of two logical
qubits stored in an extensive number N → ∞ of physical
qubits. Second, the simplification of Eq. (78), compared to
the starting point Eq. (68), rests on the thermodynamic limit.
In terms of a physical interpretation, it is only in this limit
where the hybridization of Majorana zero modes trapped in
defects vanishes. Finally, it shows that the information theo-
retic CI, which is highly nonlinear in the density matrix of the
original stabilizer code, reduces to a mixed-state topological
order parameter that is linear in the fermion density matrix.
However, it involves a global probe operator, (−)Q̂; clearly,
the information on the fermion parity is nonlocally stored in
the state.

The error threshold of the toric code attains a physical
interpretation as the zero vortex fugacity point in the Majorana
representation. This arises from the formal similarity between
our high-temperature limit and the disordered topological in-
sulators/superconductors in their ground state, both of which
involve zero Matsubara frequency: In disordered fermions at
zero temperature, this is due to the static, zero frequency limit.
In the case of our finite-temperature Majorana fermions, it is
the fermion parity operator insertion that changes the temporal
boundary conditions of the partition function to periodic ones
as mentioned above, and thus allows for a zero Matsubara
frequency mode to be present.

In the disordered scenario, the critical point is identified by
zero vortex fugacity (denoted by u) [35–38]. The modulus of
u represents the statistical weight for vortex creation, while its
sign is an indicator of topology [35–38]: Negative u signals a
topological phase with nontrivial bulk-vortex correspondence,
and positive u a normal phase. Thus, we observe that the
zero vortex fugacity point coincides with the zero crossing of
the CI, u ∼ Ic. Quantitatively, the critical point of disordered
fermions is captured by the following RG equation for the

Ic−2 20
FIG. 12. Schematic of the renormalization group flow for the

coherent information Ic in the toric code with both bit-flip and phase
errors, assuming two phases: there are three fixed points—stable at
Ic = ±2 in the gapped phase and unstable at Ic = 0 at the critical
point with zero vortex fugacity. As the system size increases, Ic flows
toward the stable points Ic = ±2, while Ic = 0 remains unchanged.

fugacity [23,35–38]:

du

d ln L
∝ u, (80)

where L is the RG length scale. This shows that the zero-
fugacity point (u = 0), and hence zero CI, is located exactly at
the RG fixed point, remaining unrenormalized as the system
size increases [see Fig. 12 for the schematic RG flow for Ic].
This fits numerical results showing tiny finite-size drift at the
CI zero point [40] (see also Appendix E for additional numer-
ical results). It rationalizes that indeed the CI can effectively
probe the error threshold in small systems.

V. NUMERICAL RESULTS FOR OTHER MODELS

Through the lens of the Majorana representation, we
identify vortex proliferation as the mechanism driving the
decoding phase transition. The connection of the threshold
to a renormalization group fixed point suggests that the CI
is an efficient tool for determining the latter. Although our
analysis focuses on the toric code model under bit-flip and
phase errors, we expect this mechanism to be general, as
all 2D topological stabilizer codes are equivalent to multiple
copies of the toric code [68–70]. We support this by numerical
results, i.e., applying CI across various code models with
small code distances (see Fig. 13), and accurately reproducing
known error thresholds. This includes (1) the rotated surface
code under depolarizing noises and (2) the triangular 4.8.8.

p0.1090 1/2
0

1
2

1

p0.1890 3/4
−1

0

1
(a) (b)Rotated surface code Color code

FIG. 13. Numerical results for the CI in (a) the rotated surface
code under depolarizing noise and (b) the color code under bit-flip
errors, evaluated across different code distances (1, 3, and 5 for the
surface code; 1, 5, and 9 for the color code). The CI is computed
by diagonalizing the density matrix [40]. The error threshold, de-
termined from the crossing point of the CI, is 0.189 for the rotated
surface code and 0.109 for the color code, aligning with previously
reported results [3,7,8]. Inset: Data collapse using scaled variable
(p − pc )d1/ν with code distance d and ν = 1.64 (1.82) for the sur-
face (color) code.
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color code under bit-flip errors (see, e.g., Refs. [40,71] for
details on these models).

