PHYSICAL REVIEW X 15, 041012 (2025)

Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation
with Reinforcement Learning

Remmy Zen ,1’* Jan Olle,1 Luis Colmenarez ,2’3 Matteo Puviani ,1 Markus Ml'jller,z’3 and Florian Maurquardtl’4

'Max Planck Institute for the Science of Light, Staudtstrafie 2, 91058 Erlangen, Germany
*Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
*Peter Griinberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jiilich,
52425 Jiilich, Germany
4Department of Physics, Friedrich-Alexander Universitit Erlangen-Niirnberg,
Staudtstrafpe 5, 91058 Erlangen, Germany

® (Received 17 May 2024; revised 7 March 2025; accepted 11 September 2025; published 22 October 2025)

The realization of large-scale quantum computers requires not only quantum error correction but also
fault-tolerant (FT) operations to handle errors that propagate into harmful errors. Recently, flag-based
protocols have been introduced that use ancillary qubits to flag harmful errors. However, there is no clear
recipe for finding a FT quantum circuit with flag-based protocols, especially when we consider hardware
constraints, such as the qubit connectivity and available gate set. This work presents a novel approach to
automatically discover compact and hardware-adapted FT quantum circuits to make significant progress
towards scalable FT quantum computing. We employ reinforcement learning (RL) as an enabling tool,
leveraging a fast, parallelized stabilizer quantum circuit simulator and a nontrivial reward function
specifically adapted to the problem. We show that, in the task of FT logical state preparation, RL discovers
not only circuits with fewer gates and ancillary qubits than published results but also novel circuits without
and with hardware constraints of up to distance-5 codes with 25 physical qubits, and they can be
implemented directly in experiments. Furthermore, RL allows for straightforward exploration of different
qubit connectivities and the use of transfer learning to accelerate the discovery. More generally, our work
sets the framework towards the use of RL or other machine learning techniques for FT quantum circuit
discovery with hardware constraints to make real progress towards the realization of large-scale quantum
computers, addressing tasks beyond state preparation, including magic state preparation, logical gate

synthesis, and syndrome measurement.

DOI: 10.1103/gqpr-dgz7

I. INTRODUCTION

Quantum systems are highly fragile due to their suscep-
tibility to errors caused by decoherence. Furthermore,
quantum operations are imperfect and error prone.
Therefore, in order to harness quantum systems for
computation, the error rates must be significantly reduced.
Quantum error correction (QEC) is essential to protect
quantum information from these errors, allowing us to
perform complex and reliable computations [1,2]. The
basic idea behind QEC is to encode logical qubits into
multiple noisy physical qubits in such a way that we

“Contact author: remmy.zen @mpl.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

2160-3308/25/15(4)/041012(42)

041012-1

Subject Areas: Quantum Physics, Quantum Information

can detect and correct errors without destroying the
logical state. Although the implementation of QEC is a
challenging task, recently we have seen several experi-
mental breakthroughs of QEC with different quantum
computing platforms [3-9], first quantum circuits carried
out on up to 48 logical qubits [10,11] and crossing the
breakeven point of beneficial QEC [12-14].

QEC operations are often expressed using a sequence of
quantum gates that form a quantum circuit. However, these
gates are faulty, and multiqubit gates proliferate the errors,
compromising the scalability of QEC. In general, the more
gates, the more errors, making QEC less effective [15-17].
Therefore, we want to minimize the number of possible
faulty operations that can lead to harmful errors: This goal
is achieved by designing fault-tolerant (FT) circuits [18]. In
FT circuits, all faults (gates, measurements, errors, resets)
that our QEC code cannot correct become less likely to
occur below a specific threshold as the distance of the code
increases (see Sec. II C for more details). In consequence,
only by using FT schemes can we ensure systematic
improvement in correction as the size of the code scales.

Published by the American Physical Society

https://orcid.org/0000-0002-7645-125X
https://orcid.org/0000-0002-5946-7591
https://orcid.org/0000-0002-5332-213X
https://ror.org/020as7681
https://ror.org/04xfq0f34
https://ror.org/02nv7yv05
https://ror.org/00f7hpc57
https://crossmark.crossref.org/dialog/?doi=10.1103/gqpr-dgz7&domain=pdf&date_stamp=2025-10-22
https://doi.org/10.1103/gqpr-dgz7
https://doi.org/10.1103/gqpr-dgz7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

Therefore, FT is of paramount importance in making
scalable quantum computers [2,15-17]. Several classes
of FT protocols have been proposed [6,18-22]. Among
the first was Shor-type error correction [23], which relies on
additional GHZ states and repeated measurements to check
for errors. Another scheme is Steane-type error correction,
which uses additional logical qubits to detect errors [24-26].
Both approaches suffer from a large qubit overhead.
Recently, flag fault-tolerant error correction [20,27-31]
was introduced as a way to achieve fault-tolerant protocols
with a minimal number of ancilla qubits, e.g., sometimes
requiring only one extra qubit. For instance, in the specific
case of preparing a state fault tolerantly, a flag fault-tolerant
protocol uses a verification circuit after the encoding circuit
that utilizes a few extra ancilla qubits, known as flag qubits, to
flag harmful errors while keeping the logical state intact.
There are already examples of flag verification circuits in
state preparation on several QEC codes [32—-36]. They have
also been shown to be effective in reducing logical error rates
in experimental realizations [3,6,7,37-39].

Despite their success, flag-based protocols are typically
handcrafted and have so far been implemented in devices
with all-to-all qubit connectivity. A transpilation process
[40-42] can be applied to the circuit to respect the qubit
connectivity and gate set, but this process will generally
make it non-FT. In other words, the automatic compilation
[43—47] of FT circuits has not been widely explored yet.

In this work, we present a novel approach to automati-
cally discover hardware-adapted FT quantum circuits for
QEC. Hardware adapted means that we can constrain the
qubit connectivity and the available gate set based on the
quantum platforms of interest, such that the discovered
circuits can be directly realized in experiments. Our method
leverages RL in which an agent learns to make decisions by
interacting with an environment in order to maximize its
reward through guided trial and error. We apply our method
to the task of logical state preparation. Specifically, as
illustrated in Fig. 1, our approach is based on the automatic
discovery of quantum circuits that fault tolerantly prepare

Target logical state
ly)pofalln,k,d]] code Fault-tolerant

logical state preparation

Gate set circuit
EI EI é Reinforcement | | 0; [u}
R |0 rist
learning |8§ @ o4
Qubit connectivity % Ioz H 5
10) -
|0) D i
[0) S|

FIG. 1. Discovery of fault-tolerant logical state preparation
circuit with reinforcement learning (RL). Given the target logical
state |y), of a specified [[n, k, d]] code, a gate set, and a qubit
connectivity, we use RL to automatically discover circuits for
preparing |y), fault tolerantly with flag qubits.

the target logical state of a given QEC code under given
available gate set and qubit connectivity.

Recently, RL [48] has emerged as a useful tool for
solving various problems in quantum technologies [49]. It
has been applied to quantum error correction [50-55],
quantum control and state preparation [56-61], and quan-
tum compilation [62-68], among many others. However,
these works were more focused on proof-of-principle
demonstrations that do not yet constitute experimentally
relevant progress when judged on their own merits, i.e.,
when setting aside the novelty of using RL. In contrast, our
work pioneers the use of RL for the automated discovery of
FT quantum circuits that can be directly experimentally
realized, thus making real progress towards FT scalable
quantum computers.

FT quantum circuit design is also a more complex
task than circuit compilation, circuit synthesis, or state
preparation, requiring a more sophisticated approach to
constructing an appropriate reward function. Unlike these
tasks, where a fidelity reward is often sufficient [43,64,65],
our task involves not only preparing the correct logical state
but also tracking potentially harmful errors to be detected
and/or corrected by a QEC code while considering hard-
ware constraints to ensure experimental feasibility. In
addition, by focusing on the preparation of a logical state
for QEC, we can move to a larger number of qubits. The
state-of-the-art results with RL on other tasks are up to 5
qubits [69] for general unitary synthesis and 11 qubits for
general stabilizer states [70], while in our results we can go
up to 25 qubits.

In our case, the RL agent needs to find an optimal
strategy by applying a discrete gate at each step, guided by
reward signals. It has been shown that RL stands out in
quantum state preparation when the gates applied by the
agent are discrete [56]. Furthermore, RL is suitable for our
task because it can be formulated as a goal-oriented task
that is specified in the reward signals. The construction
of a nontrivial reward function specifically adapted to the
problem is one of the key enablers of our approach. In
addition, we find that RL is capable of efficiently navigat-
ing large and complex quantum circuit spaces. To achieve
this goal, and another one of the key enablers of our
approach, we introduce the development of our own fast,
parallelized quantum circuit simulator. Finally, RL enables
efficient and flexible automated discovery through transfer
learning, i.e., reusing trained RL agents for similar but
different quantum circuit problems. This result is not
possible, for example, in the method proposed in
Ref. [71], where finding a fault-tolerant quantum circuit
is framed as a satisfiability modulo theory (SMT) problem.

We test our method on several QEC codes: the distance-3
codes, which include the 5-qubit perfect code, the 7-qubit
Steane code, the 9-qubit Shor and surface codes, and the
15-qubit Reed-Muller code; and the distance-5 codes,
which include the 17-qubit and 19-qubit color codes, as

041012-2

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

well as the 25-qubit surface codes. Our first RL approach is
to separate the task of finding a FT logical qubit encoding
protocol into a logical state preparation task followed by a
verification circuit synthesis task. Individually, the RL
method for each task already produces quantum circuits
that have better or similar performance compared to
existing circuits. More interestingly, by integrating the
logical state preparation and verification circuit synthesis
tasks, a single RL agent can directly prepare FT logical
states and is able to outperform all other available
approaches. Thus, this work establishes RL as a viable
approach for FT quantum circuit synthesis tasks that go
beyond the preparation of logical states.

The paper is organized as follows. In Sec. II, we give a
brief background on FT QEC and RL. In Sec. III, we
describe our general reinforcement learning framework for
fault-tolerant logical state preparation. The preparation of a
FT logical state can be divided into two successive tasks:
the preparation of the logical state, described in Sec. IV,
followed by the synthesis of the verification circuit,
described in Sec. V. In Sec. VI, we go beyond the
separation of tasks and present our main integrated
approach, where we directly prepare FT logical states.
Then, in Sec. VII, we discuss how to scale our approach to
higher distance codes. In Sec. VIII, we discuss how our
approach is already useful for the current hardware context
and discuss possibilities for future scaling. In Sec. IX, we
summarize our work and discuss further extensions.

II. BACKGROUND

A. Quantum error correction

Here, we briefly review basic concepts from stabilizer
QEC codes and introduce the notation that will be used in
this paper. Readers familiar with these concepts can skip
to Sec. II B.

The main idea of quantum error correction is to introduce
redundancy by encoding k logical qubits into n > k noisy
physical qubits. In this work, we focus on a specific type of
QEC code called a stabilizer code [72]. Given the Pauli
group of n qubits, the set of stabilizers S is a subgroup such
that all elements of S commute with each other and —/ ¢ S.
If S is generated by the set G = (g, ..., g,—), then the code
space corresponds to the joint 4-1 subspace of all generators
g;» hosting logical quantum states |y), for which g;|y) =
|y} for all generators. Within the code space, code words
can be transformed into one another using the logical
operators Zi, X, with i=1,...,k, where Z, and X}
commute with all elements of the stabilizer group and
satisfy [Z,X]] = 27} X} 8;;, where &, is the Kronecker
delta. For instance, for the case of a QEC code hosting a
single logical qubit, k=1, Z!|0), =10),, Z.|1), =
—|1),, and X}|0), = [1),. Thus, once S is chosen, the
choice of logical operators fixes the codewords |0), and
[1), and all their linear combinations.

The weight of a Pauli operator is the number of
nonidentity components within that operator. The mini-
mum weight among all possible choices of logical oper-
ators defines the distance d of the QEC code. A QEC code
is able to detect d — 1 errors and correct [(d — 1)/2] errors.
A distance d QEC code encoding k logical qubits into n
physical qubits is denoted as [[n, k, d]].

A QEC code can be defined solely by its stabilizer
generators g;. When the stabilizer generators consist of
either X or Z Pauli matrices, such that they can be related to
two independent classical codes Cy and C for the X and Z
stabilizers, they are called Calderbank-Shor-Steane (CSS)
codes [73,74]. Because of their simplicity and connection
to classical codes, CSS codes are at the frontier of theo-
retical and practical implementations of QEC [3,13,37].
Two famous examples of CSS codes are the surface code
[17,75] and the color code [76,77]. In our work, we
consider the search for FT and non-FT encoding circuits
for several CSS codes (including color codes) and the 5-
qubit code, which is a non-CSS code (see Appendix F for
the code definitions).

B. Logical qubit encoding circuit

Once a QEC code and the logical operators are chosen,
the next step is to find a way to encode the desired logical
states. For stabilizer codes, one approach is to measure the
stabilizers and apply conditional local operations that bring
the state back into the code space [5,7]. This approach relies
on stabilizer measurements, which has the disadvantage
of being susceptible to measurement errors and forces
repeated measurements according to the code distance to
ensure FT, resulting in a large gate count. An alternative
approach is to find a unitary circuit U that encodes such
information using the given code [3,4,6,37]. For instance,
encoding a logical zero |0), implies finding a circuit that
performs the task |0), = U|0)®". Unlike stabilizer meas-
urement encodings, unitary encodings avoid repeated
stabilizer measurements, potentially reducing the number
of gates. Importantly, even after choosing a QEC code and
codeword, there is no unique recipe for finding an encoding
unitary U.

NISQ devices often have specific constraints, such as
limited qubit connectivity and native gate set availability.
To fulfill these constraints, a transpilation process is
commonly applied to the circuit. The whole procedure
typically involves mapping the qubits in the circuit to
physical qubits, routing the qubits based on the connec-
tivity by inserting swap gates, decomposing gates into
native gates, and optimizing the final circuit [40—42]. Since
the procedure involves inserting and decomposing gates,
this process will, in general, increase the size of the circuit.

Because of their simplicity and relevance, we restrict
ourselves to logical Pauli eigenstates only. Thus, we can
focus only on Clifford circuits, where the logical state
lw) = U|0)®" is always determined by its stabilizer

041012-3

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

tableau [78]. In particular, a tableau of a single logical
codeword contains the n — k stabilizer generators and
the k logical operators, which can be represented as a
binary matrix that scales quadratically with respect to n.
Appendix A shows more details on the tableau representa-
tion. While different tableaus may represent the same state,
their canonical form [72] remains the same. A canonical
tableau can be obtained by applying Gaussian elimination
to the tableau [78]. Thus, different encoding -circuits
preparing the same logical state will have the same
representation. We will use this representation later as an
input to the RL agent. The canonical representation helps
the RL agent to learn more effectively and efficiently by
reducing complexity and ensuring consistency of the
input space.

It has been proven that Clifford circuits can be efficiently
simulated using classical computers [78]. Despite its
simplicity, finding a compact circuit is still not trivial
[79,80]. Several methods have been proposed to prepare
arbitrary stabilizer states [78,81-84]. Some methods have
also been developed specifically for the preparation of
logical states of stabilizer QEC codes [85-89]. However,
these techniques generally do not include any hardware
constraints, nor do they output fault-tolerant quantum
circuits, the latter of which we will focus on next.

C. Fault-tolerant state preparation

In practice, quantum gates are faulty and thus introduce
errors in state preparation. A simple but effective model for
gate failures is to consider the perfect gate to be applied
only with probability 1 — p, where p is the probability that
a fault occurs when the gate is applied. In this work, we
consider any fault consisting of bit flips (X Pauli), phase
flips (Z Pauli), or both (Y Pauli). Therefore, single-qubit
gates have three error generators £ = {o;}/I, and two-
qubit gates have 15 error generators & = {6, ® 5,,}/
(I ® I), where k, m = 0, 1, 2, 3 denotes the Pauli matrices
including the identity. More formally, the errors introduced
by the gates are modeled by introducing a depolarizing
channel after the gates:

GpG' = (1 - p)GpG' + Y %EGpGTE, (1)

Ee€| |

where G is the ideal gate, p is the probability of having a
gate error, and || is the number of elements in the set of all
error generators £. This is the standard modeling of gate
errors, often referred to as circuit-level noise [3,6,8,86].
An error E can be propagated through the circuit in such
a way that a unitary Uy = EU can always be written as the
error-free U followed by the propagated error E. For
Clifford unitaries, £ remains a single Pauli error obtained
by propagating E through the individual gates one by one
[86]. There are two classes of errors that we consider
according to their propagated version: (i) E is a member of

the stabilizer group, thus acting trivially on the stabilizer
states, or its weight is small enough that it can be removed
by QEC, in which case, we say the error is tolerable. (ii) Its
weight is large enough that it cannot be corrected, causing a
logical failure after a QEC cycle. We call such errors
harmful.

In practice, any circuit that is not carefully designed will
have components whose failures lead to harmful errors. For
example, even a single-gate failure with probability p can
lead to a logical error. Therefore, increasing the code
distance of the QEC code would not suppress the logical
error rate because there would always be uncorrectable
events with probability p. Formally, for a code of distance d
able to correct errors of weight 1 = [(d — 1) /2], the logical
error rate in a FT architecture p; scales as p, ~ p'*! for p
below the threshold [15,16,23], which ensures an ever-
decreasing logical error rate when increasing the size
(number of physical qubits) of the QEC code. In contrast,
if a harmful error occurs with probability p, the expected
gain from QEC is lost, no matter how large d is. In other
words, all error events with probability p% a < (d+1)/2
should be tolerable in the sense that they are corrected after
QEC cycles. A circuit or component that fulfills the latter
condition is called fault tolerant [20,21,28,29,71,90-93].
As an example, let us consider a code with d =3 that
corrects any single-qubit error. Some gate failures in this
code can produce weight-two harmful errors. Therefore,
pr ~ p if the circuit design is non-FT. If the encoding
circuit is made fault tolerant, then all errors coming from a
single-gate failure become tolerable, and only errors
coming from two-gate failures are harmful, hence p; ~ p.

It is important to note that FT circuits are designed
independently of specific information about the device’s
noise processes because FT circuits are designed to detect
and correct even the most unlikely, yet potentially harmful,
errors, regardless of their low probability of occurrence. In
this way, the FT circuit ensures that any errors that occur,
other than logical errors, are either detected or corrected in
the next error correction cycle, thus guaranteeing the
reliability of the FT circuit. The logical error rate p; of
an FT circuit for a code of distance d is guaranteed to scale
as p; ~cpl@th/2 for low enough physical error rate p.
This scaling is a fundamental result of the threshold
theorem in quantum computing [15]. We emphasize that
achieving this scaling in the quantum circuit design is
essential to have the guarantee that the logical error rate will
be suppressed according to the correcting power of the
QEC code. To be precise, according to the threshold
theorem [15], as long as the physical components have a
sufficiently low error rate p, this FT circuit will produce
states with higher fidelity than the corresponding non-FT
operation. In summary, an FT circuit can be used in any
device with the same hardware constraints (connectivity
and gate set), independently of the details of the noise
actually present in the device.

041012-4

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

It is true that the FT model of quantum computing does
not account for all possible sources of error, one example
being leakage, which takes the qubit out of computational
space. A technique to overcome leakage errors has been
proposed separately in Ref. [94]. Nevertheless, several FT
implementations of QEC [3,95] have shown that, despite
lacking full knowledge of the underlying error processes,
the logical error rate improves compared to physical and
non-FT implementations of the same operation.

There is no unique way to render a circuit FT
[3,21,28,71,91,96,97]. Recently, flag verification circuits
[20,28,29] have been proposed for turning non-FT circuits
into FT ones. The flag verification procedure is based on
coupling additional ancilla flag qubits to the main register
in such a way that the error-free state is unperturbed and the
flag qubits always have the same measurement outcome.
When faults that lead to harmful errors occur in any
component of the circuit, the flag qubits are triggered,
ie., flip the measurement outcome of the flag ancilla
qubits. Thus, harmful errors are flagged out by the flag
qubit, allowing us to do postselection on the ancilla
measurement outcomes. One can then apply a repeat-
until-success mechanism (rejecting outcomes with trig-
gered flag qubits and accepting outcomes without triggered
flag qubits) and apply QEC to remove the tolerable errors.
After successful preparation, the resulting logical state can
be used directly in downstream QEC tasks such as logical
gates, QEC cycles, and logical readout. One can also reset
the flag qubits and reuse them for other tasks.