VI. CONCLUSION AND OUTLOOK

In this work, we have constructed a connection of a quan-
tum information theoretic quantity, the CI, and the physics
of topological superconductors in mixed quantum states. This
connection is enabled by an exact mapping of the CI itself
to Majorana fermions, valid for any system size and care-
fully tracking the boundary conditions. In the thermodynamic
limit, the CI reduces exactly to a mixed-state topological
order parameter. Remarkably, determining the latter amounts
to evaluating a standard quantum mechanical observable, the
fermion parity, which is linear in the fermion density matrix.
The order parameter takes quantized values reflecting the seal-
ing of quantum information below the error threshold. One
benefit of the mapping is a rather direct interpretation of infor-
mation theoretic properties—like the error-correctable phase,
the error threshold, and the stored information—in terms of
basic many-body properties of fermions—the topologically
nontrivial phase, the mixed-state phase transition, and the
existence of topologically protected zero modes. In particular,
as a consequence of the aforementioned connections, two key
insights regarding the toric code decoding phase transition
follow: (1) emergent self-duality at the critical point on the
Nishimori line of the RBIM2 and (2) tiny finite-size effects
in the CI near the critical point, stemming from the connec-
tion of the CI zero crossing to a renormalization group fixed
point.

Our work has focused on the most paradigmatic model,
the toric code under bit-flip and phase errors. An important
direction of future research concerns charting the generality
of the results obtained here. As mentioned, it can be expected
that the CI remains an efficient tool for other two-dimensional
topological stabilizer codes, as they are equivalent to multiple
copies of the toric code [68–70]; we have provided numer-
ical support for this conjecture. More broadly, mappings
of complex quantum spin models to fermions are ubiqui-
tous, when it comes to the bulk properties of the systems,
to name only a few, the quantum Ising model [56,63,72]
(or repetition code, in quantum information language), the
cluster state [73,74], and the XZZX code [49,75,76], all
with equivalent Majorana representations; these mappings
can be formulated in great generality using tensor network
techniques [27,77]. Recently, motivated by the prospects of
state-of-the-art quantum devices, there is a surge of research
activity, studying such quantum spin models using quantum
information measures like the CI. This becomes necessary,
for example, in setups where quantum measurements compete
with decoherence processes [78] or in detecting the strong-to-
weak spontaneous symmetry breaking [79,80], more broadly,
whenever one needs to consider quantities that are nonlinear
in the spin model density matrix. Recasting the informa-
tion theoretic quantities in terms of fermions as exemplified
here, and identifying the relevant mixed-state topological
order parameters [30], would not only be conceptually re-
warding and physically insightful. It might further give
rise to practical advantages for high-precision estimates of
error thresholds or phase diagrams of such problems. For

example, computing CI via the Majorana representation, if
it exists as in the case studied here, can be achieved nu-
merically efficiently. Conversely, an interesting direction of
research is to connect known instances of mixed-state topo-
logical phase transitions in fermion systems, including in
the interacting case [81], to quantum information measures.
Ultimately, this connection could help identifying candi-
date systems for robust quantum information storage and
processing.

Finally, on the spin model side of the triptych in Fig. 1,
we have found an exact relation between the CI zero point
and the self-dual point of the RBIM. Combined with the pre-
viously known equivalence between the critical point and the
CI zero point in the thermodynamic limit, this establishes an
emergent self-duality at the critical point. It will be intriguing
to explore whether the link of vanishing CI and self-duality
extends to other models, such as the random three-body Ising
model associated with the 2D topological color code [6,7], in
this way leveraging quantum information tools for insights in
statistical mechanics.
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APPENDIX A: COHERENT INFORMATION
AND THE KNILL-LAFLAMME CONDITION

In this section, we connect two error correction conditions:
the CI approach by Schumacher, Nielsen, and Lloyd [18,19],
and the Knill-Laflamme condition. While this relationship has
been previously established [18,19,44], our goal is to provide
a more straightforward derivation, specifically of the coherent
information condition from the Knill-Laflamme condition.

Quantum memory (Q) is inherently fragile due to perva-
sive noise, leading to potential information leakage into the
environment (E ). To make quantum devices practical, error
correction is essential, but it is only feasible if no information
is leaked, as captured by the error correction conditions. The
first condition, derived from CI, states that error correction is
possible when the residual information in Q (measured by CI
Ic) equals the initially stored information SQ:

Ic = SQ. (A1)

The second condition, known as the Knill-Laflamme condi-
tion, evaluates error correctability by analyzing the code space
through

PcK†
α1

Kα2 Pc = Aα1α2 Pc, (A2)

where Pc is the projector onto the code space, Kα are the Kraus
operators for the noise process α, and Aα1α2 is a real number
indexed by α1 and α2. This condition thus states that error
correction is possible if the error channel does not affect the
code space.