D. Reinforcement learning

RL [48] aims to train an agent to take an optimal set of
actions in an environment (here, a simulation of our
physical system). This goal is achieved by maximizing
the expected returns or the cumulative rewards via a guided
trial-and-error approach. In this work, we focus on model-
free reinforcement learning, where the agent does not know
about the model of the environment. Formally, an RL agent
observes the state of the RL environment s,, applies a
discrete action a, at time step ¢ that changes the state of the
environment from s, to s,,, and receives an instantaneous
reward r,. An episode is a trajectory of states and actions
7 = (89, a9, 1,4y, ..., Sy) from the initial state s, to the
terminal state sy. An RL agent learns a policy function 7y
parametrized by 6, which maps each state of the environ-
ment to a probability distribution over all possible actions,
and 7y(a,|s;) gives the probability of applying action «a, for
a given state s, of the environment. The RL agent is trained
to maximize the expected returns (cumulative reward) over
multiple episodes J(0) = E,,,[>-1 r-

Policy gradient methods [98] optimize the objective
function J (@) with gradient ascent. In this work, we use
a deep reinforcement learning algorithm where a deep
neural network is used to compute 7z, with 8 corresponding
to the weights and biases of a neural network. We use a

state-of-the-art variant of policy gradient methods called
proximal policy optimization (PPO) [99]. In PPO, we use
two networks: an actor and a critic network. The former
determines the action taken by the agent, while the latter
measures the quality of the action taken by the agent. Both
networks take the representation of the observation as
input. The actor network outputs the probability of taking
each discrete action, while the value network outputs a
value that corresponds to the expectation value of the
cumulative reward. During training, the parameter 6 of the
networks is updated in such a way that the objective is
satisfied.

III. REINFORCEMENT LEARNING FRAMEWORK
FOR QUANTUM CIRCUIT DISCOVERY

Here, we first introduce the general RL framework as
shown in Fig. 2. In this work, an RL agent is trained to
output circuits (suggesting a sequence of gates) for a given
task (i.e., logical state preparation, verification circuit
synthesis, or integrated fault-tolerant logical state prepara-
tion). At each step, the RL agent observes the state of a
quantum circuit and applies a discrete Clifford gate to the
quantum circuit as an action. A trajectory stops when the
number of gates is greater than a preset maximum number
(counting as a failure) or when it reaches the success criteria
defined by the task. We assume that all physical qubits in
the circuit are initialized in the |0) state. The hardware
constraints, such as the set of available Clifford gates and
the qubit connectivity of the device considered, determine
the set of possible actions that the agent can take. The
reward is then given according to how well the quantum
circuit proposed by the agent fulfills the task, which will be
explained in the following sections.

Clifford gate set Qubit connectivity
EI EI é Action @

\|, Apply gate |
10) {2} 6
10) P
[0)4s Reward
| 0) s

RL environment RL agent
| Observe '[‘

State representation

FIG. 2. General RL framework in this work. The circuit is the
environment, where its state is represented by its stabilizer
canonical tableau. At each step, the RL agent observes the
environment and applies a discrete Clifford gate as an action from
the specified available gate set (e.g., the Hadamard gate H, the
phase gate S, and the cNOT gate), taking into account qubit
connectivity constraints. Subsequently, the agent receives a
reward depending on the given task and the quality of the
proposed circuit.

041012-5

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

We must then choose a representation of the RL agent’s
observation. The most common representation is to directly
observe the quantum circuit [100,101] or to observe the
state vector of the state that the circuit represents
[56,58,59,102]. However, multiple quantum circuits could
represent the same state, and the state vector representation
scales exponentially with n. Since we are focusing on
stabilizer codes, we can use the stabilizer tableau of the
circuit as a representation of the state of the environment.
Even better, we can use the canonical tableau as the
representation so that different circuits producing the same
output state have the same representation. This representa-
tion scales quadratically with n.

Although the state representation is polynomial in 7, a
brute-force search of the circuit scales exponentially with the
number of gates L. Suppose we choose a gate set consisting
of G| one-qubit gates and G, two-qubit gates with all-to-all
qubit connectivity. At each step, the agent must decide over
nG, + (n* — n)G, possible actions, which scales quadrati-
cally with n. Furthermore, if we assume that a circuit has L
gates, then the space of all possible solutions grows expo-
nentially as (nG, + (n* —n)G,)", making search algo-
rithms infeasible.

As a side note, instead of using a discrete Clifford gate
set, one can also use a continuous gate set with a para-
metrized circuit and a variational approach as in Ref. [103].
However, in a variational approach, the state can no longer
be efficiently described within the stabilizer formalism.
Furthermore, one has to design an ansatz and optimize the
parameters, which generally does not scale well due to
barren plateaus [104].

We use the PUREJAXRL library [105] for the implemen-
tation of the PPO algorithm, which is written with the JAX
[106] library to allow very fast parallel training on a GPU.
We then implement the environment for each task using
JAX. Thus, the simulation of the Clifford circuits and the
computation of the rewards run very fast in parallel on the
GPU. Therefore, we train multiple agents in parallel, and
each agent is trained on multiple environments also in
parallel. The code is available online [107]. The details of
the hyperparameters used and the training process are
described in Appendix B. We discuss the scalability of
our simulations in Appendix R.

IV. LOGICAL STATE PREPARATION

A. Task description and reward function

The goal of the logical state preparation task is to find a
circuit U that prepares the target stabilizer state [see Fig. 3(a)].
The task requirement is the canonical tableau T, Of the
target stabilizer state |yg) . Note that, although in this paper
we focus on preparing logical states of a stabilizer code, this
task is general enough to prepare any stabilizer state.

In any RL application, it is of utmost importance
to design a good reward function according to the goal.

1-d;

(a) ‘()>“ I~ |()> o
od F 10) @ &
104 U F »lv)r| RLagent 0)1 5] a\f
10 - [0\ & 94
[0)1 - |0)—6
(b) Reward function)
t=0: t=1 t=2 :t=3
Circuit Igi | E
: AN 74 : :
10) —
811 +ZIT ! +XIT ! +XXI | +XXX
Canonical . : : :
& +I72I : +I17ZI : +72ZI : +Z1%Z
tableau : : :
83t +IIZ : +IIZ : +IIZ +1Z27
State 000 000)+ 000)+
tats 1000y 1000)+ : [000)+ : [000)
P 100y i |110) [111)
Fidelity :
|<‘I’t|‘l’target>|2 0.5 0.25 0.25 1.0
Energy : : :
=yt | H lyy) 2 1 1 3
Compl. dist : : :
ORI 025 1 043 P o071 P10

FIG. 3. Description and reward function for the logical state
preparation task. (a) Logical state preparation task, which outputs
a circuit U that prepares a target logical state |w), of a [[n, k, d]]
code. (b) Preparation of the state [y ype;) = [000) 4 [111) (nor-
malization factors are not shown, for simplicity) from the initial
state |wg) = |000). We show the value of the three possible
functions at each time step ¢ for the reward: fidelity | (v, W arger) %
energy » ;(y,|HJy,) used in Ref. [103], and our proposed
complementary tableau distance 1 — d,. In this case, the proposed
complementary tableau distance is monotonically increasing,
which is easier for RL algorithms to learn compared to the other
functions.

A natural choice of the reward function is the fidelity of
the state [56,57,59,102,108,109]. For a given state at time
step 1, |yy), the fidelity can be computed as | (| W arger)|:
however, it suffers from the sparse reward problem [48]. As
an illustration, consider preparing [y yee;) = |111) from an
initial state of |yy) = |000). The agent would have to apply
the Pauli X gate to every qubit that changes the state from
|000) to |100) to |110) to |111). However, the fidelity value
only changes on the last step since [(000|111)[*> =
|(100[111)[> = |[(110]111)|> = 0. Thus, the RL agent is
harder to train because it does not receive immediate
feedback.

Since we are preparing a stabilizer state, there are
seemingly better rewards that we can use, but there are
still drawbacks. In Ref. [103], finding a logical state of a
stabilizer code is framed as finding the ground state of a
Hamiltonian H = =Y/~ g; = >_k_, O7, where g are the
generators of the target state and O; are the logical
operators. We can then compute the energy as

041012-6

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

E = Yy Hly)- T6 [91) = Wiager) . then the ground-state
energy £y = —n. Reference [103] used E as a cost function
for the variational optimization of a parametrized circuit. In
our case, we use —E instead since we want to maximize the
cumulative reward. Although the computation of this
function scales linearly with n, it still suffers from the
sparse reward problem. One can see that there are only 2n
possible discrete energy values ranging from —n to n.

We introduce another measure that does not suffer from
the sparse reward problem, and the computation of its value
does not scale exponentially. We refer to it as the tableau
distance d,, which is the distance between the tableau
describing the output state of the currently proposed
quantum circuit and the tableau of the target state. We
convert the tableaus into binary vectors and measure
the binary distance d; between the two. Here, we use the
Jaccard distance (see discussion in Appendix C). We
normalize the d; so that it ranges from 0 to 1, and we
use the complementary tableau distance 1 — d, since the
training of RL maximizes the cumulative reward.

Figure 3(b) illustrates how the three possible functions
(fidelity, energy, and complementary tableau distance) for
the reward change for preparing |000) + |111) (normali-
zation factors are not shown, for simplicity) from |000). We
see that in this case, unlike the other functions, the
proposed complementary tableau distance 1 — d, always
increases when gates are applied, giving good feedback to
the RL agent. We can also see that from t =1 to t = 2,
applying the correct gate does not change the fidelity or
energy functions, which is not good feedback to the RL
agent. This is not the case for 1 —d,. Our empirical
numerical experiments also show that using our proposed
complementary tableau distance function as a reward leads
to faster convergence of the training of the RL agent
compared to using the rewards based on the fidelity and the
energy.

Finally, one can give the reward only at the last time step
(e.g.,r; =1—d; att = L, otherwise r, = 0). However, in
this case, the agent does not receive immediate feedback
after performing an action. Instead, we use the reward
shaping technique [48] by giving a small intermediate value
at each step so that the training converges faster. Therefore,
at each time step ¢, we give the difference of the comple-
mentary tableau distance between t and 7 — 1, or more
formally,

ry =diy —d. (2)

In this case, the cumulative reward Y & r, is still
1 —d; . A trajectory stops when the complementary tableau
distance is greater than a threshold € close to 1 (success) or
the number of gates is greater than a threshold L (failure).

As a side note, one might notice that the reward function
does not have a term that minimizes the number of gates,
which is intrinsically embedded in the RL formulation,

explained in more detail in Appendix E. Additionally, it is
straightforward to extend the reward function to consider
different objectives or constraints. For example, to mini-
mize the number of two-qubit gates, we could add a term
that gives a higher cost for two-qubit gates than for single-
qubit gates.

B. Results

We apply our approach to prepare logical states of
different QEC codes. Our goal is not only to demonstrate
the generality of our approach by benchmarking it as
broadly as possible but also to address the ongoing and
timely challenge of identifying optimized circuits. We are
interested in the preparation of logical states of the
following QEC codes. The first code that we consider is
the smallest complete error-correcting code, the [[5, 1, 3]]
perfect code [110], which has been realized experimentally,
for example, in Refs. [6,7]. This code is non-CSS. We then
consider several CSS codes. The first quantum error
correction code, the [[9,1,3]] Shor code [111], has been
realized experimentally, for example, in Refs. [112,113].
We also consider 2D and 3D color codes [76,77]. The
[[7,1,3]] Steane code [73] is the smallest CSS and
triangular 2D color code that has been realized experi-
mentally, for example, in Refs. [3,6,37,114,115]. We also
explore the distance-5 2D color code, which is the
[[17,1,5]] code [77]. Finally, we consider the smallest
error-correcting 3D color code, the [[15, 1, 3]] Reed-Muller
code [76,116]. The stabilizer generators of these codes are
listed in Appendix F for completeness.

In all of the codes mentioned above, we can choose Z®"
as the logical Z; operator. Thus, we prepare the |0), states
of these codes, except for the [[9, 1, 3]] Shor code, where the
same choice corresponds to the |+), state. The preparation
of other logical states can be achieved by changing the
target logical operator accordingly. As an evaluation metric,
we measure the circuit size, which corresponds to the
number of gates in the circuit.

We first discuss the preparation of logical states on a
device with all-to-all qubit connectivity and a gate set
consisting of the gates H, S, and CNOT, which we refer to as
the standard gate set. This connectivity and gate set is
realistic, for example, in trapped-ion-based quantum com-
puters [117].

We compare our RL method with four different Clifford
circuit synthesis methods, where one provides the tableau
and the respective methods automatically synthesize a
Clifford circuit. Two of them are available in the QISKIT
[118] library, based on the algorithm provided by Bravyi
et al. [81] and Aaronson-Gottesman [78]. We also compare
with StabGraph [85], which works only for CSS codes and
uses graph states, and QMAP [82], which converts the
problem into a Boolean satisfiability (SAT) problem and
solves it with a SAT solver. For QMAP, we use the MAX-
SAT algorithm, using the depth as the optimization target,

041012-7

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

(a) All-to-all qubit connectivity
I RL [Bravyi [81] [l A-G [78] Il StabGraph [85] [ll QMAP [82]

1.00
150 g
£ 0751 405
() =
N 2 050f g
n) 205
= 100 Z 05| £
§ 0007 5000 10000 <
.= 50 # Episodes
N i
0 [15,1,311 [[7.1,311 [[9,1,311 [[15,1,311[[17,1,5]]
Perfect Steane Shor Reed-Muller Color
(b) IBM Quantum device
60 I RL Direct [RL + Transpile [40]
4l v= —g—{ VX I— 3
2|~ o [) 3¢9 2 o511
| el J{ngz‘ —@
Q 0 il
N 40 87 ¢
- oL~
.-
g
=20
o

[[5, 1,311 [[7,1,31] [19,1,311 [[15,1,3]]
Perfect Steane Shor Reed-Muller

=TT EEE

FIG. 4. Results for the logical state preparation task. (a) Mini-
mum circuit size of different methods for logical state preparation
of different QEC codes with all-to-all qubit connectivity and H,
S, and cNoT gates. StabGraph [85] does not work for non-CSS
codes such as the [[3, 1, 3]] perfect code. QMAP [82] could not
prepare the state of the [[15,1,3]] and [[17,1,5]] codes in the
allotted maximum time of 12 hours. The inset shows an example
of the training progress for preparing the |0), state of the
[[7,1,3]] Steane code. (b) Comparison of circuit size from an
RL agent that includes the connectivity and gate set during
training (RL Direct) with respect to RL-prepared circuits for all-
to-all qubit connectivity that have been transpiled with QISKIT
[40] (RL 4 Transpile). Results are shown for various IBM
Quantum device connectivities [119-122] using CNOT, VX, X,
and S =R_(7/2) gates. The inset shows examples of RL-
prepared circuits for the |0), state of the [[5, 1, 3]] perfect code
and the [[7, 1, 3]] Steane code.

and then minimize the number of gates. We find that using
the number of gates as the optimization target of the MAX-
SAT algorithm is very slow even for small 7.

Figure 4(a) shows the comparison of the smallest circuit
size between different methods for preparing logical states
of different codes. We see that the RL method always
prepares a smaller circuit size compared to the other
methods. StabGraph [85] is specialized in preparing logical
states of CSS codes; therefore, it does not work for the
[[5, 1, 3]] perfect code. QMAP [82] also did not finish the
logical state preparation for n > 10 in the allotted maxi-
mum time of 12 hours. The inset of Fig. 4(a) shows
the training progress for the preparation of the |0), for
the [[7,1,3]] Steane code. The shaded area indicates the

minimum and maximum values over ten agents trained in
parallel, where each agent sees 16 environments in parallel.
The entire training takes approximately 100 seconds on a
single NVIDIA Quadro RTX 6000 GPU and produces ten
circuits. On average, the ten agents converge after seeing
about 6000 episodes. In Appendix G, we show some
examples of circuits prepared by the RL agent and discuss
some of the strategies that the RL agent learned. For
example, we see that in some cases the agent would first try
to find the correct tableau without worrying about the sign
and then use Z gates (two S gates) to fix the sign.

So far, the agent is used only once after training to
generate circuits for a specific logical state. However, an
advantage of the deep RL method is that one can reuse the
agent trained for one task and retrain it for another task,
which is commonly referred to as transfer learning
[123,124]. For example, one can take the agent that
prepares the |0), state and reuse it to train another agent
that prepares the |+); state and the |+ i), state more
efficiently. We show these results in Appendix H.

We now show that the RL method is robust enough to
adapt to different realistic qubit connectivities and gate sets
from different hardware platforms by constraining the
actions that the RL agent can take. We illustrate this by
focusing on several IBM Quantum devices. The IBM
Quantum devices have CNOT, X, VX, and R, gates (para-
metrized rotation along the z axis) as their native gate set.
Instead of using an arbitrary R, gate, we choose to include
the S gate, which can be translated into a R,(x/2) gate.

We prepare the |0), state of the [[5, 1, 3]] perfect code on
the IBMQ Manila [119] connectivity, the |0), state of the
[[7,1,3]] Steane code on the IBMQ Jakarta [120] con-
nectivity, the |+), state of the [[9, 1, 3]] Shor code on the
IBMQ Guadalupe [121] connectivity, and the |0), state of
the [[15,1,3]] quantum Reed-Muller code on the IBMQ
Tokyo [122] connectivity. These connectivities are shown
at the bottom of Fig. 4(b). We train several agents and take
the circuit with the minimum circuit size.

We refer to the RL method that directly restricts the
connectivity and gate set in the training as RL direct. We
compare it to the RL + transpile method, where we take the
RL-prepared circuit for all-to-all qubit connectivity and
transpile it with the QISKIT transpiler [40]. Figure 4(b)
shows the comparison of circuit size between the two
methods. We see that circuits from the RL direct method
always have a smaller circuit size as compared to circuits
obtained with the RL + transpile method. Thus, we see that
restricting the actions of the RL agent based on the
hardware constraint during the training is better than
transpiling a circuit from all-to-all qubit connectivity.

The inset of Fig. 4(b) shows examples of a circuit
prepared by the RL agent for the |0), of the [[5,1,3]]
perfect code on the IBMQ Manila connectivity and the
[[7,1,3]] code on the IBMQ Jakarta connectivity.
Interestingly, we see that, in the circuit for the [[7, 1, 3]]

041012-8

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

code, the agent learns a new gate sequence VX, cNoT, and
S (shaded in yellow in the figure). This gate sequence is
equivalent to a H gate followed by a cNOT gate. The agent
discovers this gate sequence because the H gate is not
available as a native gate on IBMQ devices. Appendix I
shows more examples of logical state preparation circuits
on IBMQ devices.

In terms of efficiency, the training of the RL agent to
prepare the |0); of the [[7, 1, 3]] Steane code for the IBMQ
Jakarta connectivity takes approximately 200 seconds on a
single NVIDIA Quadro RTX 6000 GPU. One could argue
that this is much slower than transpiling a circuit for all-to-
all qubit connectivity. However, as we have shown, the
resulting circuit size is smaller, and the training only needs
to be performed once. Furthermore, the training can be
accelerated through transfer learning. In Appendix J, we
show a technique where the agent trained to prepare a
logical state for all-to-all qubit connectivity can be reused
and retrained to prepare the same state with different
connectivity.

In summary, we have shown that RL can prepare logical
states of different QEC codes with smaller circuit sizes than
other methods in all-to-all qubit connectivity. We also show
that, by directly incorporating the hardware constraint by
restricting the connectivity and gate set in the training is
better than transpiling a circuit for all-to-all qubit con-
nectivity. Furthermore, we can reuse a trained RL agent to
speed up the training of the RL agent for different but
similar problems.

V. VERIFICATION CIRCUIT SYNTHESIS

A. Task description and reward function

The goal of the verification circuit synthesis task is to
synthesize a circuit V and use the ancilla flag qubits to flag
harmful errors and thereby render the encoding protocol
fault tolerant (see Fig. 5). The task requirement is the
sequence of gates that form the circuit U to prepare the
target logical state |y), and the number of ancilla flag
qubits n,. It is possible that several circuits represent the
same unitary U, but the propagated error would be differ-
ent. The ancilla flag qubits are initialized in state |0) and are
always placed last in the qubit ordering. For a given circuit,
it is usually not known a priori how many ancilla qubits are

10) 10) * 1 g

10) 10)

|10) [y, RL agent |10) r
[0y { B V |0)

10) — |0) ¥

10) = |- 10) =

FIG. 5. Verification circuit synthesis task preparing a circuit V
that uses flag qubits to flag harmful errors, thereby rendering a
state preparation fault tolerant.

needed to flag all of the harmful errors. Therefore, it is
possible that the agent cannot find a solution for a given
number of ancillas. On the other hand, it is also possible
that the agent will not use some ancillas if n, is larger than
needed.