While these two conditions approach error correction from
different perspectives, we will now quantitatively demonstrate
their equivalence.

1. Knill-Laflamme condition ⇒ coherent information condition

We show that the Knill-Laflamme condition implies the CI
condition via the factorization

SQ′ = SQ + SE ′ , (A3)

where SQ and SQ′ are the von Neumann entropies of the
quantum memory before and after decoherence, respectively,
and SE ′ is the von Neumann entropy of the environment. This
implies that the initial quantum memory information remains
intact, as shown by

SQ′ − SE ′ = SQ ⇒ Ic = SQ, (A4)

with Ic ≡ SQ′ − SE ′ , thereby reproducing the CI error correc-
tion condition.

Equation (A3) is derived by expressing SQ′ as

SQ′ = −trαA log2 A + SQ, (A5)

where trα traces over the subscripts α of Aα1α2 . −trαA log2 A
equals SE ′ (see Appendix A 3 for derivations), characteriz-
ing the leakage information to the environment. Specifically,
Eq. (A5) follows from the identities

ρQ′ =
∑

α

KαPcρQPcK†
α (A6)

and

SQ′ = − lim
n→1+

1

n − 1
Tr
(
ρn

Q′ − 1
)
, (A7)

where ρQ = PcρQPc as ρQ resides within the code space. We
thus reproduce Eq. (A5),

SQ′ = −Tr(ρQ′ log2 ρQ′ )

= − lim
narrow1

1

n − 1
{trα (An) × Tr[(PcρQPc)n] − 1}

= −trα (A log2 A) + SQ. (A8)

2. Coherent information condition ⇒ Knill-Laflamme condition

Derivations along this line are more technical and offer
fewer physical insights. Therefore, we direct interested read-
ers to Refs. [18,44].

3. Derivation of SE′ = −trαA log2 A

We prove the identity SE ′ = −trαA log2 A by using the fol-
lowing identity (see derivations below):

ρE ′ =
∑

α1, α2

Wα1α2 |α1〉〈α2|, (A9)

where Wα1α2 ≡ Tr(Kα1 PcρQPcK†
α2

) relates to Aα1α2 by ma-
trix transpose, Wα1α2 = Aα2α1 , and |α〉’s form an orthonormal
basis. From this, we confirm

SE ′ = −trαW log2 W = −trαA log2 A. (A10)

We derive Eq. (A9) using a purification approach. We begin
with a purified wave function for the composite system,

|�RQE 〉 =
∑

α

|�RQ〉 ⊗ |0E 〉, (A11)

where R is the reference system. This reproduces the density
matrices ρQ and ρE ,

ρQ ≡ TrR, E |�RQE 〉〈�RQE |,
ρE ≡ TrR, Q|�RQE 〉〈�RQE |. (A12)

Decoherence, described by the Kraus operators Kα , trans-
forms the state as

|�RQ′E ′ 〉 = IR ⊗ ŨQE

∑
α

|�RQ〉 ⊗ |0E 〉,

ŨQE ≡
∑

α

Kα ⊗ |α〉〈0E |, (A13)

where {|α〉} is an orthonormal basis, consistent with∑
α K†

αKα = I. The superscript “′” denotes the decohered sys-
tem. This setup produces the correct expression for ρQ′ ,

ρQ′ ≡ TrR, E |�RQ′E ′ 〉〈�RQ′E ′ | =
∑

α

KαρQK†
α , (A14)

and confirms Eq. (A9),

ρE ′ =
∑

α1, α2

Wα1α2 |α1〉〈α2|, (A15)

with Wα1α2 ≡ Tr(Kα1 PcρQPcK†
α2

).