We consider three criteria that must be met for this task.
The first and most important criterion is to ensure that all
harmful errors are flagged. While applying gates to the
ancilla, it is possible that the state will change. Therefore,
preserving the logical state is the second criterion. Finally, we
do not want the data (nonancilla) qubits to be entangled with
the flag qubits since this will destroy the logical state when
we measure the flag. Thus, the third criterion is that the final
state is a separable or product state of the data qubits and the
flag qubits such that VU|00...0) = |w), |¢)p, Where |p) is
the state of the flag qubits. In summary, the RL agent must
flag all harmful errors while preserving the logical state and
keeping it disentangled from the flag qubits.

For the first criterion, we reward the agent based on the
number of harmful errors that are flagged. We first apply
circuit-level noise to the circuit U and obtain the set of all
possible error operators £ in the circuit. When the agent
applies a gate, which is faulty, we update the set £ by
propagating errors from the applied gate and also the old
errors. The set £ may grow with new errors or shrink
because some errors may become obsolete.

At each time step ¢, we compute f, (f for flag) given as

if Eis/and a flag is triggered
if E is tolerable

et if E is harmful and a flag is triggered

0

1

fi= Z 1
0 if E is harmful and flags are not triggered.

(3)

The first term is used to prevent the agent from choosing
a naive strategy like always flagging the ancilla (e.g.,
applying an X gate to the flag qubits).

We then normalize f; by dividing it by the total number
of errors |€|. Note that some errors may initially have a
large weight but can be reduced by multiplication with a
member of the stabilizer group. For instance, an error with
weight 4 that is a member of the stabilizer group will have
weight 0 and become a tolerable error. Therefore, to
consider whether an error is tolerable or harmful, we
compute the minimum weight of each error by multiplying
it by all members of the stabilizer group when computing
the reward. For instance, for the 5-qubit code, we check all
2% =32 elements of the stabilizer group, including the
state-dependent logical operator. We discuss the scalability
of this approach in Appendix R.

One might notice that if an error E is tolerable and the
flag is triggered, the agent still receives a reward, which is
inevitable since it is not possible to both flag all of the
harmful errors and, with the same circuit construction,

041012-9

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

unflag all of the tolerable errors. We can consider flagged
tolerable errors as “unlucky” cases—note that this approach
does not compromise FT, of course. One could add addi-
tional terms in the reward function to minimize this result.

For the second criterion, we need to make sure that the
circuit preserves the logical state |w), . Here, we can use the
three possible functions discussed in Sec. IV. In this case,
we reuse our proposed complementary tableau distance to
measure the distance between the canonical tableau of the
target logical state and the current error-free canonical
tableau of the data qubits.

For the third criterion, we directly enforce the state to be
a separable state of the data and ancilla flag qubits. This
process is necessary in order not to change the error-free
logical state after the measurement of the ancilla qubits. In
the stabilizer formalism, the latter is achieved by targeting
the stabilizer generators of the ancilla in the current error-
free canonical tableau to be Z in the location of the ancilla
and / in the others. We can extract the canonical tableau of
the ancilla qubits by taking the submatrix of the canonical
tableau where the rows are n to n + n,. Therefore, we
define a value p, (p for the product state) that measures the
complementary tableau distance of the current error-free
canonical tableau with the target tableau according to the
above criteria. For an illustration of the reward calculation,
see Appendix D.

We again use the reward shaping technique, which gives
the reward function

rt:ﬂf(fr_ft—1)+ﬂd(dt—1 _dt)+/‘p(Pt_Pt—1)v (4)

where p defines the weight for each individual reward. A
trajectory stops when all of the harmful errors are flagged,
the prepared state is the logical state, and the data qubits
and flag qubits are a product state (success) or the number
of gates is greater than a threshold L (failure).

B. Results

Let us take non-FT state preparation circuits from the
literature and use the RL method to synthesize the
verification circuits. We then compare them with known
verification circuits.

We use three metrics to compare different verification
circuits. (i) First, we compare the number of two-qubit
gates (one-qubit gates do not propagate errors) and the
number of flag qubits. (ii) The second metric is the
acceptance rate. A state outcome is accepted if, after
running the circuit with noise, the flag qubits are not
triggered. To determine the acceptance rate numerically, we
simulate 107 noisy circuit trajectories for each varying error
probability p by adding circuit-level noise using the STIM
[125] library, and we count the number of accepted state
outcomes. (iii) The final metric is the logical error rate p; .
When a state outcome is accepted, we perform a perfect
round of error correction on the data qubits. Thus, the

execution of the syndrome extraction circuit is noiseless
and is followed by decoding and correction. Throughout
this paper, we use a lookup table decoder. This decoder
assigns a fixed correction to each possible syndrome.
Therefore, it does not account for the differing error
probabilities introduced by each encoding circuit. Using
a more sophisticated decoder, such as minimum-weight
perfect matching (MWPM) in the case of surface codes,
could improve the logical error rate of a given encoding
circuit. However, we do not expect it to significantly alter
the relative logical error rates between different encoding
circuits. We can then check if the decoded state is correct;
otherwise, a logical error has occurred. As discussed in
Sec. II C, p; of a fault-tolerant circuit should scale propor-
tionally to p? for distance-3 codes, while it scales as p for
non-fault-tolerant circuits.

In our numerical experiments, we choose to use the
standard gate set (H, S, and CNOT) combined with the cz
gate. The training of the agent starts with one flag qubit,
and if the training does not converge, the number of flag
qubits is incremented by one until a solution is found. We
have also found, empirically, that prohibiting the agent
from applying gates between the data qubits helps to speed
up training convergence. In Appendix K, we show how
different values of the weights u in the reward affect the
acceptance and logical error rates.

First, we synthesize the verification circuit for CSS
codes. We illustrate this process by synthesizing the veri-
fication circuit for the |0), preparation of the [[7,1,3]]
Steane code with Z; = Z®’. The circuit was proposed in
Ref. [32] [part of the circuit in Fig. 6(a) shaded in green]
and experimentally realized in Refs. [3,6,37,38]. The RL
agent discovers verification circuits with the same number
of flag qubits and two-qubit gates as the one in Ref. [32].
Part of the circuit in Fig. 6(a), shaded in blue, shows an
example of the verification circuit discovered by the RL
agent. We show other discovered circuits in Appendix L. We
observe that the RL agent learns to measure the stabilizer-
equivalent logical Z operator [/Z1ZZ1 without being explic-
itly told. Although the discovered circuit has the same
number of flag qubits and two-qubit gates, we see in
Figs. 6(c) and 6(d) that the acceptance rate and the logical
error rate of the RL-discovered circuit are marginally better
than the verification circuit proposed in Ref. [32].

We now move on to the synthesis of verification circuits
for non-CSS codes. We choose to synthesize the verifica-
tion circuit for the |—), preparation of the [[5, 1, 3]] perfect
code with X; = XXXXX proposed in Ref. [29] and
experimentally realized in Refs. [6,7]. The blue-shaded
part of the circuit in Fig. 6(b) shows an example of the
verification circuit discovered by RL. The RL agent learns
to measure the stabilizer //ZXZ in the first ancilla and the
stabilizer X/XZZ in the second ancilla. In Fig. 6(c), we see
that the RL-discovered circuit has a higher acceptance rate
compared to the circuit in Ref. [29] due to the smaller

041012-10

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

(a) [[7,1,3]] Steane
Non-FT |0);, RL-discovered

(b) [[5,1,3]] perfect
Non-FT |)y, RL-discovered

preparation [32] verification preparation [29] verification
|0) ? |0)|[=]®
10) [[x]® 0|[alee
[0) [z} [0)|[= .
10) [(x] 0[] ee
|0) e .
10) 10)[= oo =
|0) Q 10) & H B
10) SDD
(C) 1.01 ey ¥ B (d)
) v T,
= . o ‘\‘\ 8
= S
8 —4.62p i Ne, B 2
e 051 ¢€ . e S 13.7p
%i 11.57 S 13.1p2
g 6_19.85[) —‘8
S —19.85p 1] 5 2
< 00 e v éb p 7.17p
1073 102 10! 1073 102 10!
p p
[[7,1,3]] Steane : --+--- Non-FT FT [32] --#--FTRL
[[5,1,3]] perfect: - %o Non-FT s v FT[29] s e--- FT RL

FIG. 6. Results for the verification circuit synthesis task.
Examples of RL-discovered verification circuits (shaded in blue)
for a given non-FT preparation (shaded in green) of (a) the |0),
state of the [[7, 1, 3]] Steane code from Ref. [32] and (b) the |—),
state of the [[3, 1, 3]] perfect code from Ref. [29]. In Ref. [32], the
verification circuit uses one flag qubit and three two-qubit gates,
which is the same as the circuit discovered by the RL agent. In
Ref. [29], the verification circuit uses six flag qubits (or two flag
qubits with two qubit resets) and 15 two-qubit gates, while the
RL-discovered circuit in panel (b) uses only two flag qubits and
seven two-qubit gates. Comparison of the acceptance rate (c) and
logical error rate (d) with different simulated error probability p
for the circuits shown in panels (a) and (b) compared to non-FT
circuits and circuits in Refs. [29,32].

circuit size and fewer flag qubits. Nevertheless, in Fig. 6(d),
we see that the logical error rate is slightly worse than the
circuit in Ref. [29]. However, the RL agent also discovers
circuits with a lower logical error rate than the circuit in
Ref. [29], at the expense of requiring three flag qubits. We
show this circuit in Appendix L.

One might argue that the RL results do not significantly
outperform existing handcrafted circuits, which are close to
optimal or already optimal. However, the discovery of
optimized versions of some known FT circuits is only one
part of our results. A more significant result that we would
like to highlight is the discovery of novel, previously
unknown circuits, especially those with limited connectiv-
ity that can be directly implemented in real devices, which
we will present in the next section.

So far, we discuss the discovery of verification circuits
for codes with d = 3. The discovered circuits, in some
cases, can be used directly to scale to larger codes by means
of encoding concatenation. We discuss the discovery of
verification circuits for higher distance codes in more detail
in Sec. VII and Appendix R.

In summary, we have shown that the RL method can be
used to discover verification circuits for given non-FT

logical state preparation circuits. We even show a case
where the RL method discovers a better circuit than
the existing circuit in the literature. Furthermore, inter-
estingly, the RL method can also discover variants of
verification circuits with different trade-offs in terms
of logical error rates, acceptance rates, and the number
of flag qubits.

VI. INTEGRATED FAULT-TOLERANT LOGICAL
STATE PREPARATION

A. Task description and reward function

Individually, we have shown that RL methods are able to
achieve competitive results for the tasks of logical state
preparation and verification circuit synthesis. Here, we go
beyond the separation of the tasks and present our main
approach, which integrates them to directly prepare logical
states in a fault-tolerant manner.

We expect that this integration will allow the RL agent to
devise a more effective strategy compared to separating the
task for two main reasons. First, it will take error propa-
gation into account when preparing the logical state. In
addition, we expect the agent to perform better when
preparing a fault-tolerant logical state under limited qubit
connectivity. When we consider the two goals separately,
instead, the RL agent does not take into account which data
qubits are connected to the flag qubits when preparing the
logical state.

The goal is to find a circuit W that prepares a logical state
in a fault-tolerant way (see Fig. 7). The task requirement is
the tableau of the target stabilizer state S and the
number of available flag qubits, n,. Note that, with respect
to the previous two tasks, it is possible, though not
necessary, that the circuit W found by the RL agent is
also decomposable into the state preparation circuit U and
the verification circuit V.

The reward used for this task is the same as in Eq. (4).
However, in this case, the RL agent starts from scratch, so
the set of error operators & is initially empty and grows as
the agent performs actions by adding gates to the circuit
construction attempt.

A \u
RL agent

[0) — 8 \')>m

10) - |0)

wm
10) [10) . [~

| 0) | | 0) EIQI,
|0) - [0)
)

FIG. 7. Integrated fault-tolerant logical state preparation task,
which outputs a circuit W that directly prepares |w), of a
[[n, k,d]] code in a fault-tolerant way.

041012-11

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

B. Results
1. All-to-all qubit connectivity

We first compare our two RL approaches to prepare a
logical state in a fault-tolerant manner on all-to-all qubit
connectivity. The first approach separates the task into
logical state preparation (LSP) followed by verification
circuit synthesis (VCS), which we refer to as LSP + VCS.
The second one, instead, is our main approach, which
directly prepares the fault-tolerant logical state and which
we refer to as IFT-LSP.

We discuss the preparation of the following logical
states. For the CSS codes considered (i.e., the [[7,1,3]]
Steane code, the [[9,1,3]] Shor code, and the [[15, 1, 3]]
Reed-Muller code), we prepare the |0), state with Z; =
Z®" and the |+), state with X; = X®". For the non-CSS
code (i.e., the [[3, 1, 3]] perfect code), we prepare the |1),
state with Z; =ZZZZZ and the |-), state with
X; = XXXXX. For this task, we also consider the
[[9,1,3]] Surface-17 code [17], which has been realized
experimentally, for example, in Refs. [5,8,13].

In our numerical experiments, we again use the standard
gate set combined with the cz gate. The training of the
agent starts with one flag qubit, and if the training does not
converge, the number of flag qubits is incremented by one
until a solution is found.

We compare the minimum number of two-qubit gates
and the number of ancillas needed to prepare fault-tolerant
logical states with the two RL approaches (LSP + VCS and
IFT-LSP) and existing circuits in Table I. IFT-LSP is better
than LSP + VCS at preparing two states: |1), of the
[[5,1,3]] perfect code and |0); of the [[15,1,3]] Reed-
Muller code. This finding is most likely because the LSP
does not take error propagation into account when prepar-
ing the state. Compared to existing circuits in the literature,
our RL approaches find a smaller number of two-qubit
gates in two states: |—); of the [[5, 1, 3]] perfect code and
|[+), of the [[15, 1, 3]] Reed-Muller code. The first case is
already shown in Fig. 6(b), while the second case needs one
two-qubit gate less than the existing one. The circuits are
shown in Appendix M. In terms of efficiency, both RL
approaches are comparable. For example, to prepare the
|0), of the [[7,1,3]] Steane code, IFT-LSP needs about
150 seconds, while LSP + VCS needs about 180 seconds
on a single NVIDIA Quadro RTX 6000 GPU.

Figures 8(a) and 8(b) show an example circuit for the
fault-tolerant preparation of the |0), state of the [[7, 1, 3]]
Steane code and the |1), state of the [[3, 1, 3]] perfect code
discovered by IFT-LSP, respectively (see Appendix M for
other examples of RL-discovered circuits). We can see that
to prepare the |0), state of the [[7, 1, 3]] Steane code, the RL
agent measures the stabilizer-equivalent logical Z operator
IIZZI1Z. When preparing the |1), state of the [[5, 1, 3]]
perfect code, the agent measures the stabilizer-equivalent
logical Z operator ZXIXZ via the first ancilla and XXIZI
via the second ancilla.

TABLEI. Comparison of fault-tolerant logical state preparation
circuits on all-to-all qubit connectivity between our two RL
approaches and existing circuits. We show the minimum number
of two-qubit gates and the number of flag qubits in parentheses.
Bold text indicates methods with the lowest number of two-qubit
gates. The first RL approach is the LSP + VCS, where we
separate the task by first performing the LSP (in Sec. IV)
followed by the VCS (in Sec. V). The second RL approach is
our main approach, which is the IFT-LSP (in Sec. VI). We see that
IFT-LSP always finds circuits with less or a similar number of
two-qubit gates than LSP + VCS or existing circuits.

Code State LSP+ VCS IFT-LSP Existing
5,03 I, 4@ 12e .
Perfect), 12 (2) 12 (2) 20 (6) [29]
[[7.1,3]] 0), 11 (1) 11 (1) 11 (1) [32]
Steane |+, 11 (1) 11 (D)
(9. 1,3]] 10}, 6 (0) 6 (0)

Shor [+). 11 (1) 11 (1)

(9. 1.3]] 10),. 11 (1) 11(1) ot
Surface-17 [+, 11 (1) 11 (1)
[[15,1,3]] |0), 29 (2) 25 (1) 25 (1) [34]
Reed-Muller |+), 31 (1) 31 (1) 32 (1) [34]

“Reference [35] shows the FT preparation of the |0), state of
the [[9, 1, 3]] Surface-17 code with eight two-qubit gates and zero
flag qubits. However, the connectivity of qubits is different,
namely, a 3 x 3 grid without ancilla qubits.

As a side note, one can prepare other states by changing
the logical operators. Alternatively, we can also apply
logical gates to a prepared state. For example, it is known
that the logical H gate in the [[7,1,3]] Steane code is
transversal (applying H to each physical qubit), so it is still
fault tolerant. Thus, one can prepare |+), by applying
logical H to the prepared |0), . However, this process is not
obvious, for example, in the [[5,1,3]] perfect code. In
Ref. [6], the |—), is always prepared fault tolerantly first;
then, the logical basis state is rotated to another state. With
our RL approach, instead, we can automatically discover
fault-tolerant preparation circuits for other states.

2. Restricted qubit connectivity

While it is true that any optimization or discovery
achieved through RL could, in principle, be performed
manually by an expert with sufficient time and patience, we
would like to emphasize the important point of scalability,
not only in terms of qubits but also in terms of hardware
constraints. We argue that the design and optimization of
FT quantum circuits is even more nontrivial when hardware
constraints, such as the available gate set or connectivity,
are considered. Manual exploration of these configurations
is very challenging, especially as the number of qubits
grows. We will show that, even with relatively few qubits,
our RL approach is able to discover novel FT logical state
preparation with connectivity based on real devices.

041012-12

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

(a) All-to-all [[7,1,3]]] 0}, (c) 2D Grid [[7,1,3]] |0},

(e) 2D Grid [[9,1,3]] Surface-17 |0);

[0)[& 2 [=
o D 1 g o e
H A 4 " s 1 2 D
[0 pyine] S e 0=l
10 - '@' S °2 3 —He
|‘8§ i ") . 6 3 4 5 14() 4
T 2 D
. : 7 R s -
6 7 8 8 b é‘”
b) All-to-all [[5,1,3]] [1), (d) 2D Grid [[5,1,3]]| 1)}, @ 172 = Jo —*
(2 g D 6 &

= [x] Z@

~,mNS eSO

(1]

Unused

Data -C)- Flag

——— e~

NN~~~

Soocoocoo

—CT et E1

FIG. 8.

Results for the RL-based integrated fault-tolerant logical state preparation (IFT-LSP). We show an example of a fault-tolerant

circuit prepared by an RL agent for (a) the |0}, state of the [[7, 1, 3]] Steane code and (b) the |1), state of the [[5, 1, 3]] perfect code in all-
to-all qubit connectivity. Parts (c) and (d) show learned fault-tolerant circuits for the same logical state preparation task on a 2D grid
connectivity based on Google Sycamore [126] (c) and IBMQ Tokyo [122] (d) devices. In panel (e), we show, for the first time, flag-
based fault-tolerant |0), state preparation of the [[9, 1, 3]] Surface-17 code on a 2D grid connectivity and qubit placement taken from
Ref. [5]. Note that the flag qubits (in blue) are measured, but for simplicity, the measurement is not shown. Unused qubits or connections
(in gray) mean that they are available for use by the RL agent, but they are not used in the solution found by the agent.

Therefore, we now move to a more general and practically
relevant case where we show fault-tolerant logical state
preparation on a device with restricted qubit connectivity.
There are some handcrafted recipes for specific codes, such
as encoding the |0), state of the [[9, 1, 3]] Surface-17 code in
a 1D array [35] and encoding a magic state of the [[4, 1, 2]]
code in an IBMQ device [127]. Here, we want to use RL
instead to automatically discover such circuits.

Note that transpiling a fault-tolerant circuit prepared for
all-to-all qubit connectivity generally does not work since it
does not guarantee that the transpiled circuit is fault
tolerant. Additionally, we find that separating the task
(LSP + VCS) fails in some cases. The first case is when a
data qubit is connected only to the ancillas. In this scenario,
one would have to use the ancilla as a “bridge” to the
corresponding data qubit. The second case is when the VCS
fails because the LSP does not take the position of the
ancilla into account when preparing the logical state. In
contrast, our main approach (IFT-LSP) works under these
conditions. We discuss these two cases in more detail and
give examples in Appendix N.