APPENDIX B: DERIVATIONS OF THE RANDOM-BOND
ISING MODEL IN EQ. (26)

Equation (26) is established via two observations [17]:
(a) States in the code space (|�TC〉) consist of loop
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FIG. 14. Illustration of notations: φi j and ki j (a), noncontractible
loop L̃x (b), and curl ∂p̃a k (c). The solid (dashed) lines represent the
(dual) lattice, with Ising spins on vertices as hollow circles (solid
squares). Panel (a) shows variables φi j (ki j) on the (dual) lattice.
Panel (b) illustrates a noncontractible loop L̃x on the dual lattice, with
the double green line representing a Z2 gauge field (ai j , or equiv-
alently ηi j = eiπai j ). Panel (c) defines the curl of ki j , where arrows
indicate the sign of ki j (positive for right/up, negative otherwise).

superpositions, satisfying +|�TC〉 = As|�TC〉 = Bp|�TC〉. (b)
The terms Trρn

Q′ and Trρn
RQ′ measure the overlap of |�TC〉

connected by string excitations, e.g., 〈� ( f +1)
TC |W ( f +1)

e/m ×
W ( f )

e/m|� ( f )
TC 〉, where f ∈ [1, n] labels states/operators from the

f th density matrix within n replicas, where f = n + 1 iden-
tified with f = 1. Hence, both Trρn

Q′ and Trρn
RQ′ are nonzero

only when the error chain S ( f +1)
X/Z − S ( f )

X/Z forms a closed loop
[see Fig. 4(d)]. Using the f = n strings as a reference, Trρn

Q′

and Trρn
RQ′ equal the sum of [(p/1 − p)]|C

( f )
Z/X | for all possible

loop configurations C ( f )
Z/X | f �=n ≡ S ( f )

Z/X − S (n)
Z/X . This sum coin-

cides with the loop expansion of the RBIM, with the random
bond ηi j from the reference string configuration at f = n,
subjected to P[η; K] = ∏

〈i, j〉 [eKηi j /2 cosh(K )]. A key dif-
ference between Trρn

Q′ and Trρn
RQ′ arises from the reference

qubit: For Trρn
RQ′ , S ( f +1)

X/Z − S ( f )
X/Z must form a contractible

loop, as purification by R implies a one-dimensional space
spanned by |�TC〉, while Trρn

Q′ involves noncontractible loops,
leading to tunneling between different states in the code space,
which is reflected as different boundary conditions in the
RBIM.

APPENDIX C: DUALITY RELATION FOR THE ISING
MODEL ON A TORUS

In this section, we provide a detailed derivation of Eq. (41),
from which we further derive the duality relation on a torus.
For convenience, Eq. (41) is restated here:

2
∑

{k}, ∂k=0

∏
〈i, j〉

eiπki jφi j = 1

2

∏
pa

[2δ(∂paφ mod 2)], (C1)

where φi j and ki j are variables on the lattice and dual lattice,
respectively [red solid and blue dashed lines in Fig. 14(a)].
The variable ki j is constrained by the condition ∂k = 0, mean-
ing its curl vanishes along any closed loop on the torus,
including both contractible and noncontractible loops [e.g.,
L̃x/y along the x/y directions, black dotted lines in Fig. 14(b)].

Here, “mod 2” is implied for the curl and will be omitted
henceforth.

We derive Eq. (C1) by first representing the constraints on
ki j as Dirac-delta functions. For constraints from contractible
loops, they consist of local ones associated with dual plaque-
ttes [ p̃a, Fig. 14(c)]:

∂p̃a k = 0 ⇒ δ
(
∂p̃a k

) = 1

2

∑
ϕp̃a =0,1

eiπϕp̃a (∂ p̃a k), (C2)

which introduces the dual plaquette variables ϕp̃a . There exist
N − 1 independent constraints on a torus, so we include only
N − 1 Dirac-delta functions, excluding the dual plaquette p̃N .
For noncontractible loops, additional constraints are needed
since they cannot be deformed into local one residing on dual
plaquettes. We thus introduce two extra variables, bd = 0, 1
with d = x, y,

∂L̃d
k = 0 ⇒ δ

(
∂L̃d

k
) = 1

2

∑
bd =0,1

eiπbd (∂L̃d
k)
, (C3)

where L̃x and L̃y are noncontractible loops along the x and
y directions, respectively, on the torus [Fig. 14(b)]. The aux-
iliary fields bd = 0, 1 couple to all ki j along L̃d , leading
to different boundary conditions for φi j along d = x, y, as
shown below.

We now integrate out the unconstrained ki j , using the iden-
tity

∑
p̃a

ϕp̃a

(
∂p̃a k

) = −
∑
〈i, j〉

ki j (�i jϕ), (C4)

which is the integration by parts on a lattice, with �i j repre-
senting the gradient along the φi j direction. Via variables ϕp̃a

and bx/y, we replace the constrained ki j with unconstrained
ones,

2
∑

{k}, ∂k=0

∏
〈i, j〉

eiπki jφi j

= 2
∑
{k}

∏
〈i, j〉

eiπki jφi j ×
[∏′

p̃a

δ
(
∂p̃a k

)]×
⎡
⎣ ∏

d=x, y

δ
(
∂L̃d

k
)⎤⎦

= 2
∑′

{ϕ, k, bd }e
iπ
∑

〈i, j〉 ki jφi j ×
∏′

p̃a

1

2
eiπϕp̃a ×(∂ p̃a k)

×
∏

d

1

2
eiπbd ×(∂L̃d

k)
, (C5)

where the prime in
∏′ and

∑′ indicates exclusion of the
plaquette p̃N . To treat all plaquettes equally, we insert the
resolution of identity:

1 =
∑
ξ=0,1

δ
(
∂p̃N k − ξ

) =
∑

ξ,ϕp̃N =0,1

1

2
eiπϕp̃N (∂ p̃N k−ξ ), (C6)
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which simplifies Eq. (C5) to

2
∑

{k, ϕ, bd }
eiπki jφi j ×

⎛
⎝∑

ξ

e−iπϕp̃N ξ

⎞
⎠

×
⎛
⎝∏

p̃a

1

2
eiπϕp̃a ×(∂ p̃a k)

⎞
⎠×

⎡
⎣∏

d=x,y

1

2
e

iπbd ×
(
∂L̃d

k
)⎤⎦

= 2N−1
∑

{ϕ, bd }

⎡
⎣∏

〈i, j〉
δ
(
φi j − �i jϕ + ai j

)⎤⎦× 2δ(ϕp̃N ).

(C7)

In the second line, we have integrated over ki j using Eq. (C4),
yielding a product of Dirac-delta functions δ(φi j − �i jϕ +
ai j ), with a prefactor 2N−1 = 22N+1−N−2. Here, 2N repre-
sents the number of bonds (ki j), and N the number of dual
plaquettes ( p̃a). The additional Dirac-delta function, 2δ(ϕp̃N ),
results from summing over ξ . The variable ai j = 0, 1 is a Z2

gauge field related to ηi j via ηi j = eiπai j and depends on bd

(d = x, y): ai j = 0 for all bonds except those crossing L̃d ,
where ai j = bd [green double line in Fig. 14(b)]. In turn,
this indicates that bd represents the Wilson loop associated
with ai j . To simplify, we use the shift symmetry of ϕp̃a and
replace 2δ(ϕp̃N ) with an average over different ϕp̃N values,
which reduces Eq. (C5) to

2
∑

{k}, ∂k=0

∏
〈i, j〉

eiπki jφi j = 2N−1
∑

{ϕ, bd }

∏
〈i, j〉

δ(φi j − �i jϕ + ai j ).

(C8)
These Dirac-delta functions indicate that φi j is a locally exact
form in the bulk (away from L̃x), where φi j = �i jϕ, but
with nontrivial holonomy due to ai j . This imposes a curl-free
condition on φ for contractible loops (∂paφ), so by integrating
out ϕp̃a , we recover Eq. (C1).

Building on these results, one can infer the duality relation

2Z̃IM[J] =
∑

α

ZIM, α[J], (C9)

by taking ϕp̃a as the Ising spin, with boundary conditions
set by the Wilson loop bd , i.e., cos(πϕp̃a ) = σi, where the
dual plaquette p̃a corresponds to a lattice site i. This relation
is derived by integrating out φi j in Z̃IM[J] using Eq. (C8).
Specifically, for Z̃IM[J],

Z̃IM[J] =
∑
{φ}

⎧⎨
⎩2

∑
{k}

∏
〈i, j〉

[
1√
2

eiπki jφi j x(φi j )

]⎫⎬
⎭, (C10)

we integrate out both ki j [using Eq. (C8)] and φi j , resulting in

Z̃IM[J] = 1

2

∑
bd

⎧⎨
⎩
∑
{ϕ}

∏
〈i, j〉

xi j,α[�ϕ − ai j]

⎫⎬
⎭

= 1

2

∑
α

ZIM,α[J], (C11)

where the prefactor 1/2 = 2N−1/
√

2
2N

, and the boundary
conditions are determined by bd . This establishes the duality
relation in Eq. (C9).