We illustrate our main approach by preparing fault-
tolerant logical states on a 2D grid, which is common in
quantum chips based on superconducting qubits (e.g.,
Google Sycamore [126], IBM Quantum devices, and
Rigetti Ankaa). We first demonstrate the fault-tolerant
preparation of the |0), for the [[7, 1, 3]] Steane code on a
3 x 3 grid based on the Google Sycamore device. Figure 8(c)
shows an example of an RL-discovered circuit. Impressively,
the RL agent discovers a circuit with the same number of two-
qubit gates and flag qubits as in the all-to-all qubit

connectivity shown in Fig. 8(a). Figure 8(d) shows an
example of the fault-tolerant preparation of the |1), for
the [[5, 1, 3]] perfect code on a 2D grid based on the IBMQ
Tokyo [122] device. Compared to the circuit on all-to-all
qubit connectivity, it has the same number of flag qubits and
requires only four additional two-qubit gates. The RL
approach also manages to discover circuits for the prepara-
tion of other logical states, including for the [[9, 1, 3]] Shor
code, which we show in Appendix P.

The logical state [0); (|+),) of a surface code is
commonly prepared fault tolerantly by using stabilizer
measurements [128,129]—initializing the physical qubits
in the product state |0)®" (|4)®") and measuring the X (Z)
stabilizers, which projects the entire many-body state into a
surface code state. The outcome of the stabilizer measure-
ments is random even in the absence of error; thus, they
cannot be used to flag harmful errors. On the other hand,
flag-based FT preparation uses specially designed circuits
with flag qubits to detect and address errors in a single
round of measurements. Thus, when a qubit is flagged, we
can either discard and reset the state or use the flag as
additional syndrome information, providing a more versa-
tile error management strategy [130].

Here, for the first time, we show RL-discovered flag-
based fault-tolerant logical state preparation of a surface
code in the standard 2D grid connectivity: We illustrate this
process by preparing the |0), of the [[9, 1, 3]] Surface-17
code with the connectivity and qubit placement from
Ref. [5] in Fig. 8(e). The RL-discovered circuit, although
given eight flag qubits to use, only needs four flag qubits
and uses 16 two-qubit gates. It is only five two-qubit gates

041012-13

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

more than preparing it in an all-to-all qubit connectivity as
shown in Table I (the circuit is shown in Appendix M). The
circuit was discovered in approximately 2000 seconds. The
discovered circuit shows a novel approach to fault toler-
antly prepare a logical Pauli state of the surface code.

Regarding the interpretation of the discovered FT circuit
and its possible relation to the stabilizer measurement
initialization scheme, we note that the four ancilla qubits
used in the FT circuit found by the agent in Fig. 8(e) are, in
fact, not measuring stabilizers. Instead, they are used as
bridges to connect data qubits. To further clarify, since there
are gates connecting ancilla and data qubits in the middle of
the circuit (i.e., before the logical state preparation is
completed), measuring these ancilla qubits is not equivalent
to measuring the stabilizer operators of the given code. This
finding can also be seen in the circuit shown in Fig. 8(c),
where there is a CNOT with control and target in the flag
qubit. Surprisingly, the RL agent can come up with an
intelligent design that flags harmful gate errors, even
though none of the surface code stabilizers are directly
measured. The latter makes the circuit novel and different
from the stabilizer measurement initialization scheme.

We now compare the flag-based scheme with the
stabilizer measurement initialization scheme. The circuit
for preparing the |0); of the [[9, 1, 3]] Surface-17 code with
the stabilizer measurement scheme is shown in Fig. 9(a). It
uses 14 cNoOTs, while the circuit discovered by RL uses 16
CcNoTs. The cNOT gates in Fig. 9(a) are ordered to ensure
FT, such that the hook X and Z errors are placed
orthogonally to the X; and Z; operators, respectively,
following Ref. [131]. However, we still see in Fig. 9(b) that
the flag-based scheme performs better in terms of the
logical error rate compared to the stabilizer measurement
scheme. We hypothesize that this has to do with the
postselection that the flag-based scheme performs to filter
out preparations with harmful errors, while the stabilizer
measurement scheme always accepts the state (100%
acceptance rate). Nevertheless, the acceptance rate of the
flag-based scheme is also good, as it is above 90% for
p < 3x 1072, as shown in Fig. 21 in Appendix O.

In Appendix O, we compare the logical error and
acceptance rates of the circuits shown in Fig. 8. In all
cases, the logical error rate scales as p?, confirming that the
circuits are fault tolerant, as desired. In Appendix Q, we
show how different values of the weight 4 in the reward
affect the acceptance and logical error rates.

Unlike manual design, RL can adapt to different hard-
ware constraints without requiring significant re-engineer-
ing or manual intervention. We illustrate this case by
showing that the RL approach allows a straightforward
exploration of different qubit connectivity and placements,
i.e., assignments of data and flag qubits to physical qubits
of the underlying device, by training different RL agents.
We illustrate this approach by preparing the |0), state for
the [[7,1,3]] Steane code. On a 3 x 3 grid based on the

(a) Stabilizer Msmt.

Data

¢ Msmt. Q
6 7

Unused @

(b)
0] Flag-based - . P

Q 10 Stabilizer Msmt. -
s

S 1072

—‘8 ,v"/(_‘ .

‘T 1074 v - ‘,‘o'" [72 15-1172
& 'i:-"“‘ > 2.98p?

106 L , |
10_3 10_2 p 10—]

FIG. 9. Comparison between flag-based and stabilizer meas-
urement initialization schemes for fault-tolerant preparation of
the |0), of the [[9, 1, 3]] Surface-17 code. (a) Circuit for stabilizer
measurement scheme with 12 cNOTs to measure all of the X
stabilizers. Note that the qubits in green are measurement qubits
and not flag qubits. (b) Comparison of the logical error rate of the
circuit shown in panel (a) and the flag-based circuit shown in
Fig. 8(e). We see that the flag-based FT circuit has a lower logical
error rate with a factor of 5 improvement compared to the
stabilizer measurement scheme.

Google Sycamore device, there are (3) = 36 possible data
and flag qubit placements. We train on all possible
configurations, and in Fig. 10(a), we show five qubit
placements where the circuit discovered by the RL agent
has the lowest number of two-qubit gates. In this case, a
new RL agent is trained from scratch for different qubit
placements. A more efficient approach is to use transfer
learning, which involves reusing a trained network for
different placements. We will demonstrate this approach
more generally later (see Fig. 18). Preparing the |0), of the
[[7,1,3]] Steane code on a 2D grid takes approximately
200 seconds, which is roughly 50 seconds slower than
preparing the same state with all-to-all connectivity.
Therefore, in about 2 hours (200 seconds times 36 possible
qubit placements), our approach can discover the most
efficient fault-tolerant preparation of the |0), state of the
[[7,1,3]] Steane code on a 2D grid. This process could be
even faster if we train the agent in parallel or use a transfer
learning approach. We argue that this is much faster than
the time human experts (scientists or engineers) would
require to perform a similar task. Training a single RL agent
for one qubit placement takes about 200 seconds.

Next, we illustrate the same preparation for heavy-hex
connectivity based on the IBMQ Guadalupe device. We
show three data and flag qubit placements where the circuit

041012-14

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

has the lowest number of two-qubit gates in Fig. 10(b).
Training one agent takes approximately 1000 seconds. We
have also tried different flag qubit placements, but some-
times the agent does not find an encoding circuit, especially
when the flag qubit is not located in the crossing (i.e., the
flag qubit is connected to three data qubits). This case may
indicate that the best flag qubit placement in the heavy-hex
connectivity is in the crossings. We provide the circuits in
Appendix P.

One might expect that when the RL agent directly
prepares a fault-tolerant logical state, it would try to detect
some harmful errors in the middle of the preparation. This
is indeed the case, for example, in the circuit shown in
Fig. 8(c). However, we observe that most of the discovered
circuits can be decomposed into a state preparation circuit
U, followed by a verification circuit V [e.g., the circuits
shown in Figs. 8(d)].

We can try to investigate the strategy that the RL agent
learns by looking at the circuits and the action probabilities
during the training, which we illustrate in Fig. 11. We see
that, in the initial training steps, the agent applies
Hadamard gates to initialize some qubits in the |+), which
is a known strategy for CSS codes [85]. Next, the agent
learns to prepare the logical state circuit without flagging
harmful errors. Finally, the agent learns to flag the harmful
errors until the training converges. We illustrate this
strategy for the integrated fault-tolerant preparation of

(a) 2D Grid (Sycamore)
Connectivity #2-Qubit Gates

(b) Heavy-Hex (IBMQ Guadalupe)

Connectivity #2-Qubit Gates

& 11 QO "'. ”
Lo 1o Lo To)
(]
o 12 Q
QOO
® 27
13 &*OO
&
&> u QOO
éoood *
(6]
14 Data Unused
O o Flag + Unavailable

FIG. 10. Exploration of different qubit connectivity and place-
ment for the integrated fault-tolerant |0), state preparation of the
[[7, 1, 3]] Steane code. We show the number of two-qubit gates in
some of the RL-discovered circuits with (a) 2D grid (based on the
Google Sycamore device) and (b) heavy-hex layout (based on the
IBMQ Guadalupe [121] device). Unused qubits and connectiv-
ities (in gray) mean that the qubits were given to the RL agent to
be used as flag qubits, but they were not used. Unavailable qubits
and connectivities (in black) mean that the qubits are not set as
available to the RL agent.

the |0), state of the [[7,1,3]] Steane code on all-to-all
qubit connectivity in Fig. 11.

Finally, we want to explore the possibility of transfer
learning in this task. Transfer learning is a powerful
technique in machine learning that leverages knowledge
or a strategy gained from solving one problem to solve
related but different problems. However, transfer learning
does not always work effectively because it depends
heavily on the similarity of the problems [123].

We show a transfer learning technique where we reuse
the agent that was trained to prepare a fault-tolerant logical
state in an all-to-all qubit connectivity scenario to prepare
the same state for the situation of restricted connectivity.
The transfer learning process is explained in detail in
Appendix J. We find that transfer learning helps make the
training converge faster. Additionally, we see that the
transferred agent retains the strategy from the previous
training. We illustrate this finding by comparing the
integrated fault-tolerant preparation of the |0), state of

(a) After 800 episodes | 0) Flag
E o1
|0) E = kbbb bbbk
|0) 8 |eef -e- H
|0) g X +++ Data CNOTs
|0) <) LAY —x— Flag CNOTs
9 £ Leokesteesasesezenss
10) = 0 10 20
(b) After 4800 episodes
o B W
0) 1H =) \ ii-e- H
}(); E ,T\ "% }l l+ Data CNOTs
|0) D JOD >‘\\." ji = Flag CNOTs
Py = \ H
“;: =] é &0 e nn s ool tyly
|0) ————————OODDBDDDDT 0 10 20
(c) After 11200 episodes (converged)
10) IE 1 Soq TR
10) £ i qee
0) = \ i ., Daa
M E E ! : *CNOTs
\ \ i Flay
ol . ° i Iy~ oo
}()\i é . A {xkkansnnpsbos
|0) — 00X 0 10 20
Steps
FIG. 11. Evolution of the learned strategy during training. We

train an RL agent for the integrated fault-tolerant |0), state
preparation of the [[7, 1, 3]] Steane code, assuming all-to-all qubit
connectivity. The left part of the figure shows the circuit prepared
by the agent. The right part shows the probability of actions for
each step. We group the actions into three main groups: applying
Hadamard gates on some qubits (red), applying CNOTs between
data qubits (green), and applying CNOTs between data qubits and
flag qubits (blue). The background color indicates the most
probable group of actions at that step. We can see the progression
of the RL agent’s learning process, starting from applying mostly
Hadamard gates in the first few steps in panel (a), followed by
learning how to prepare the logical state in panel (b), and finally
learning how to prepare the state and flag the harmful errors after
convergence in panel (c). We hypothesize that the agent applies
long sequences of self-canceling CNOTs in panels (a) and
(b) because it has not yet learned what to do in the later time
steps. The agent then chooses a “safe” strategy by applying
multiple CNOTs several times, which does not change the reward.

041012-15

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

6
(@) i W (b) 50 I
PRy)
§ 4 rf:vl“l‘"h " M E |
kat \’ o2 g0 40,
=1 =} °
[« :—VBEE = .. o*EB
%‘3 2 &5 Sl ‘e
g —— Without transfer %D —— Without transfer
< (UN With transfer é) 20 With transfer
0 10000 20000 0 10000 20000
Episodes # Episodes
(c) With transfer
|10) 1{eee++rs £ + 3 x x &
|0) | = N :i‘ "| t‘x’ Wow W W W s
0 [z 208 o
0 BT 24 esm
LY V.V
(); I E 0 x-x-i-l--r!:(\-l-ﬂ*l—,;d-‘ o
0
1
05 = 0 0 20
(d) Without transfer
|0) 21]-en —— Anc. CNOTs
|0) = | -+ DataCNOTs
0) g
0) o)
0) &4 SEasE E
NILL 9 e 0
0) L 0000 ! 0 10 20
0) = Steps

FIG. 12. Transfer learning for integrated fault-tolerant logical
state preparation from an all-to-all qubit connectivity to a 2D grid
connectivity. Panel (a) shows the average return, and panel
(b) shows the circuit size during training for the fault-tolerant
|0), preparation of the [[7, 1,3]] Steane code with and without
transfer learning. The training without transfer learning also
converges, but it requires more training. Part (c) shows that when
we directly use the transferred agent without training, the agent
retains the knowledge of placing Hadamard gates as shown
previously in Fig. 11. This finding is in contrast to the case
without transfer learning shown in part (d), where the agent
applies only a long sequence of self-canceling cNOTs. In this case,
the agent has not learned anything, so the probability of each gate
is still uniform. The cNOT gate between qubits 7 and 5 is just a
random gate chosen by the agent.

the [[7, 1, 3]] Steane code on a 2D grid without and with
transfer learning from all-to-all qubit connectivity
in Fig. 12.

In summary, we have shown that the IFT-LSP approach
always finds circuits with better or similar performance,
both compared to circuits known in the literature as well as
compared to circuits found by separating the task into the
two subtasks (LSP + VCS). We have also demonstrated
state-of-the-art RL-based fault-tolerant logical state prepa-
ration for restricted qubit connectivity scenarios with
different connectivity and qubit placements. Furthermore,
with transfer learning, we can reuse an RL agent trained for
all-to-all qubit connectivity to accelerate the training for
restricted qubit connectivity.

VII. SCALING TO HIGHER DISTANCE
CSS CODES

So far, we have shown results for d = 3 codes. In some
cases, the discovered quantum circuits can already be
scaled to higher distance codes by code concatenation.

We discuss this approach in more detail in Appendix R 2;
here, we focus on how to scale up beyond concatenation.
One of the main obstacles in scaling up to higher distances
in the approach described in Secs. IV-VI is to store a
rapidly increasing number of errors. Here, we implement
ways to mitigate this and other problems and, thereby, scale
our approach to find circuits for higher distance codes from
scratch.

In general, designing a FT circuit requires consideration
of every type of error that can occur in the circuit. However,
the important class of CSS codes provides a further
simplification in the design of fault-tolerant schemes.
Because of their construction, CSS codes split the correc-
tion of Pauli X and Z errors into independent processes,
which implies that Y errors can also be treated as both X
and Z errors happening in the same location, as well as
treated independently. Furthermore, multiple Z errors
usually lead to logical failures of the type Z; |¥) (assuming
Z; consists only of Z operators). Therefore, by restricting
to |0);, we make multiple Z errors tolerable since
Z;10);, = (+1)|0),. Thus, only X errors at the end of
the encoding circuit are potentially harmful. The same
applies to the preparation of X [+), = |+),.: If X; consists
only of X operators, it is sufficient to consider Z and Y
errors. Synthesis of FT encoding circuits for codewords
|0), and |[+); of CSS codes is then easier in the sense that
either X or Z errors are not harmful by construction. Note
that the same would not be true for non-CSS codes because
the stabilizers involve both the X and Z Pauli operators, so
the logical operators consist of both X and Z operators.

Thus, to prepare the |0), or |[+); states of CSS codes
fault tolerantly, we only need to consider errors of type X or
Z, respectively. Furthermore, some two-qubit gates do not
convert errors into different types; for example, a CNOT gate
propagates X errors into other X errors. Therefore, by
avoiding the use of any single-qubit gate in the middle of
the circuit, we can only consider one type of error
generator. In fact, as shown in Fig. 11, this is the general
strategy learned by the RL agent when trained from scratch.
Specifically, one only needs to initialize some of the initial
qubits to the |+) state using a Hadamard gate and then
work exclusively with CNOT gates to prepare the logical
state and synthesize the verification circuit. By restricting
ourselves to this simple, yet generic strategy, the number of
errors to be handled can be drastically reduced.

As mentioned above, one of the problems in scaling to
higher distance codes is the memory scaling to store the
errors £. In Appendix R 3, we discuss in detail how the
memory scales with distance. We show that, with this new
strategy, we can fit errors for distance-9 CSS codes in a
single GPU, whereas for the general strategy, it can only fit
errors for distance-5 codes. We also show, in Appendix R 1,
that the simulation time of d =5 codes is only about 3
times slower than the one for d = 3 codes, and it still scales
polynomially with n. These results are very promising, and
they illustrate the scalability of our approach.

041012-16

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

So far, our assumption is that one prepares the |0); and
|+) . states of CSS codes fault tolerantly using only CNOT or
cz gates. This approach already works for both our LSP +
VCS and IFTLSP tasks with any qubit connectivities.
However, one can make it even more efficient if one
restricts oneself to LSP 4 VCS tasks. There are underlying
principles for designing FT flag verification circuits, for
instance, by measuring some logical or stabilizer operators
[20,28,32]. However, there is no known recipe for which or
how many stabilizer operators need to be measured. We can
then design an RL agent for the VCS task where the action
is to apply a sequence of gates that measure stabilizer
operators fault tolerantly according to the protocol in
Ref. [20] instead of applying a single gate. In this case,
one only needs to use the f, term in the reward in Eq. (4)
since the measurement of an operator is guaranteed to
preserve the state and to produce a product state between
the data and ancilla qubits. Note that, in the worst case, the
number of actions of the RL agent grows exponentially as
2", However, this number can be reduced because, in CSS
codes, we only need to consider operators of type X or Z.
Our strategy is to incrementally train the RL agents by
including operators of increasing weights. For example, we
first start the training by only including operators up to
weight 5, and then 6, and so on.

By incorporating these additional insights into the train-
ing of the RL agent, we can scale and discover FT circuits

(a) [[17.1,5]]

Color

[[19,1,5]]
Color

52 (5)

[125,1,51]

Code Surface

Gates (Flag) 38 (3) 55 4)

=

v
2
-

—~
o
o)
«F]

@ 2.10p 114p3

& 40.9p3

-) 6.61p>

10° p 10!

FT:[[17,1,5]] -e-- [[19,L5]] ---- [[2515]] —e--
Non-FT : [[17,1,5]] - [[19,1,5]] [[251,5]] —w--

FIG. 13. Results for scaling to distance-5 CSS codes. (a) Num-
ber of two-qubit gates and flag qubits in the RL-discovered
circuits that prepare the |0), state of different d = 5 codes fault
tolerantly. (b) Logical error rate with different simulated error
probabilities p for the RL-discovered distance-5 non-FT and FT
circuits. The logical error rates of the FT circuits scale as p?,
confirming that the circuits are FT. The circuits are available in
Appendix S.

for codes of higher distance. We show in Fig. 13(a) the
number of two-qubit gates and flag qubits needed for fault
tolerantly preparing different d = 5 codes. In Fig. 13(b), we
plot the logical error rate of the discovered non-FT and FT
circuits. In this case, we simulate 3 x 10'° noisy circuit
trajectories for each varying error probability p to compute
the logical error rate. While the logical error rates of the
non-FT circuits scale as p or p?, the fault-tolerant circuits
scale as p3, confirming that the circuits are fault tolerant, as
desired. It takes approximately 4000 seconds to discover
the circuit for the [[17, 1, 5]] color code, 4500 seconds for
the [[19,1,5]] color code, and 8000 seconds for the
[[25, 1, 5]] surface code.

VIII. CURRENT HARDWARE CONTEXT AND
OPPORTUNITIES FOR FUTURE SCALING

We have shown the RL-discovered fault-tolerant quan-
tum circuits for logical state preparation for several known
codes. In Sec. VII, we have also shown how we can scale
our approach to higher distance CSS codes. We would like
to emphasize that our method is already useful and can be
used directly in current quantum hardware, especially since
our RL method takes the hardware constraints into account.
While the total number of physical qubits in a given
experiment can already be on the order of hundreds, it is
important to realize that none of these recent experiments
operate on a QEC code composed of hundreds of physical
qubits but rather in a highly parallel manner on a number of
logical qubits, each of them encoded in small or medium
distance codes. To provide context, we summarize recent
experimental results on multiqubit codes in Table II.

We can see in Table II that our RL method already
reaches the same level and can be applied to the number of
physical qubits comprising individual logical qubits as the
current experiments. It is also important to recognize that
the results in Table II mostly represent a very specific
handcrafted circuit construction of the code, which benefits
from a highly regular structure and well-studied techniques.
In contrast, our approach addresses the broader challenge
of automatically discovering and optimizing fault-tolerant
circuits for more general QEC codes, where the structure
and connectivity may be less regular and manual optimi-
zation becomes significantly more difficult. These and
other future experiments can thus clearly benefit directly
from our RL method in optimizing the quantum circuits
used in the experiment.

In principle, there is even more room to further extend
and scale our method to codes with hundreds of qubits. We
briefly discuss some of the opportunities and possibilities
here. Our RL approach can be further improved by
restricting or modifying the action space as in Sec. VII
or by designing a better reward function. One could
consider developing modular formulations of the FT
compilation tasks, e.g., by including more complex build-
ing blocks, such as subcircuits for specific tasks like

041012-17

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

TABLE II. Recent experimental results using multiqubit codes. The / x [[n, k, d]] means that [x k logical qubits
are realized with the [[n, k, d]] code: if not specified, then [= 1.

Reference Codes used

[132] [[9, 1,3]], [[25,1,5]], and [[49, 1,7]] surface codes

[10] 40 x [[7,1,3]] Steane code, 2 x [[49, 1, 7]] surface code, and 16 x [[8,3,2]] 3D color code
[133] [[24,1,4]] 4D surface code

[134] 3 x [[16,4,4]] tesseract code

[135] x [[16, 1,4]] 3CX code

[136] 12 x [[4,2,2]] Toric code, 28 x [[4, 1,2]] Toric code, and [[9, 1, 3]] Bacon-Shor code

stabilizer readout, in the set of actions available to the RL
agent, or by exploiting the symmetry (e.g., translational
invariance) of the code construction. One can also consider
a hierarchical approach to circuit design. For example,
instead of directly targeting the circuit with large distance
d, one can build the solution by targeting smaller distances
first. In other words, we start by considering errors with
probability p until a solution is found, then include p?, and
so on until we reach the target distance. In Appendix R 4,
we also discuss the possibility of exploring the potential of
advanced collaborative multiagent RL scenarios, which
may allow one to apply the techniques proposed in this
work to larger distances and concatenated error correc-
tion codes.

IX. CONCLUSIONS AND OUTLOOK

We have presented novel approaches to automatically
discover compact and hardware-adapted FT quantum
circuits based on flag qubit protocols relying on RL as
an enabling tool. We illustrate our approaches for FT
logical state preparation of QEC codes. Compared to other
circuit synthesis tasks, our approach requires not only the
preparation of the correct state but also the tracking of
harmful errors to ensure FT, all while adhering to hardware
constraints—a highly nontrivial challenge that would be
difficult to achieve through manual handcrafted design. We
have started with the non-FT logical state preparation task
and showed that RL prepares the logical state with a smaller
circuit size than other methods for the all-to-all qubit
connectivity scenarios. We have also highlighted that
including the hardware constraint directly in the training
yields quantum circuits with a smaller circuit size than
transpiling a circuit for all-to-all qubit connectivity. We
have then synthesized verification circuits to perform FT
logical state preparation. We have demonstrated that RL
can discover verification circuits that perform better than or
equal to existing circuits in the literature. We have shown
that the main approach that we advocate in this work,
where we integrate the subtasks into the challenge of
direct IFT-LSP, performs even better than separating
the tasks. Furthermore, we have demonstrated RL-based

fault-tolerant logical state preparation under constrained
connectivity for different qubit connectivity and place-
ments. We have also investigated and shown that transfer
learning can help speed up the training process of the RL
agent. Finally, by incorporating additional structural
insights about CSS codes into the simulation of the
environment and introducing innovations such as incre-
mental training for the RL agent, we have scaled our
approach to CSS codes with higher distance. All in all, we
have demonstrated a scalable method for automatic dis-
covery of novel, hardware-specific, and FT circuits with RL
that can be directly implemented in experiments, bringing
us closer to the realization of large-scale FT quantum
computers.

In this work, we have demonstrated the first steps in
using an RL approach for the automatic discovery of
quantum circuits for fault-tolerant protocols in quantum
error correction. Our approach could naturally be extended
and applied to different tasks, such as the discovery of
quantum circuits for fault-tolerant magic state preparation
[36,71], syndrome measurement [137,138], logical gates,
error correction cycles, and other quantum error correction
subroutines. On the one hand, exploring these scenarios
will not require a completely different approach since
verificationlike circuits can be used to render the tasks
fault tolerant. However, such extensions will require a
careful design of the appropriate reward function, set of
actions, and observations to effectively train the RL agent.

ACKNOWLEDGMENTS

We thank Sangkha Borah, Maximilian Négele, Oleg
Yevtushenko, Josias Old, Julio Carlos Magdalena de la
Fuente, and Manuel Rispler for fruitful discussions. The
research is part of the Munich Quantum Valley (K-4 and
K-8), which is supported by the Bavarian state government
with funds from the Hightech Agenda Bayern Plus. L. C.
and M. M. further acknowledge support by the U.S. Army
Research Office through Grant No. W911NF-21-1-0007.
M. M. also acknowledges support by the European Union’s
Horizon Europe research and innovation program under
Grant Agreement No. 101114305 (“MILLENION-SGA1”

041012-18

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

EU Project), the ERC Starting Grant QNets through Grant
No. 804247, and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy “Cluster of Excellence Matter and
Light for Quantum Computing (ML4Q) EXC 2004/1,”
No. 390534769.

DATA AVAILABILITY

The data that support the findings of this article are
openly available [107].

APPENDIX A: TABLEAU REPRESENTATION

Here, we give more details about the representation of
quantum circuits as tableaus. Note that, in this work, we
omit the “destabilizer” generators in the tableau described
in Ref. [78] since they are not useful for the task at hand.

A tableau can be represented as an n x (2n + 1) matrix
of binary variables x;;, z;;, r; for i, j € {1, ..., n}. Each row
i of the tableau [x;,...Xi, Zi1»---» Zin» ¥;] Tepresents the
Pauli matrix of the generators or the logical operators,
where the x;;z;; bits determine the jth Pauli matrix,
where 00, 01, 10, and 11 denote I, Z, X, and Y Pauli,
respectively, and r; denotes the phase (1 for a negative
phase and O for a positive phase). For instance, a binary
vector [10011|00110|1] represents the Pauli —X/ZYX.

The tableau for |0); of the [[7, 1, 3]] Steane code [73] is a
matrix of binary numbers of size 7 x 15 that contains
7 — 1 = 6 stabilizer generators and one logical operator Z; .
Table III shows the generators of the [[7, 1, 3]] Steane code.
Equation (A1) shows an example of the tableau for |0), of the
[[7, 1, 3]] Steane code when we choose Z; = +ZZZZ7Z77.
In this tableau, the first row represents the logical operator
Z; =+2ZZ27Z7777, the second row represents the first
stabilizer operator +ZI1ZI1ZI1Z, and so on.

000000O0O|1T1TT11111]0
00000001 01010110
1010101]000000O01{O0
0000000011001 1]0 (A1)
0110011,0000000]0
00000000001 T1T1TT1]0O0
0001111,0000000]0

As discussed in the main text, reordering the rows of the
tableau represents the same state. However, this is not the
case for the canonical tableau [78], which is a unique
representation of a tableau that represents the same state.
We can apply Gaussian elimination to the matrix in
Eq. (A1) and obtain the canonical tableau in Eq. (A2).
The Pauli string for this tableau is as follows: +XIXIXIX,
+ZI111177Z, +IXXIIXX, +IZIIZIZ, +I1IZIZZI,
+IIIXXXX, and +111ZZ7Z7Z. We can reorder the rows

or change a row by multiplying other rows in Eq. (A1) and
still find the same canonical tableau.

1010101{000000O01]O0
0000000|1000011]O0
0110011{]000000O0]O0
0000000|01T001O01]O0 (A2)
0000000|0OO01O0T11O0]0O0
0001111{]00000001]0O0
0000000|0OO0O0OT1TT1TT1TT1]O0

We flatten this matrix into a vector and use it to compute
the distance metric and as an input to the neural networks.

APPENDIX B: HYPERPARAMETERS
AND DETAILS OF THE TRAINING

We use the multilayer perceptron architecture for the
critic and actor networks to train the PPO algorithm [98].
Both of the networks have two hidden layers with the
ReLU activation function. The number of hidden nodes is
set to 128. However, in cases where the number of physical
qubits is more than 10 with all-to-all qubit connectivity, we
increase the number of hidden nodes to 256. The weight
matrices are initialized with a uniformly distributed
orthogonal matrix with 0.01 scale, while the biases are
initialized to zero.

The hyperparameters of the PPO training are as follows
[98]. We use the Adam optimizer with a learning rate of
0.001 with an annealing learning rate. We train ten agents
in parallel. Each agent sees batches of 16 environments. We
train the agent for a total of one million time steps with an
entropy coefficient of 0.05. The network is updated after
every four epochs, and the number of minibatches is set to 4.
The discount factor (y) is set to 0.99, the generalized
advantage estimate (GAE) value (1) is set to 0.95, the
clipping parameter (¢) is set to 0.2, the value function
coefficient is set to 0.5, and the maximum gradient norm
clip value is set to 0.5. For harder cases (e.g., larger physical
qubits or restricted connectivity), we increase the total time
steps to 10 or 30 million and change the learning rate to
0.0005 and the entropy coefficient to 0.1. All experimental
results shown in this paper are found using NVIDIA Quadro
RTX 6000 GPU. The training is performed with the same
seed value to ensure the same randomness.

For all experiments, we set the stopping threshold at e =
0.9999 and the maximum steps in the trajectory as L = 50
and, in harder cases, L = 100. For the reward of verifica-
tion circuit synthesis in Eq. (4), we set u; = n, uy = |n/2],
and p, = 1. For the reward of fault-tolerant logical state
preparation, also defined in Eq. (4), we set u; = n,
py = |n/2|, and u, = 1. These values are determined
from our numerical experiments by varying the weight,
which we discuss in Appendixes K and Q.

041012-19

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

APPENDIX C: COMPARISON OF DISTANCE
FUNCTIONS

We propose to use the complementary distance 1 — d,
between the target canonical tableau (G o) and the canoni-
cal tableau of the current circuit at time 7 (G,) as a reward to
the RL agent. We first convert the current and target canonical
tableau matrices into binary vectors and compute the dis-
tance. In principle, we can take any binary distance measure.
A natural choice of metric is the Hamming distance, which
fits the current application since it is mostly used in coding
theory. However, our empirical experiments showed that the
Jaccard distance works better than the Hamming distance.

Let Cy; be the number of elements in G, and G, that
have a value 1 at the same position, Cy, the number of
elements in Gy, and G, that have a value of 0 at the same
position, Cy; the number of elements that have a value of 0
in Gee and 1 in G, at the same position, and Cj the
number of elements that have a value 1 in Gy and 0 in G,
at the same position.

The Hamming distance dy is defined as follows:

Co1 + Cyo

dy = , Cl
" Cop+ Co1 + Cro + €y (1)
while the Jaccard distance [139] d; is defined as
C C
d, o1 T Cio (€2)

 Co+Cip+Cyy’

We compare the RL training for preparing the |0), state
of the [[7, 1, 3]] Steane code using Hamming and Jaccard

501 ———— g 10
E é 05 @EE
= 40 1 — IET%%
5 o
)
R=
O 30
)
o0
=
q>') 200 __ Hamming
< Jaccard
10 - . . .
0 200 400 600
Episodes

FIG. 14. Comparison of Hamming and Jaccard distance for the
reward function. We show the average circuit size of training an
RL agent to prepare the |0), state of the [[7, 1, 3]] Steane code
using the Hamming and Jaccard distance for the complementary
tableau distance reward 1 —d,. The color shade shows the
standard deviation over five different trainings. The inset shows
how the inverse distance value evolves for each step of the gate
application for the circuit shown.

distance. In Fig. 14, we see that the results based on using
the Jaccard distance converge faster and more stably than
those obtained by using the Hamming distance. As seen in
Eq. (C2), the computation of the Jaccard distance does not
take into account the C. In stabilizer language, we do not
take into account when the Pauli identity / matches in both
target and current tableau. Thus, the Jaccard distance
penalizes more dissimilarities compared to the Hamming
distance. We hypothesize that, since we are using a reward
shaping technique, the increase in the inverse distance is
larger when using the Jaccard distance, which is better
learned by the RL agent. We illustrate this case in the inset
of Fig. 14, where we test an RL-prepared circuit and
compare how the value of inverse distance evolves for each
step of applying a gate. We see that the Jaccard distance
starts lower and increases more steeply than the Hamming
distance. Therefore, we use the Jaccard distance d; as the
distance metric d, for our experiments.

APPENDIX D: CALCULATION OF THE
COMPLEMENTARY TABLEAU DISTANCE
AND PRODUCT STATE

Here, we show an example of distance and product state
calculations, as explained in Sec. V, which are part of the
reward function for verification circuit synthesis and
integrated fault-tolerant logical state preparation tasks.

As an example, consider the preparation of the state
|000) + |111) with two ancillas (n, = 2). The state has the
following target canonical tableau: +XXX, +ZIZ, and
+1ZZ. We need to append the last column of the target

(a) Target Data +XXXTT
Canonical

(b) Target Ancilla +TTTZT
Canonical

+IIT11Z
Tableau Tableau
127211
©1]0) (d1]0)
|0) = 4 |0) [=
|0) % |0)
|0) 4 |0)
[0) o 10 D
g +X X g I
& +2111% &
g3 +IZ117 gy +IZZII
gy +11Z1IZ gy +IIIZI
g +I1I112% gs: +1TTIZ
d,: 045 d,: 1.0
p;:0.20 p,: 1.0

FIG. 15. llustration of the complementary tableau distance (d,)
and product state (p,) calculation. We want to prepare the state
|000) + |111) with two ancillas (n, = 2). The target canonical
tableau can be separated according to the data (a) and ancilla
(b) qubits. (c) Example of a circuit that almost prepares the target
state, but the data qubits are entangled with the ancilla. (d) Exam-
ple of a circuit that prepares the target state and is a product state
of the data qubits and the ancillas.

041012-20

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

canonical tableau with /®", so the target canonical tableau
for the data qubitsisnow +XXXI1I,+ZI1Z11,and +1ZZI1, as
shown in Fig. 15(a). As mentioned in Sec. V, the stabilizer
generators of the ancilla must be of Z type in the location of
the ancilla and 7 in the others for it to be a product state.
Therefore, the target canonical tableau of the ancilla qubits
must be +111Z1 and +1111Z, as shown in Fig. 15(b).

Figures 15(c) and 15(d) show two circuit examples. To
compute the complementary tableau distance d,, we take
g1, g, and g3 of the canonical tableau of the circuit and
compute the complementary tableau distance with the
target data canonical tableau. Since the ancilla qubits are
always placed last, we can extract the canonical tableau of
the data qubits by taking the submatrix of the canonical
tableau from rows 1 to n. To compute the product state p,,
we first take g, and gs from the canonical tableau of the
circuit. We then compute the d, between this subtableau
and the target ancilla canonical tableau. We can see that the
circuit in Fig. 15(c) is still far from the target state because
the data qubits are entangled with the ancilla since both the
d, and p, are below 1. However, the circuit in Fig. 15(d)
correctly prepares the state (d, = 1) and is a product state of
the data qubits and the ancillas (p, = 1).

APPENDIX E: MINIMIZING THE NUMBER
OF GATES IN THE REWARD FUNCTION

One might notice that the reward function in the logical
state preparation task does not include a term that mini-
mizes the number of gates to make the preparation circuit
compact. The most common technique is to add an extra
term —A at each time step to penalize longer sequences so
that the reward function in Eq. (2) is r, =d,_; — d, — /.
The problem is that 4 is now a hyperparameter that must be
tuned so that it does not become stronger than the
complementary tableau distance reward.

e 4=10
01201 . ;5 _ow
N A =099 with —A
«n ¢ ¥ =095 R
=115 .
:j """ e e @ TWTTTTTTTGTTTTTTTTTTTTTT
U 110 v A e a4 X %X VvV X
1234567 8 910
Agent

FIG. 16. Illustration of how the discount factor y affects the
circuit size. We train ten different agents for preparing the |0),
state of the [[7,1,3]] Steane code with y ={0.95,0.99,1}.
Additionally, we also try to set y to 0.99 and add the A =
—1/50 (referred to in the figure as y = 0.99 with —1) in the
reward function to penalize longer trajectories. The dashed line
shows the average circuit size.

However, without this term, one can also use the discount
factor y in the cumulative reward [48]. Instead of maximizing
J(0) =E.p,[> Ly r,), we instead maximize J(6)=
Epry[>r—g7'rs]. The y value ranges from 0 to 1. It
determines how much future rewards are reduced in value
compared to immediate rewards. When y = 1, the agent
values future rewards as much as present rewards, which can
lead to longer trajectories. When y < 1, the agent places
more emphasis on the long-term rewards and may take more
steps initially to reach a state that yields higher rewards in the
long run, which can lead to shorter trajectories.

We show this empirically in Fig. 16. We see that y = 1
leads to a longer circuit than y < 1. Furthermore, adding
the —A term to penalize longer sequences does not further
reduce the circuit size. For all experiments, we do not
include the —4 term and set y = 0.99.

APPENDIX F: LIST OF STABILIZER
GENERATORS

Table III shows the stabilizer generators for the codes
used in this paper.

TABLE III. ~ Stabilizer generators for the [[5, 1, 3]] perfect code

[110], the [[7,1,3]] Steane code [73], the [[9, 1,3]] Shor code
[111], the [[9, 1, 3]] Surface-17 code [17], the [[15, 1, 3]] quantum
Reed-Muller code or 3D color code [116], the [[17, 1, 5]] 2D color

code [76], the [[19, 1, 5]] 2D color code [76], and the [[25, 1, 5]]
surface code [17]. For the logical operators, we choose Z; to be
Z®" and X, as X®", where n is the number of physical qubits of
the respective code.