Majorana loop expansion(b)Ising spin loop expansion(a)

tanh J

(c)
+ +=1

FIG. 15. Representation of the loop gas ensemble via the Ising
model or Majorana fermions. Panel (a) shows a loop from the high-
temperature expansion of the Ising model ZIM[J] ≡ ∑

{σ } eJ
∑

〈i, j〉 σiσ j ,
where the red solid line represents tanh(J )σiσ j . The closed loop
weight is (tanh J )|C|, with |C| denoting the loop length. Panel (b) de-
picts the corresponding loop in the Majorana representation, where
the red solid and blue dashed lines represent Majorana bilinears.
The loop has an amplitude of (tanh J )|C| after integrating out the
Majorana spinors, as the on-site Majorana term is normalized to 1
for different configurations (c).

APPENDIX D: FERMIONIZATION VIA LOOP EXPANSION

In this section, we first derive the Majorana representation
for the Ising model following Refs. [60,62], and then apply it
to Rényi-2 CI.

This fermionization method represents a loop gas ensem-
ble using either the Ising model or Majorana fermions (see
Fig. 15). The loop gas ensemble consists of closed loops C of
length |C|, with partition function

Z[J] = N ′ ∑
{C}

(tanh J )|C|, (D1)

where N ′ is an irrelevant normalization factor and tanh J
represents the string tension, assigning weight based on loop
length |C|. This describes the Ising model with partition func-
tion ZIM[J] = ∑

{σ } eJ
∑

〈i, j〉 σiσ j , as illustrated in Fig. 15(a),

ZIM[J] = (cosh J )2N
∑
{σ }

∏
〈i, j〉

(1 + tanh Jσiσ j )

= (cosh J )2N
∑
{C}

(tanh J )|C|, (D2)

where only closed loops contribute after summing over the
Ising spins. Alternatively, the loop gas can be represented
using Majorana fermions by attaching four Majorana spinors
to each site [see Fig. 15(b)], connecting nearest neighbor. The
partition function is then

ZMH[J] =
∫

Dγ e−iβ
∑

r1 , r2
�T

r1
HMH, r1r2 �r2 , (D3)

where Dγ = ∏
r

∏
a dγ (a) is the integration mea-

sure, β�T HMH� is a Majorana bilinear, and �r =
(γ (u)

r , γ (d )
r , γ (r)

r , γ (l )
r )T is a four-component spinor. Here,

β � 1 serves as a controlling parameter, tracking the
expansion power. To match Eq. (D1), the Hamiltonian HMH in
Fig. 9 (with t ≡ tanh J) is chosen so that a loop configuration
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has an amplitude t |C| coinciding with the Ising model: The
Majorana hopping constant accounts for string tension, and
the on-site Majorana terms normalize to 1 [visualized in
Fig. 15(c)], i.e.,

1

β2

∫
Dγr e−iβ�T

r HMH,rr�r = 1. (D4)

Thus, we confirm that ZMH also represents a loop gas ensem-
ble by expanding in β and tracing out γ [see Fig. 15(b) for an
exemplary loop configuration].

The partition function ZMH[J] can also be recast in the
operator formalism, namely,

ZMH[J] = lim
β→0+

Tr[e−βĤMH (−1)Q̂] ≡ lim
β→0+

P, (D5)

where β → 0+ reflects the classical nature of the underlying
spin model. Note that the appearance of the fermion parity
operator (−1)Q̂ in the representation of the Majorana partition
functions as a trace over Hilbert space. It crucially modifies
the temporal boundary condition of the Majorana fermions
from antiperiodic to periodic, aligning them with the underly-
ing spin representation. This modification can be interpreted
as the insertion of a temporal Z2 flux, a common feature in
fermionization/bosonization.

On a torus, the exact mapping between the Ising model and
Majorana fermions is

2ZIM[J]

= lim
β→0+

1

β2N
(−PPP[β, tanh J; η] + PAA[β, tanh J; η])

+ lim
β→0+

1

β2N
(PPA[β, tanh J; η] + PAP[β, tanh J; η])

(D6)

and∑
α

ZIM, α[J] = lim
β→0+

1

β2N

∑
α

Pα[β, tanh J; η], (D7)

with η = +1. The derivation is intricate due to noncon-
tractible loops on the torus, which complicate the Majorana
representation for the loop gas ensemble and require careful
handling of different boundary-condition sectors. We refer
interested readers to Ref. [62] for further details. Notably,
the different spatial boundary-condition sectors (labeled by
α) on the right-hand side of Eqs. (D6) and (D7) correspond
to the insertion of a Z2 spatial flux, which combined with
the fermion parity operator demonstrates that the Ising model
maps to a Majorana model with both temporal and spatial Z2

fluxes.
Finally, as an illustration, it is instructive to apply this

mapping to the Rényi-2 CI, which is mapped to a clean and
noninteracting Majorana model, i.e.,

I (2)
c = 2 log2

(
1 − 2

PPP[β, t2; η]∑
α Pα[β, t2; η]

)
, t2 = (1 − 2p)2,

(D8)
with η = +1. At finite system sizes, the gap closing occurs
only in the “PP” sector, at t2 = √

2 − 1 (see Fig. 9 for numer-
ical results), consistent with the results from self-duality.

0 1/2p
−1

+1

sign(
α=PP

Pα)

sign (PPP)

FIG. 16. Fermion parity signs under different boundary condi-
tions, computed for a Z2 gauge field configuration (ηi j) sampled
from the distribution P[K ; η] = ∏

〈i, j〉 (eKηi j /2 cosh K ) in a 20 × 20
system. As the error rate p increases, only sign(PPP) changes, while
sign(

∏
α �=PP Pα ) remains constant.

APPENDIX E: ADDITIONAL NUMERICAL RESULTS
ON TOPOLOGICAL PHASE TRANSITIONS IN CLASS D

MAJORANA REPRESENTATION

We provide additional numerical results for the decoding
phase transition, from the perspective of a class D Majorana,
namely, the expectation value of the fermion parity operator
under different boundary conditions for a single Z2 gauge field
configuration (Fig. 16), the vortex fugacity [Fig. 17(a)], and
the mixed-state topological order parameter [Fig. 17(b)].

(1) The fermion parity signs under different boundary
conditions, sign(PPP[β, t1; η]) and sign(

∏
α �=PP Pα[β, t1; η])

with the limit β → 0+ taken hereafter, are computed for a
single Z2 field configuration sampled from the distribution
P[K ; η] = ∏

〈i, j〉 (eKηi j /2 cosh K ) in a 20 × 20 system. Re-
sults (Fig. 16) support that in the large site limit, only PPP

changes sign as the error rate increases.

p0 1/2
−2

0

2

− 1
3

0

1
3

ppc0 1/2 pc

(a) (b)Vortex fugacity MSTOP

FIG. 17. Numerical results for vortex fugacity u (a) and mixed-
state topological order parameter M (b). Panel (a) shows u as
negative/positive in the topological/normal phase (p � pc/p > pc),
vanishing at the critical point with small finite-size dependence,
making it a useful probe for identifying the critical point in small
systems. The inset displays the corresponding data collapse using
(p − pc ) ln N for the x axis for system sizes of 4 × 4 (green squares),
10 × 10 (red circles), and 16 × 16 (blue triangles). Panel (b) shows
the disorder average MSTOP, −2M, across different sizes, along
with CI, confirming that −2M aligns with CI in the gapped phase
but exhibits size dependence near the critical point, as M is defined
for the gapped phase (Ref. [30]).
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(2) Vortex fugacity, defined as the ratio

u ≡
〈〈 PPP[β, t1; η]

PAP[β, t1; η] + PPA[β, t1; η] + PAA[β, t1; η]

〉〉
.

(E1)

Around the critical point, the CI relates to u by expanding
PPP[β, t1; η] and to leading order

Ic = − 4

ln 2

(
lim

β→0+
u
)

+ O[(PPP)2]. (E2)

Numerical results in Fig. 17(a) confirm that u has small
finite-size effects at the zero-fugacity point.

(3) Disorder averaged MSTOP

M ≡
〈〈

sign

(PPP[β, t1; η]PAA[β, t1; η]

PAP[β, t1; η]PPA[β, t1; η]

)〉〉
, (E3)

with its sign representing a mixed-state topological order
parameter [30]. To improve numerical stability during disor-
der averaging, here we evaluate 〈〈sign(

∏
α Pα )〉〉. Results in

Fig. 17(b) show that M matches with the CI in the gapped
phases, where this quantity is well defined.
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