[[5. 1.3]] ([7.1.3]] (9, 1.3]] 9. 1.3]]
perfect Steane Shor Surface-17
IXZZX ZIZI1ZIZ ZZIIIIIIT ZIIZITIIITI
XZZXI XIXIXIX ZIZITIIIII ITIZZIZZI
ZZXIX 1ZZI1IZZ XXXXXXITI IZZIZZIII
ZXIXZ IXXTIIXX ITIZZITIIT ITITIZIIZ
ITIZZ2ZZ ITIZIZIIT IXXTIITIIIT
ITIXXXX XXXTITIXXX XXIXXTIIIT
ITIIITIZZI ITTIIXXIXX
ITIIIIZIZ ITIIIIXXI

[[15,1,3]] Reed-Muller [[17,1,5]] 2D Color
ZIZIZIZIZIZIZIZ XXXXITIIITITIIITITI
XIXIXIXIXIXIXIX ZZZZITITITIIITITIII
IZZIIZZITIZZITIZZ XIXIXXIIIIITIIIIIT
IXXTIXXTIIXXIIXX ZIZIZZIIITIIIIITIII
IIIZZZZITII1IZZZ7Z ITIIXXTIIXXITIIIITIT
ITIXXXXITIIIXXXX ITIIZZITIZZITIIIIII
ITITITIITIZZZZZZZZ ITIITITIXXTIIXXITITI
ITITTIITXXXXXXXX ITITITZZIIZZITITII
IIZIIIZIIIZIIIZ ITTITIITITIXXIIXXITIT
IITIZIZITIIIIZIZ ITITIIITIZZITIZZIII
IITITIZZIIIIIIZZ ITITIITITIIXXIIXXI
IIITIIITIIZZIIZZ ITITIIITIIIZZIIZZI

(Table continued)

041012-21

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

TABLE IIL. (Continued)

[[15,1,3]] Reed-Muller

[[17.1,5]] 2D Color

IITITITIITIIITIZZZZ TITTIITIXTIITIXITIXX
ITITITITIZIZIZIZ ITIITITIZIITIZIIIZZ
TIXXIXXIIXXIIXXTIT
ITIZZIZZITIZZITIZZII
[[19.1,5]] Color [[25.1.5]] Surface
TIXTIIXIIXXIITITIITITIT XXITITIITITIITIITIITIIITIIIT
IIZITZITZZITIITIITIIT TITIXXITIITITIITIITIITIITIIT
ITITITITITIXIXTIITIIXX ZZITIIZZITIIITITIIITITIITIIITIT
ITITIITITIZIZIIIIZZ IXXITIXXITIITITIITITIIIIITI
ITITITITITIXXIXITITIIX ITIZZIITIZZIITIITIIITITIIITIITII
IITITIITIIZZIZITIIIZ TIIIXXITIIXXITIITIIITIIIIITIIIT
XXTITTIITIITITIXXIIT TIITITZITIITZITIITIITIITIIITIIIT
ZZITITITIITIITITZZIIT ITITIZITIITZITIITIITIITIIITIIT
XXIXXIXITITIITITIXIT ITITIXXITIXXITIIITIITIITIIITIT
ZZIZZIZITIITIITIIIIZITI IIITITZZIITIZZIITIITIIITIITIII
IIXIXITIXIITIITIIXIT ITITTIITIXXIIIXXIITITIIITITII
IIZIZIITIZITIIIIITIZIT IIITIITIIIZZITIIZZITIIIIIIIIT
IXTITIXXIITIITIIXIIT TIITITIITIITIZZITIIZZIIIIIIIT
IZTITTITZZITITIITIIIZIIT TIITTIITITITITIXXITIIXXIIITIIIT
TTIXTIIXXTIIXXXTIITIIIT ITITITIITITIIITIZZIITIZZIIIIII
ITIZITIZZIIZZZITIIIIT ITITTIITITIITIXXITIXXIIITI
ITIXXITIXXIXIXIIIIT ITIITITIITIITIIZITIIZITIIII
IITZZIITIZZIZIZITIIIT IIITIITIITIIIIIIIZIIIIZIIIT

ITITITIITIIIIIIIIXXITIIXXITIT
ITIIIIIIIIIIIIIIZZIIIZZII
ITITIIIIIIIIIIIIIIXXIIIXXI
ITITIIIIIIIIIIIIIIIZZIIIZZ
ITITIIIIIIIIIIIIIIIIIIXXII
ITITIIIIIIIIIIIIIIIIIIIIXX

APPENDIX G: LOGICAL STATE PREPARATION
CIRCUITS FOR ALL-TO-ALL QUBIT
CONNECTIVITY WITH STANDARD GATE SETS

We show some examples of learned circuits for all-to-all

qubit connectivity with the standard gate sets. For all
circuits shown below, we choose Z; = Z®". These circuits
are also available online [107].

We study the |0),, state of the [[5, 1, 3]] perfect code. We
see that the prepared circuit has a pattern of two § gates at
the end of the circuit because the RL agent would first aim
to obtain the correct stabilizer generators without worrying
about the sign and then apply Z gates (which can be
decomposed into two S gates) to fix the sign.

qo : %)1Eﬂ SHS
Q1:Bﬂ q1:

qz - Eﬂf:z!!!! qz - H
a3 H & g3 [H] He—{s]s]

Next, we look at the |0),, state of the [[7, 1, 3]] Steane
code. We see that the RL agent learns from scratch to
prepare part of the initial state of the physical qubits to |+)
by applying an H gate, similar to the strategy in Ref. [85].
We find that we can exploit this observation by using the
following alternative strategy to speed up the training
process. We first select a random subset of physical qubits
to |+) and then allow the agent to apply gates other than H.

qo : E qo : {E

@ {H] @ {H] @

q2 OD g2 DD
qs: @ qs: @

q4 OD qa DD

s O—D qs &5

76 : —D O 6 —b—D

We now look at the |+)y, state of the [[9, 1, 3]] Shor code,
followed by the |0), state of the [[17,1, 5]] 2D color code,
and the |0); state of the [[15,1,3]] Reed-Muller and
distance-3 3D color codes.

q0 : —PP q : {H]

i : D q e S

gz : D G2 &
qs - @ qs : @

qs : B qa: D
s : D 5 : D

g6 : {H] g : =
qr : © a7 P
s ———P— (gs: O—D
qo : D

Q- P P

q2 @

e SR ReY

ga : @

g5 : O
g6 : & D

qr : D D

qs : RRes
qo : DD
q10 - {E

qi1 : E P
Q12 : s>, &P

q13 : ©® ©® .

q4 &5, ==$

041012-22

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ... PHYS. REV. X 15, 041012 (2025)

9 : S APPENDIX H: TRANSFER LEARNING
qu: Sramsy FOR DIFFERENT LOGICAL STATES
- @ Here, we show an application of transfer learning where
a3 - P we can reuse an RL agent trained on one logical state to
qa - @ S prepare another logical state with the same code. One might
qs PP argue that we can apply the logical H gate to the |0), state
e H—D to prepare the |[+), state and then apply the logical S gate to
g : & & prepare | + i), state. However, in some codes, the logical
g ; N N H and S gates themselves are not transversal.

W W We illustrate this case by reusing the agent trained to
q9 © 7

prepare the |0), state of the [[7, 1, 3]] Steane code to prepare

G0 {H] be—D the states |[+), and | + i), of the same code. In particular,
qi1: {E s this transfer learning is called a one-to-one policy transfer
qi2 : van via policy reuse [124]. In this case, we can directly reuse
Q3 O the networks of the RL agent since the number of input and
G4 : & & output nodes does not chan.ge.

We compare the preparation of the |+); and the | + i),
state of the [[7, 1, 3]] Steane code without and with transfer
learning in Fig. 17. Without transfer learning means that the
RL agent is trained from scratch to prepare the states. On
the other hand, with transfer learning means that we first

qo T vast train the RL agent to prepare |0), , then retrain it to prepare
a @ & & |+) L and consecutively retrain it to prepare | + i)
g : {E Figures 17(a) and 17(b) shpw .th(.z evolutlgn of Fhe
0 A A average return and the average circuit size evolution during
3 W e training for the preparation of |+), with and without
g4 @ transfer learning. Figures 17(c) and 17(d) show the same
s - S s> but for the preparation of | + i), . Here, we qualitatively
e : @ & DD compare the performance based on the metrics used in
qr: D P Ref. [124] to evaluate transfer learning for deep reinforce-
s : e ment learqing: The. f.II'.St metric is the jumpstart perfor-
o : N mance, which is the initial return value of the agent. We can
. v see that the average return of the RL agent with transfer
“o:r — P % learning is higher than without. The second metric is the
@1 {H] PP time to threshold, which is the learning time required for
Q2 : {E D the agent to reach a certain performance. We also see
Q13 van van qualitatively that the value of the average return with
qia : @ transfer learning is almost always above the value without
Qs D transfer learning. Thgrefore, we h.ave shown thqt the
. proposed transfer learning technique is useful to efficiently
¢16: [H] o

prepare different logical states.

041012-23

REMMY ZEN et al. PHYS. REV. X 15, 041012 (2025)

@) [+). (© | +i),
1.0 p—
g 0.8
2
© 0.6
)
s 04
[
Z 02 —— Without transfer —— Without transfer
' With transfer With transfer
0.0
(d)
() 501 — "y
[
N
240
=
g
‘S 30
o
&
§ 201 —— Without transfer —— Without transfer
< With transfer With transfer
0 500 1000 0 500 1000
Episodes # Episodes

FIG. 17. Transfer learning results for different logical state preparation tasks. We first train the agent to prepare the |0), for the
[[7,1,3]] Steane code with Z;, = Z®7 and then reuse and retrain the agent to prepare |+); with X; = X® and then successively | + i),
with ¥, = —=Y®7, (a),(b) Average return and circuit size of training without and with transfer learning to prepare |+); . (c),(d) Same as
panels (a) and (b), but for the preparation of | 4 i), . The shaded area shows the standard deviation of training ten different agents.

APPENDIX I: LOGICAL STATE PREPARATION Next, we look at the |0), state of the [[7,1,3]] Steane
CIRCUITS FOR IBM QUANTUM DEVICES code on the IBMQ Jakarta [120] connectivity. The qubit

Here, we show more circuit examples for logical state ~ Placement is 5,6,4,3,0,1.2.
preparation based on the IBM Quantum device connectivity
Qo : {\/)7(.

and gate set. The qubit placement is also given according P O@ o P PP
to the notation in the Qiskit library [118]. If the qubit qe S [s} @ : D Has
placement is given as a, b, c, ..., then it means that qubit 0 g : D g : Q@
(qo) 1n the circuit is placed in qubit a on the device, qubit 1 . Al A~
(q,) is placed in qubit b on the device, and so on. These @ T 1Y @ H@ Y
circuits are also available online [107]. 4 VX [s] da S
We consider the |0); state of the [[5, 1, 3]] perfect code 4 { /X leeD—D s : DD farWant
on the IBMQ Manila [119] connectivity. The qubit place- g6 : & B g6 @ 5}

ment is 4,3,0,2,1.

qo : * .

0 u[Now, we consider the |+); state of the [[9,1,3]] Shor
@ | VX e VX VX }7 code on the IBMQ Guadalupe [121] connectivity. The qubit
21X D placement is 5,3,8,7,6,4,0,1,2.
g3 {v/X QJB«’i qo : s qo : %
qa a & VX [X] qu{\/)’([s}— qlz{\/i

g2 o q2 &[s]
q3 : { VX qs : { VX @
o vX Ga : & K <>
: D D
01 O % gs : & @ gs : &
a2 - \/i P @ g6 Jany . pany
: W o v i
@ VX VRO l gr DD gr : e
G- ® S+ vX qgs : Jany Ja ey qgs : P W2 N
N U N N N

041012-24

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

Finally, we look at the |0),, state of the [[15, 1, 3]] Reed-
Muller code on the IBMQ Tokyo [122] connectivity. The
qubit placement is 5,17,2,9,10,13,1,11,7,16,4,3,8,6,12.

qu:

qa S

g3t

qa: N N N
d6 *

qr - D FARY
qs :

q9 :

qio : S

qi1

q12 - AN VARY
q13

q14

APPENDIX J: TRANSFER LEARNING
TO DIFFERENT CONNECTIVITY

We show a transfer learning technique that can reuse and
retrain the agent trained to prepare a logical state for qubit
connectivity G to prepare the same state with different qubit
connectivity G'. We assume that G’ is a spanning subgraph
(having the same number of qubits but only some of the
edges) of G.

Since we transfer to a connectivity that is a spanning
subgraph of the original connectivity, the possible action
space in the new connectivity is a subset of the possible
action space in the original connectivity. This approach is
equivalent to removing some of the output nodes in the
actor network that correspond to invalid actions in the new
connectivity. The input nodes, hidden nodes, and the value
network remain the same and can be transferred directly.
After the transfer, we use this network as the initial network
and fine-tune it for the new connectivity.

We illustrate this approach by choosing a case where
RL agents trained for all-to-all qubit connectivity are
transferred to a more restricted connectivity. For example,
the sketch of the transfer learning technique from four
qubits with all-to-all qubit connectivity to a new connec-
tivity where the connections between qubits 1 and 3 and the
connections between qubits 2 and 4 are removed is shown
in Fig. 18(a). Assuming that we are using CNOT gates, we
need to remove the output nodes of the actor network
corresponding to the following actions: CNOT(1,3),
CNOT(3,1),CNOT(2,4), and cNoT(4, 2), and keep the
others. We then fine-tune this network to prepare the state
for the new connectivity.

(a) Action probabilities

Action probabilities

State representation State representation

1.0
(b) (©
£ 0.8
Z
% 0.6 'y IBMQ Manilal IBMQ Jakartal
X8 —p 00000
04 \ —
4
2 02 —— Without transfer — Without transfer
’ ‘ With transfer With transfer
00 0 2000 4000 6000 0 2000 4000 6000
Episodes # Episodes
FIG. 18. Results of transfer learning for logical state prepara-

tion on IBM Quantum devices. We first train the agent to prepare
|0), in a setting of all-to-all qubit connectivity and then reuse and
retrain it to prepare the same |0), under a different, restricted
qubit connectivity. (a) Sketch of the transfer learning on the
network trained on four qubits with all-to-all qubit connectivity to
square connectivity by removing the output nodes corresponding
to invalid actions. (b) Training evolution of preparing |0), of the
[[5,1,3]] perfect code with Z; = Z®° on all-to-all qubit con-
nectivity and transferring it to IBMQ Lima [140] connectivity and
without transfer. (c) Training evolution of preparing |0), of the
[[7,1,3]] Steane code with Z; = Z®7 on all-to-all qubit con-
nectivity and transferring it to IBMQ Jakarta [120] connectivity
and without transfer.

We compare the preparation of |0); of the [[5, 1, 3]] code
on IBMQ Lima [140] connectivity and the [[7, 1, 3]] code
on IBMQ Jakarta [120] connectivity without and with
transfer learning. Without transfer learning means that the
networks are randomly initialized at the start, while with
transfer learning means that we reuse networks that were
trained for all-to-all qubit connectivity. Figures 18(b) and
18(c) show the average return during the training of the
[[5,1,3]] perfect code and the [[7, 1, 3]] Steane code with
and without transfer learning. We see that with transfer
learning, the average return initially starts a little bit higher
and, more importantly, converges faster than without
transfer learning. The agents without transfer learning need
much more training time for convergence.

APPENDIX K: VARYING THE VERIFICATION
CIRCUIT SYNTHESIS TASK REWARD WEIGHTS

Here, we vary the weights for the flag reward p/, the
complementary distance reward 4, and the product state
reward p,, of the reward function that is defined in Eq. (4)
for the verification circuit synthesis task. We then evaluate
how this affects the acceptance and logical error rates.

041012-25

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

Acceptance rate fit (¢ ~P) 2)

(b)
—475 5
480
—485 2

1
—125
~13.0
~135

ﬂp/ﬂd

Logical error rate fit (cp

—
1%
=
a1

Wl Ha
N W =

N

|0)z, [[7,1,3]] steane

—
n
~

| =) [15,1,3]] perfect
tr/ Ha

FIG. 19. Varying the weights of the reward function for
verification circuit synthesis. We vary the p,/pu, and p,/p,
ranging from 1 to 5 with an interval of 1. The heatmap shows the
average fitting coefficients for the acceptance [panels (a) and (c),
the higher the better] and the logical error rate [panels (b) and (d),
the lower the better]. We evaluate for the verification circuit
synthesis from the non-FT |0), of the [[7, 1, 3]] Steane code taken
from Ref. [32] [panels (a) and (b)] and |-), of the [[5,1,3]]
perfect code taken from Ref. [29] [panels (c) and (d)].

Effectively, only the weight ratios matter since scaling
the reward function generally does not affect the perfor-
mance of the reinforcement learning training. We vary
Hy/pg and p,/u, and synthesize the verification circuit at
each point. We then compute the acceptance and logical
error rates and fit them with the exponential and quadratic
functions, respectively. We then compare the average
coefficients over ten different circuits.

In Figs. 19(a) and 19(b), we see that the best strategy for the
|0), state of the [[7,1,3]] Steane code is to prioritize the
weight of the flag reward y ;. In contrast, one needs to prioritize
the weight of the product state reward u, for [—), of the
[[5, 1, 3]] perfect code, as can be seen in Figs. 19(c) and 19(d).

APPENDIX L: EXAMPLES OF RL-DISCOVERED
CIRCUITS FOR THE VERIFICATION CIRCUIT
SYNTHESIS TASK

Here, we show more examples of RL-discovered circuits
for the verification circuit synthesis task. We are particu-
larly interested in showing the ability of RL to explore and
present variants of circuits that minimize the fit coefficients
of the acceptance or logical error rate. These circuits are
also available online [107].

We first show the synthesis of the verification circuit for
the |0), state of the [[7, 1, 3]] Steane code by taking the non-
FT logical state preparation circuit from Ref. [32]. We show
that the RL method also rediscovers the same circuit used in
Ref. [32] shown below, which measures the stabilizer Z

logical operator ZI111ZZ:

% —H——
q1 - @ }
qz : @ :
qs : @ T
0 - S
G5 : —D .
g6 : D—H f
ar - LSOO

The circuit with the lowest fitting coefficients of the
acceptance and logical error rate is the circuit shown in
Fig. 6(a), which measures the stabilizer Z logical operator
11Z1ZZ1. The other circuits are just permutations of the
CNOT gates in the verification circuit.

We now show the synthesis of the verification circuit for
the |—), state of the [[5, 1, 3]] perfect code, using the non-
FT logical state preparation circuit from Ref. [29].

The circuit with the lowest acceptance rate fitting coefficients
is the circuit shown in Fig. 6(b). Below, we show another
circuit with two flag qubits and similar fitting coefficients.
|

qo0 * @I T

@ @-I | P

¢ : @I- —

qs - @-T f

61 {H oo —@

@] Hf
a5 - ——] s

The circuit with the lowest fitting coefficients of the
logical error rate is the circuit shown below. The circuit
needs three flag qubits. The acceptance and logical error
rate fitting coefficients are —14.1 and 12.1, respectively.
One of the interesting properties that the RL agent learned
is that it uses an extra flag qubit (second flag qubit) to fault
tolerantly measure stabilizer logical X operators I[1ZXZ
following the protocol in Ref. [29] in the first flag qubit and
XIXZZ7 in the third flag qubit.

qo : @T l D
q1: {H jee
q;: }}{%Tl —P
g3 : @-T w <5
: PN °
Z4~ {Ei: M I
5 \@ ' @'
g t ©® ©
0 i}t afi]

We show another circuit with three flag qubits and
similar fitting coefficients. The RL agent learned to

041012-26

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ... PHYS. REV. X 15, 041012 (2025)

measure the stabilizer operators //ZXZ in the first flag

Next, we look at the |—), state of the [[5, 1, 3]] perfect
qubit and /XZZX in the third flag qubit.

code. The circuit with the LSP + VCS approach has 12
two-qubit gates and two flag qubits:

I
qo - @T T
ql : H P | V)
R o w: 5
qs : @L l P Qe & | .
s : {H] l LB . 2 : P
gs : :@ l @» q3 : @ HFQH % D
o : i O ¢1: — ofH]
o7+ i} 4e el s (1]]
\

The circuit with the IFT-LSP approach has 12 two-qubit
gates and two flag qubits:

APPENDIX M: EXAMPLES OF RL-DISCOVERED
FAULT-TOLERANT LOGICAL STATE
PREPARATION CIRCUITS SHOWN

IN TABLE I 0 : @ O@ m
Here, we show circuit examples from Table I with two q: Do
RL approaches: LSP + VCS and integrated fault-tolerant G @ Bl
IFT-LSP. These circuits are also available online [107].)) = .
We consider the |1),, state of the [[5, 1, 3]] perfect code. G S{H Y
The circuit obtained with the LSP + VCS approach has 14 qa - @
two-qubit gates and two flag qubits: qs : @ H}
: g1
de : H HF
[]
g : {H] SR -
@ —{H] |
g : o HlelH : Py Now, we consider the |0);, state of the [[7, 1, 3]] Steane
g3 : @ 1 N code. The circuit found with the LSP 4+ VCS approach has
{ Y 11 two-qubit gates and one flag qubit:
Ga S{HD— O
gs : y@ H . |
g6 - :@ HF % : {H] :
@ AH Y :
1 1 1 1 qs D TVl \‘
The circuit obtained using the IFT-LSP approach has a SR
smaller number of only 12 two-qubit gates and two flag 93 {H :
qubits: q4 : an an [
qo : @ Fany Pany 4 - N 1
. ¥ i 0 Gds
q fan (g1 mlm f
T = TIT ar : DHDHD
%2 : —@+H]| |
3 {Hl—e{H HH®
. JanVany
a: e — The circuit learned with the IFT-LSP approach has 11
4 - | H] H two-qubit gates and one flag qubit, while using a smaller
g6 : @ @ number of single-qubit gates:

041012-27

REMMY ZEN et al. PHYS. REV. X 15, 041012 (2025)

g : {H]
o % “:—t
q1:1H

Q@ —PH—
q2 : D D g3 : @
% {H] @ —t D
0 D@ .

g5 — @
as S S Q6 : @
g : o & o

qr : D
a - OO .

gs : —@—

qo :

Next, we consider the |+)y, state of the [[7, 1, 3]] Steane
code. The circuit learned with the LSP + VCS approach
has 11 two-qubit gates and one flag qubit:

For the |4), state of the [[9, 1, 3]] Shor code, the circuit
learned with the LSP + VCS approach has 11 two-qubit
gates and one flag qubit:

(Ioi@

|
|
. I
o {H oI .]
. 1- \\%
@ {H Q: 0 - A
. 2 - \\ T
qz - {H T D . l
. | g3 : {H
qs : {H) o
qs : JanVany ‘ any 4 - NZ
\NFANY T N\ . Py |
qs M | M a5 - N
A% : A% . s \
g6 : P 6 - NZ
O T . yany
gr : ”ﬁH H qr : kJ‘
\M D . Pany Pany
qs : \\ \\ T
o :O D

The circuit found with the IFT-LSP approach has 11 two-
qubit gates and one flag qubit: The circuit learned using the IFT-LSP approach has,

again, 11 two-qubit gates and one flag qubit:

G —P SEIS2 q ¢ {H] &
“:—t 2 o ©
e 1] 2 @ ©
g3 : {H] & g3 : {H]
@i [HH-+e o ¢
s : @ g5 - Y
6 - HD % 6 - D
qr: @ @» qr : o
s : &
qo D—DD
For the |0); state of the [[9,1,3]] Shor code, both
approaches discover the known fault-tolerant state prepa- For the |0), state of the [[9, 1, 3]] Surface-17 code, the
ration circuit that does not require any flag qubits at all, circuit learned with the LSP + VCS approach has 11 two-
shown below. qubit gates and one flag qubit:

041012-28

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ... PHYS. REV. X 15, 041012 (2025)

The circuit learned using the IFT-LSP approach has 11

|
9 - 1H
. D @ I two-qubit gates and one flag qubit:
\
4 - @ D qo : % H
: | .
a3 . 1 >< ‘ q P PP
q4 O—P— 92+ —{H] D
¢+ {H] § gs ° &
g6 : PP 94+ —{H] S
ar {H] § g5 : e
qs - © T g6 : @ s>
Qo : :O OD qr o o D
The circuit learned using the IFT-LSP approach has, qo : @ @
again, 11 two-qubit gates and one flag qubit:
@ {H] For the |0), state of the [[15, 1, 3]] Reed-Muller code, the
0 & circuit found based on the LSP + VCS approach has 29
two-qubit gates and two flag qubits:
g2 : {H] o) qubit g gq
qs : VAR |
- % —P y
s OO o — Lo |
. : N>
% {H] ? o [H] G
6 - D 57 e o) %
¢+ {H] a1 [H] & }
s : —b a5 S w
9 - S—0O 6 : DD Oi
gr : OO |
For the |+),, state of the [[9, 1, 3]] Surface-17 code, the qs :) PH—
circuit learned with the LSP 4+ VCS approach has 11 two- o : el I \
qubit gates and one flag qubit: q10 : E & e l
\ qi1: {E :
: |
o ‘ @iz S ‘
qr - SPASY C)i Y q13 @ st %
¢+ {H] w Qua: ot a }
o b a5 - oo o
qa @ —p q16 : O-D-5
qs : o1 |
\
46 * {H b o . .
) Dm A UI ~ In contrast, the circuit obtained with the IFT-LSP
ar: e o b approach has 25 two-qubit gates (instead of 29)
as - @ x and only requires one flag qubit (instead of two),
qo : 1@ H} illustrating the superior performance of the IFT-LSP
\

041012-29

REMMY ZEN et al. PHYS. REV. X 15, 041012 (2025)

over the LSP + VCS approach:

qo *
q -
9
o @ Zs : @ P
T Db o [H] {
qo : @ a5 {H|
g3 : O—d g : [H]
qs : D qr -
g5 {H] < o ¢
G : S0 o :
ar S .
s - >0 -
99 % s> Q13 :
q10 * @ Q4 :
qi1 - % D Q15 ¢ Bl [H}
T2 - —D P
- DA
et OOy APPENDIX N: EXAMPLES OF WHEN LSP + VCS
214 S ® Tk FAILS WITH RESTRICTED CONNECTIVITY
15 - D

Here, we discuss two cases where LSP followed by VCS
to prepare a fault-tolerant logical state would fail in
restricted connectivity settings. Figure 20(a) shows a case

For the |+), state of the [[15, 1, 3]] Reed-Muller code,
the circuit found with the LSP 4 VCS approach has 31 (a) |0), [[7.1,3]] Steane code
two-qubit gates and one flag qubit:

2 E o
1 0 2 0Olm ©
| =
) ‘ (: e 3 4)m 4 P g
" | Iomscar
1 + 51H
@ [i G D W
1 : {H] ; 8 & D
4 {H] : (b) | 0), [[7,1,3]] Steane code
@ |H] | 0
a7 - ‘ 2 3 4 1 >
gs - S, ‘ 2 El{ De———
o : \f) G 7 VanVanVay
9: ° | 1 5
qio : ? : ?1 —4 b
Qi1 : @ * ‘ 0 6 5
qi2 : * | 6 N
q13 & ‘ .
G | ~ O Flag Qubit
N I

FIG. 20. Two cases where the LSP + VCS approach fails but
the IFT-LSP approach succeeds with restricted connectivity. We
use the IFT-LSP approach to fault tolerantly prepare the |0), state
of the [[7, 1, 3]] Steane code on a 2D grid. (a) Case where the data

The circuit found with the IFT-LSP approach requires ~ qubit is only connected to the flag qubits. (b) Case where VCS
also 31 two-qubit gates and one flag qubit: does not find a verification circuit.

041012-30

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

where a data qubit [qubit 6 in Fig. 20(a)] is only
connected to the flag qubits, and the circuit on the right
is the output of the IFT-LSP task. If we separate the task,
the logical state preparation task fails to prepare the state
in this case. Figure 20(b) shows a case where, if we
separate the task, then the verification circuit synthesis
fails, while the circuit on the right is the RL-prepared
circuit with the fault-tolerant logical state preparation
task. If we separate the task, then the state preparation
does not know where the ancilla is. Therefore, the
verification circuit synthesis fails to flag all of the
harmful errors.

APPENDIX O: LOGICAL ERROR
AND ACCEPTANCE RATE OF CIRCUITS FOUND
BY INTEGRATED FAULT-TOLERANT LOGICAL
STATE PREPARATION

When using a restricted connectivity, we would expect
a trade-off in the state acceptance and logical error rate
compared to using all-to-all qubit connectivity. In
Figs. 21(a) and 21(b), we quantify and compare the two
rates of circuits shown in Fig. 8. We see that the state
acceptance rate of the circuit to prepare the |0), state of the
[[7, 1, 3]] Steane code on a 2D grid is only marginally lower
than the one for the circuits with all-to-all qubit connec-
tivity, but both are higher than the acceptance rate of the
verification circuit synthesis task in Fig. 6(c). Similarly, the
logical error rate is only marginally higher. In the case
of the |1), for the [[5, 1, 3]] perfect code, the circuit with
restricted connectivity requires five two-qubit gates more
than the circuit shown with full connectivity. Nevertheless,
the logical error rate is larger by only approximately 25%.
Interestingly, for the |0), of the [[9, 1, 3]] Surface-17 code,
the logical error rate is higher in the 2D grid connectivity
than in the all-to-all qubit connectivity, but the acceptance
rate is lower. We suggest that this has to do with the number

(b)

=
=)

a) P~
3 B SR o
© R =
= v.e. 1
) A —
£05 RS g
193 —3.83p S 16.3p2 21.3p~
g | B105 7.23
< -8.22p 60010 P q
0.0 ¢ 2 a 2.98p?2
1073 102 101 1073 102 107
p p
All-to-all: [[5,1,3]]] 1), e [[713]]|0), --o-- [[9,1,3]]|0), —e-
2D Grid: [[5,13]1[1), v [[7,131110), [(9L3110), —v

FIG. 21. Logical error rate and acceptance rate of circuits found
with integrated fault-tolerant logical state preparation. We take
the circuits shown in Fig. 8. The circuits for the [[9, 1, 3]] Surface-
17 in all-to-all qubit connectivity are shown in Appendix M.

of flag qubits. In the 2D grid, we need four flag qubits,
while we only need one flag qubit in the all-to-all qubit
connectivity case. We have also observed a similar phe-
nomenon in Appendix L, where using more flag qubits
decreases the acceptance rate but increases the logical error
rate. The relationship between the number of flag qubits,
number of gates, acceptance, and logical error rate of
different circuits is an interesting avenue for further study,
but it is beyond the scope of this paper. Nevertheless, in all
cases, the logical error rate scales as p?, confirming that the
circuits are fault tolerant, as desired.

APPENDIX P: CIRCUITS FOR FAULT-
TOLERANT LOGICAL STATE PREPARATION
IN RESTRICTED CONNECTIVITY

Here, we show examples of fault-tolerant logical state
preparation circuits with restricted connectivity as
shown in Fig. 10. If the qubit placement is given as
a,b,c, ..., then the qubit 0 (gq) in the circuit is placed in
qubit a on the device, qubit 1 (g;) is placed in qubit b
on the device, and so on. These circuits are also
available online [107].

1. The |0), state of the [[7,1,3]] Steane code
on 2D grid connectivity (Google Sycamore)

For the qubit placement, we follow the row-major order
starting with O at the top left of the qubit and 9 at the bottom
right of the qubit. The last two qubits are always given as
ancilla qubits. The RL agent can decide whether to use
them or not.

The circuit for the first qubit placement shown in
Fig. 10(a) with 11 two-qubit gates is already shown in
Fig. 8(c).

For the circuit for the second qubit placement shown in
Fig. 10(a) with 12 two-qubit gates, the qubit placement is
2,5,6,1,0,4,7,3,8.

qm@
q1 -
gz :
qs : 4
(I42E
Q51{E
e : 4
qr :
qs -

Fah)
N\

VahY
N>

U
any
N>

[anY
'
[any
%

%
a
'
a
A

o
Ay
o
L
K
"

For the circuit for the third qubit placement shown in
Fig. 10(a) with 13 two-qubit gates, the qubit placement is
2,5,8,1,0,4,3,7,6.

041012-31

REMMY ZEN et al. PHYS. REV. X 15, 041012 (2025)

@ : {H] % : {H] OO e e OD
q1: P qu: SPASY) SP
qo : @ q2 - @
g3 : SPR SR RN q3 - P P
44+ SV R AN s : @
gs : @ & SPASY qs : @
oo @ ——DD &
Z; b—>DD g7 : @ @
qs :
.For the circuit for the foprth qubit placement shown i.n The qubit placement for the circuit below is
Fig. 10(a) with 14 two-qubit gates, the qubit placement is 5.4.7.6.1,0.8.2.3.
0,2,8,6,4,1,7,5.3.
9 : {H] O O

@ {H] @ —@d Do P

ae N @ {HH—+®

“: [H] ¢ gs o 0o

o ¢ a1 [}

W TRTITTReT ¢ H] P

s : @ —b O . A

6 : —D—e—O 1 ®

qr ar:

s & b s 1] (H}

For the circuit for the fifth qubit placement shown in 3. The |0), state of the [[7.1,3]] Steane code on heavy-hex
Fig. 10(a) with 14 two-qubit gates, the qubit placement is connectivity (IBMQ Guadalupe)
2,5,0,4,3,6,7,1,8. o)))

The circuit for the first qubit placements shown in

0o : ot Fig. 10(b) has 22 two-qubit gates. The qubit placement in
. m the IBMQ Guadalupe [121] device is 3,0,6,12,4,2,10,1,7.
q: @ NV,
@ : & The last two qubits are given as ancilla qubits.
43 - Pe—1DD 9o : %
qa: {H] o @ : [H]
g {H] ot g2 : as
G —D DD ¢ ¢ [H]
qr qa - D % D %
s T DO e [H] ®
6 SPaRsY
qr - SPPR SNy S¥ SPR S
gs - SY O—D—DeD SYSY;

2. The | +), state of the [[7,1,3]] Steane code on 2D grid

connectivity (Google Sycamore) Now, we consider the circuit for the second qubit

The qubit placement for the circuit below is placement shown in Fig. 10(b) with 27 two-qubit gates.
4,3.8.2.7,0,5,1,6. The qubit placement in the IBMQ Guadalupe [121] device

041012-32

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

is 9,5,15,11,10,14,13,8,12. The last two qubits are given as
ancilla qubits.

QOI@
q1:
Q2i@
qs
qa:
951@-
ge - &
qr :
qs :

L S
PR
P

Next, we look at the circuit for the third qubit placement
shown in Fig. 10(b) with 28 two-qubit gates. The qubit place-
ment in the IBMQ Guadalupe [121] device is 6,15,0,2,13,
10,4,1,7,12. The last three qubits are given as ancilla qubits.

(Ioi@
q1:
flzi@
qs:
qa:
%:@
ge *
qr :
qs :
qo *

e
b
&—¢

4. The |+), state of the [[9,1,3]] Shor code on 2D grid
connectivity (Google Sycamore)

Here, we show the result for the fault-tolerant preparation of
the |+), state for the [[9, 1, 3]] Shor code on a4 x 3 grid. For
the qubit placement, we follow the row-major order starting
with O at the top left of the qubit and 11 at the bottom right of
the qubit. The last three qubits are always given as flag qubits.
The RL agent can decide whether to use them or not.

The qubit placement for the circuit below is
1,0,2,5,3,8,6,9,11,4,7,10. One flag qubit is not used.

qo:@
q1 -
qz : {
Q31@ 4
g4 -
qs :
q6
qr:
gs :
qg -
q1o0 :
qi1 -

Jany
%

'

v

any
N>

o
v
o
Ay
oA AN
v U

Fah)
N\

V)
N>

[any
%

an
A\
an
'

a
'
an
'

The qubit placement for the circuit below is
6,7,10,8,1,3,5,11,9,4,0,2. One flag qubit is not used. In
this case, one data qubit has the flag qubit as its neighbor,
so the agent needs to use the flag qubit as a bridge to that
data qubit.

QO5@
qr1 :
qz :
qs3 : 4
CJ41@
qs :
g6 -
qr7 :
qs :
qo :
q10 *
qi1:

VA
v

A A
v U
D
IV

Van)
N>

'
o
Ay

ran)
N>

a
'

[anY
'

a
%

a
>
a
>
a
>

[any
'
[any
%

5. The |-), state of the [[5,1,3]] perfect code
on IBMQ Tokyo

The qubit placement for the circuit below on the IBMQ
Tokyo [122] connectivity is 6,1,7,5,11,2,10.

% : {H}+—o—P B H]

@ &—+—+of{H] P

qz2 - @

q3 —@@

s D &P

5 (1} i}

The qubit placement for the circuit below on the IBMQ
Tokyo [122] connectivity is 2,7,1,12,13,6,8.

G
. oD Tl _m YarVanVany
al OO OO H——T00P
¢ {H]
g3 : &{H] P
q4 @b S
qs : @ HF
g6 - @ HF

041012-33

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

APPENDIX Q: VARYING INTEGRATED FAULT-
TOLERANT LOGICAL STATE PREPARATION
TASK WEIGHT REWARDS

Here, we vary the weights for the flag reward u, the
complementary distance reward u 4, and the product state
reward p,, of the reward function that is defined in Eq. (4)
for the IFT-LSP. We then evaluate how it affects the
acceptance and the logical error rates.

Effectively, only the weight ratios matter since scaling
the reward function generally does not affect the perfor-
mance of the reinforcement learning training. We vary the
ratios yig/p, and py/p, and prepare the fault-tolerant
logical state at each point. We then compute the acceptance
and logical error rates and fit them with exponential and
quadratic functions, respectively. We then compare the
average coefficients over ten different circuits.

In Fig. 22, we see that the best strategy for the integrated
fault-tolerant logical state preparation task is to prioritize
the weight of the complementary distance reward u,. This
finding is expected since the RL training starts from
scratch, so u, must be prioritized.

cp Logical error rate fit (¢ p2)

10
9 C
8
1 2 3 4 5
225
20.0
Cc
17.5
1 2 3 4 5

Hal Yy

Acceptance rate fit (e~

(a)5 —4.50 (b) 5
—475 4
—5.00 .3

—5.25
—14 (d)5
4

-15
3
1 2 3 4 5

Ha/ tp

Hel pp
=N W e

[0)z [[7,1,3]] steane

uelpp T
N w > (6]
N

—_
—_

| 1)z, [[5,1,3]] perfect

FIG. 22. Varying the weights of the reward function for IFT-
LSP. We vary u;/u, and pg/u, ranging from 1 to 5 with an
interval of 1. The heatmap shows the average fitting coefficients
for the acceptance rate [in panels (a) and (c), the higher the better]
and the logical error rate [in panels (b) and (d), the lower the
better]. We evaluate for integrated fault-tolerant logical state
preparation of the |0), state of the [[7,1,3]] Steane code [in
panels (a) and (b)] and the |1), state of the [[5, 1, 3]] perfect code
[in panels (c) and (d)]. The white color means that no agent has
converged on that parameter.

APPENDIX R: DISCUSSIONS ON SCALABILITY

Here, we discuss several aspects of scalability and various
ideas for scaling our approach to larger system sizes or code
distances. In addition, we would like to emphasize that the
results presented here are not only proofs of principle, but
they can be directly implemented in experiments.

1. Scalability of the simulator

We first discuss the scalability of our parallel simulator
shown in Fig. 23. As we can see, the simulation time scales
polynomially with the number of qubits due to the efficient
simulation using the stabilizer formalism. The simulation
of trajectories with error propagation is only about 3 times
slower when we increase the distance from 3 to 5.
Furthermore, our efficient simulation leverages paralleliza-
tion on GPUs, which significantly reduces the time
required to train the RL agent.

Asdiscussed in Sec. V, in general, one needs to compute the
minimum weight of each error by multiplying it by all
members of the stabilizer group and logical operator when
computing the flag reward f,. Generating all members of the
stabilizer group scales exponentially with the number of
qubits. This strategy ensures that the minimum weight error
is always found. In some cases, however, more sophisticated
strategies that avoid brute-force checking of the entire stabi-
lizer set are also effective. For instance, for the small CSS
codes we study, multiplying each error only with the stabilizer
generators and the logical operators is sufficient to find the
minimum weight error. Therefore, it scales only linearly with
the number of qubits. The time shown in Fig. 23 for the
simulation with error propagation multiplies each error only
with the stabilizer generators and the logical operators. It is

0°

Time(s)

<4 w/ error prop. (d = 5)

10_1 —4— w/ error prop. (d = 3)
--¥- w/o error prop.
10 20 30
Number of qubits

FIG. 23. Simulation time of ten trajectories with 50 steps in
parallel with error propagation for d = 3 and 5 codes for the VCS
and IFT-LSP tasks or without error propagation for the LSP task.
In the LSP task, d has no effect on simulation performance.

041012-34

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

important to note that not finding the absolute minimum
weight error does not imply that the circuit cannot be FT, but it
leads to a misjudgment of the tolerable errors, making the task
of finding a FT encoding circuit even more difficult.

2. Encoding concatenation

Our existing RL results, in some cases, can be scaled
directly to higher numbers of qubits and higher distance
codes with encoding concatenation. Code concatenation has
been studied extensively before [141,142]. To make a
concatenated encoding, we take an encoding circuit from
an inner code C; to encode some logical state. The encoded
logical state now acts as physical qubits, and we encode it
again using an encoding circuit from an outer code C,. It has
been proven that concatenating two codes C; = [[ny, k, d,]]
and C2 = [[l’lQ, k, d2“ ylelds a C= [[Vllnz, k, d > dldz]]
code [143]. Note that scaling to higher distance codes with
this technique would not work without FT circuits. Any gain
in simpler FT circuits that the RL discovered translates
directly into an amplified gain in concatenation. This process
is also consistent with an approach often used in QEC, where
one is dealing with subroutines (logical gadgets or building
blocks) for which itis worth optimizing a subpart and thereby
optimizing the whole.

We illustrate this approach by taking C; and C, as the
[[7, 1, 3]] Steane code to fault tolerantly prepare the |0), of
the C = [[49, 1, 9]] code in Fig. 24. We take the circuit for
the FT preparation of |0), from Fig. 8(a) and copy it 8 times
as our new physical qubits. Since the Hadamard and cNOT
gates are transversal in the [[7, 1, 3]] Steane code, we can
then apply the same gate sequence to prepare the |0), of the
[[49.1,9]] code and ensure fault tolerance.

As we can see, the trick here is that the code should have
transversal gates to ensure fault tolerance. However, other
techniques such as piecewise FT [27] can also be used.
More interestingly, adapting our RL approach to discover
fault-tolerant logical gates is also an interesting avenue for
future work.

B

L E

S0 D

e
o
Il

o d
[ad

I I
Do w{h
e d

10}

$e

FIG. 24. Encoding concatenation to scale to higher distance
codes. The RL-discovered circuits can be concatenated to achieve
higher distance codes in some cases where transversal gates are
possible. In this case, we concatenate the FT |0), state prepa-
ration of the [[7, 1, 3]] Steane code to prepare the FT |0), of the
[[49,1,9]] code.

3. Memory scaling

As discussed in Sec. II C, in a code of distance d, all error
events with probability p’, i < (d+1)/2, should be
tolerable. Thus, we must store and propagate all error
events with probability p’. We now discuss how the
memory scales with d to store the error operators £.

For general stabilizer codes, given a circuit with G| one-
qubit gates and G, two-qubit gates, the number of errors to
store and propagate is given as

(d-1)/2 i

0= S (2)(%),

i=1

where the 3 and 15 come from the number of all one-qubit
and two-qubit Pauli errors to propagate except the identity for
the one-qubit gates and two-qubit gates, respectively. Note
that i counts the number of possible errors with probability
p', and j chooses the number of two-qubit gates. Here, we
assume that (i — j) < G| and i < G,, which is realistic for
circuits preparing distance d codes. Note that this assumption
is not important because the formula can be modified in a
straightforward way otherwise.

As discussed in Sec. VII, if we restrict ourselves to CSS
codes and use only gates that do not change the error type, then
we can consider only one Pauli error for one-qubit gates (i.e., X
for preparing |0), or Z for preparing |+),) and three Pauli
errors for two-qubit gates (i.e., X1, IX, XX for preparing |0),
or ZI,1Z,ZZ for preparing |+),). We can then change the
corresponding coefficient in the calculation of |£| into

<d_1>/2i G G

1 ; 2
Eless = ()3()
csSs 2 JZ:; i i

An error is a Pauli string that can be represented by binary
arrays of size 2n. Assuming that a binary digit is stored in
1 byte, Fig. 25 shows how the memory scales with n and d.
We can see that we can store £ in a single A100 GPU up to
d =9 for general stabilizer codes and up to d = 11 for CSS
codes, which can be further reduced by using 1 bit to store a
binary or by using a sparse representation.

(R2)

4. Potential avenues for advanced RL techniques

Here, we outline some potential avenues for future work to
scale our approach by using more advanced RL techniques.

In our RL algorithm, we use the tableau representation as
the agent’s observation and a fully connected neural net-
work as our policy and value networks, which does not
scale well with the size of the observation. A more
advanced neural network architecture—such as convolu-
tional, recurrent, or graph neural networks—could be used
to replace the policy and value networks to scale our
method. However, one may need a better and more efficient
representation of the observation that fits this architecture.

041012-35

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

£TTTTTTTTR I
103 [[91,1,11]] [[121,1,11]]
Color Surface
o] Fo--oTTTTTT R
% 1011 [[49,1,9]] [81,1,911
= [[23,1,7]] Color Surface
Golay e
E\ 1071 e--mmTTTT
g [[49,1,71]
3 (T2 1)) E TR ¥ Surface
E _3 | Color [25,1,51]
1073 -
Surface _ __ d=3,L =30 . d=9,L=100
s ¥ d=3,L =30(CSS) - d=9, L = 100 (CSS)
_5 s, § —-=- d=5L=60 —-=- d=11,L =120
1071 tfam msi8 d=5, L = 60 (CSS) -+ d=11, L = 120 (CSS)
-7 X Reed- —=- d=7,L=80 —— A100 GPU
""" Muller “*°" d=7,L =80 (CSS)
20 40 60 80 100 120
n
FIG. 25. Memory needed to store errors with varying distances

and number of physical qubits () for general stabilizer codes and
for CSS codes. Here, L = G| + G,, where we assume that the
number of one-qubit gates (G,) is always n/2 and the rest are the
two-qubit gates (G,). The typical 80-GB memory of an A100
GPU is indicated just for reference.

Another potential candidate is the use of collaborative or
multi-agent RL techniques, such as hierarchical structures
of agents working on partial encodings, which also offer
promising directions for tackling larger codes and more
complex protocols. Multi-agent RL is an active area of
research in the machine learning community [144,145], and
|

qo :

to the best of our knowledge, it has not been applied to
quantum problems.

The main idea is to have multiple agents that take care of
finding partial encodings on parts of the code and then
communicate and coordinate to come up with a valid
overall encoding. The idea of transfer learning also works
here since one can train agents to solve individual tasks first
and then reuse them to solve the combined task together. It
would be an interesting avenue for future work to see and
study the dynamics of the agents.

We outline how to potentially tackle the challenge of
finding encodings for the surface code. One could divide
the [[25, 1, 5]] surface code into several patches, which are
handled by several collaborative agents. These agents will
share some qubits at the boundaries of the patches. Another
technique is to use a transfer learning protocol, where one
first trains an agent to find an encoding for the [[9, 1, 3]]
surface code and then reuses and copies that agent into four
agents that take the four different patches of the [[25, 1, 5]]
surface code and fine-tune them in a multi-agent setting.

APPENDIX S: DISTANCE-5 CIRCUITS

Here, we show more examples of RL-discovered circuits
for the distance-5 CSS codes shown in Fig. 13. These
circuits are also available online [107]. The flag qubits are
always the last qubits in the quantum circuit.

We consider the |0) state of the [[17,1, 5]] color code
with three flag qubits.

D
N

q1:

V)
N
Van)
N>
Van)
N>

gz :
qs :

Fany
N>
A D
T U

qa :

qs -
ge -

q7 -

gs -

qg :
q1o0 :

a
%

a
%

qi1 -

a
%
a
%

qi12 -

JanY
'

a
>

q13 -
q14 -

== == E =] E E

\

@

fany

@
S,

q15 -

A

q16 -

a
>
a
%

qi7:
q18 -

o

>
[an)
>
[an)
>
4R
>
4R
'

q19 :

a
'
a
'
a
A
a
A
a
U

[anY
'
Jany
%
[anY
%
[any
3
JanY
'

041012-36

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ... PHYS. REV. X 15, 041012 (2025)

Next, we consider the |0), state of the [[19,1, 5]] color code with five flag qubits.

qo0 *
q -
QQ3@ 4
qs -
qa :

VA
>
VA
>

D
A
[
'

Pany
\\%)
N
\\%)
Pany
N
—D

N
>

g6 :
qr -
gs -

D
N
D
N

N
>
VA
>

V)
N
[
"

P
Fahy
N>

q10 -
qi11 -
qi12 -

N
>
N
%

Vah)
N>

q13 *
qi4 :
q15 *
q16 -
qi7 *

Vah)
N

o
>

[m[=]=[=]=]=]=]

D
"

q18 :
q19 -

(R
"
[an)
%
(R
"
(R
"
[an)
%

an
'
fn)
'
fn)
'
an
'
an
'

420 *
qo1 -
22 -

o
>
o
>
o
v
[an)
"
o
v

an
'
[n)
'
an
'
[n)
'
an
'

o
>
o
>
[an)
"
o
>
o
v

q23 :

041012-37

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

Finally, we look at the

qo *

L

0),, state of the [[25,1, 5]] surface code with four flag qubits.

q1 -

L

[=]=]=]

gz :
qs : 4

a AN
v U

v

g4 -

L

L

=]=]

gs -

g6 -
qr -

o
Ay
o
v

=
S

gs :

o
"
an)
%

q9 : s

'

[any
'

qi10 -
q11 -

=]
&

qi2 -

a
%

Jany
'
a AN
v U

q13 :

qi4 -

q15 -

=[=]

a
IV

q16 -

q17 ¢ 4

v

q18 -

=]
&

a
%

q19 :

[anY
'

q20 *

g21 -

22 -

fan)

=
P
o9

S

>

q23 : D1

24 -

-

v
o
Ay

[any
%
[any
%

a
%

426 :

a
A
a
'
a
'
a
'
a
'

o
Ay
o
Ay
o
"
o
"
o
"

[any
%

q27 -

an
'
a
A

q28 -

[1] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[2] D. Gottesman, An introduction to quantum error correc-
tion and fault-tolerant quantum computation, in Proceed-
ings of Symposia in Applied Mathematics, edited by S.
Lomonaco (American Mathematical Society, Providence,
Rhode Island, 2010), Vol. 68, pp. 13-58.

[3] L. Postler, S. HeuBen, I. Pogorelov, M. Rispler, T. Feldker,
M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R.
Blatt, P. Schindler, M. Miiller, and T. Monz, Demonstra-
tion of fault-tolerant universal quantum gate operations,
Nature (London) 605, 675 (2022).

[4] 1. Cong, H. Levine, A. Keesling, D. Bluvstein, S.-T. Wang,
and M. D. Lukin, Hardware-efficient, fault-tolerant quan-
tum computation with Rydberg atoms, Phys. Rev. X 12,
021049 (2022).

a
%

a
'
a
'
a
A
a
A

[5] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann,
G.J. Norris, C.K. Andersen, M. Miiller, A. Blais, C.
Eichler, and A. Wallraff, Realizing repeated quantum error
correction in a distance-three surface code, Nature (Lon-
don) 605, 669 (2022).

[6] C. Ryan-Anderson et al., Implementing fault-tolerant
entangling gates on the five-qubit code and the color
code, arXiv:2208.01863.

[7] M. H. Abobeih, Y. Wang, J. Randall, S.J. H. Loenen, C. E.
Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and
T. H. Taminiau, Fault-tolerant operation of a logical qubit
in a diamond quantum processor, Nature (London) 606,
884 (2022).

[8] Y. Zhao et al., Realization of an error-correcting surface
code with superconducting qubits, Phys. Rev. Lett. 129,
030501 (2022).

[9] Y. Wang, S. Simsek, T. M. Gatterman, J. A. Gerber, K.
Gilmore, D. Gresh, N. Hewitt, C. V. Horst, M. Matheny,

041012-38

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1103/PhysRevX.12.021049
https://doi.org/10.1103/PhysRevX.12.021049
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://arXiv.org/abs/2208.01863
https://doi.org/10.1038/s41586-022-04819-6
https://doi.org/10.1038/s41586-022-04819-6
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1103/PhysRevLett.129.030501

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

T. Mengle, B. Neyenhuis, and B. Criger, Fault-tolerant
one-bit addition with the smallest interesting color code,
Sci. Adv. 10, eado9024 (2024).

[10] D. Bluvstein et al., Logical quantum processor based on
reconfigurable atom arrays, Nature (London) 626, 58
(2024).

[11] K. Mayer et al., Benchmarking logical three-qubit quan-
tum Fourier transform encoded in the Steane code on a
trapped-ion quantum computer, arXiv:2404.08616.

[12] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, L
Tsioutsios, S. Ganjam, A. Miano, B.L. Brock, A.Z.
Ding, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, and
M. H. Devoret, Real-time quantum error correction
beyond break-even, Nature (London) 616, 50 (2023).

[13] R. Acharya, 1. Aleiner, R. Allen et al., Suppressing
quantum errors by scaling a surface code logical qubit,
Nature (London) 614, 676 (2023).

[14] M. P. da Silva et al., Demonstration of logical qubits and
repeated error correction with better-than-physical error
rates, arXiv:2404.02280.

[15] D. Aharonov and M. Ben-Or, Fault-tolerant quantum
computation with constant error rate, SIAM J. Comput.
38, 1207 (2008).

[16] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quan-
tum computation: Error models and thresholds, Proc. R.
Soc. A 454, 365 (1998).

[17] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (Amsterdam) 303, 2 (2003).

[18] E.T. Campbell, B.M. Terhal, and C. Vuillot, Roads
towards fault-tolerant universal quantum computation,
Nature (London) 549, 172 (2017).

[19] L. K. Sohn and J. Heo, An introduction to fault-tolerant
quantum computation and its overhead reduction schemes,
in 2018 Tenth International Conference on Ubiquitous and
Future Networks (ICUFN) (IEEE, Prague, Czech Repub-
lic, 2018), pp. 44-46.

[20] R. Chao and B.W. Reichardt, Flag fault-tolerant error
correction for any stabilizer code, PRX Quantum 1,
010302 (2020).

[21] S. HeuBen, D.FE. Locher, and M. Miiller, Measurement-
free fault-tolerant quantum error correction in near-term
devices, PRX Quantum 5, 010333 (2024).

[22] J. Preskill, Reliable quantum computers, Proc. R. Soc. A
454, 385 (1998).

[23] P. Shor, Fault-tolerant quantum computation, in Proceed-
ings of 37th Conference on Foundations of Computer
Science (1996), pp. 56-65, 10.1109/SFCS.1996.548464.

[24] A.M. Steane, Active stabilization, quantum computation,
and quantum state synthesis, Phys. Rev. Lett. 78, 2252
(1997).

[25] S. Huang, K. R. Brown, and M. Cetina, Comparing Shor
and Steane error correction using the Bacon-Shor code,
Sci. Adv. 10, eadp2008 (2024).

[26] L. Postler, F. Butt, I. Pogorelov, C.D. Marciniak, S.
HeuBen, R. Blatt, P. Schindler, M. Rispler, M. Miiller,
and T. Monz, Demonstration of fault-tolerant steane
quantum error correction, PRX Quantum 5, 030326
(2024).

[27] T.J. Yoder and 1. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[28] C. Chamberland and M. E. Beverland, Flag fault-tolerant
error correction with arbitrary distance codes, Quantum
2, 53 (2018).

[29] R. Chao and B. W. Reichardt, Quantum error correction
with only two extra qubits, Phys. Rev. Lett. 121, 050502
(2018).

[30] C. Chamberland and K. Noh, Very low overhead fault-
tolerant magic state preparation using redundant ancilla
encoding and flag qubits, npj Quantum Inf. 6, 91 (2020).

[31] C. Chamberland, G. Zhu, T.J. Yoder, J. B. Hertzberg, and
A.W. Cross, Topological and subsystem codes on low-
degree graphs with flag qubits, Phys. Rev. X 10, 011022
(2020).

[32] H. Goto, Minimizing resource overheads for fault-tolerant
preparation of encoded states of the Steane code, Sci. Rep.
6, 19578 (2016).

[33] A. Paetznick and B. W. Reichardt, Fault-tolerant ancilla
preparation and noise threshold lower bounds for the 23-
qubit Golay code, Quantum Inf. Comput. 12, 1034 (2012).

[34] F. Butt, S. Heulen, M. Rispler, and M. Miiller, Fault-
tolerant code-switching protocols for near-term quantum
processors, PRX Quantum 5, 020345 (2024).

[35] H. Goto, Y. Ho, and T. Kanao, Measurement-free fault-
tolerant logical-zero-state encoding of the distance-three
nine-qubit surface code in a one-dimensional qubit array,
Phys. Rev. Res. 5, 043137 (2023).

[36] C. Chamberland and A.W. Cross, Fault-tolerant magic
state preparation with flag qubits, Quantum 3, 143 (2019).

[37] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A.
Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D.
Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K.
Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P.
Stutz, Realization of real-time fault-tolerant quantum
error correction, Phys. Rev. X 11, 041058 (2021).

[38] J. Hilder, D. Pijn, O. Onishchenko, A. Stahl, M. Orth, B.
Lekitsch, A. Rodriguez-Blanco, M. Miiller, F. Schmidt-
Kaler, and U. G. Poschinger, Fault-tolerant parity readout
on a shuttling-based trapped-ion quantum computer, Phys.
Rev. X 12, 011032 (2022).

[39] 1. Pogorelov, F. Butt, L. Postler, C.D. Marciniak, P.
Schindler, M. Miiller, and T. Monz, Experimental fault-
tolerant code switching, arXiv:2403.13732.

[40] Qiskit transpiler, https://qiskit.org/documentation/apidoc/
transpiler.html (accessed: 2024-01-17).

[41] F. Hua, M. Wang, G. Li, B. Peng, C. Liu, M. Zheng, S.
Stein, Y. Ding, E.Z. Zhang, T.S. Humble, and A. Li,
QASMTrans: A QASM based quantum transpiler frame-
work for NISQ devices, arXiv:2308.07581.

[42] E. Younis and C. Iancu, Quantum circuit optimization and
transpilation via parameterized circuit instantiation, in
2022 IEEE International Conference on Quantum Com-
puting and Engineering (QCE) (IEEE, Broomfield, CO,
USA, 2022), pp. 465-475.

[43] M. Maronese, L. Moro, L. Rocutto, and E. Prati, Quantum
compiling, in Quantum Computing Environments, edited
by S. S. Iyengar, M. Mastriani, and K. L. Kumar (Springer
International Publishing, Cham, 2022), pp. 39-74.

[44] L. Schmid, D.F. Locher, M. Rispler, S. Blatt, J. Zeiher,
M. Miiller, and R. Wille, Computational capabilities
and compiler development for neutral atom quantum

041012-39

https://doi.org/10.1126/sciadv.ado9024
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://arXiv.org/abs/2404.08616
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-022-05434-1
https://arXiv.org/abs/2404.02280
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1098/rspa.1998.0166
https://doi.org/10.1098/rspa.1998.0166
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/nature23460
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.1103/PRXQuantum.5.010333
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1126/sciadv.adp2008
https://doi.org/10.1103/PRXQuantum.5.030326
https://doi.org/10.1103/PRXQuantum.5.030326
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1038/s41534-020-00319-5
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1038/srep19578
https://doi.org/10.1038/srep19578
https://doi.org/10.26421/QIC12.11-12-10
https://doi.org/10.1103/PRXQuantum.5.020345
https://doi.org/10.1103/PhysRevResearch.5.043137
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1103/PhysRevX.12.011032
https://doi.org/10.1103/PhysRevX.12.011032
https://arXiv.org/abs/2403.13732
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://arXiv.org/abs/2308.07581

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

processors—connecting tool developers and hardware
experts, Quantum Sci. Technol. 9, 033001 (2024).

[45] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A.
Edgington, and R. Duncan, t|ket): A retargetable compiler
for NISQ devices, Quantum Sci. Technol. 6, 014003
(2021).

[46] N. Paraskevopoulos, F. Sebastiano, C. G. Almudever, and
S. Feld, SpinQ: Compilation strategies for scalable spin-
qubit architectures, arXiv:2301.13241.

[47] F. Kreppel, C. Melzer, D. O. Millan, J. Wagner, J. Hilder,
U. Poschinger, F. Schmidt-Kaler, and A. Brinkmann,
Quantum circuit compiler for a shuttling-based trapped-
ion quantum computer, Quantum 7, 1176 (2023).

[48] R.S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed., Adaptive computation and machine
learning series (The MIT Press, Cambridge, Massachu-
setts, 2018).

[49] M. Krenn, J. Landgraf, T. Foesel, and F. Marquardt,
Artificial intelligence and machine learning for quantum
technologies, Phys. Rev. A 107, 010101 (2023).

[50] T. Fosel, P. Tighineanu, T. Weiss, and F. Marquardt,
Reinforcement learning with neural networks for quantum
feedback, Phys. Rev. X 8, 031084 (2018).

[51] H. P. Nautrup, N. Delfosse, V. Dunjko, H.J. Briegel, and
N. Friis, Optimizing quantum error correction codes with
reinforcement learning, Quantum 3, 215 (2019).

[52] P. Andreasson, J. Johansson, S. Liljestrand, and M.
Granath, Quantum error correction for the toric code
using deep reinforcement learning, Quantum 3, 183
(2019).

[53] R. Sweke, M. S. Kesselring, E.P.L. Van Nieuwenburg,
and J. Eisert, Reinforcement learning decoders for fault-
tolerant quantum computation, Mach. Learn. 2, 025005
(2021).

[54] J. Olle, R. Zen, M. Puviani, and F. Marquardt, Simulta-
neous discovery of quantum error correction codes and
encoders with a noise-aware reinforcement learning
agent, arXiv:2311.04750.

[55] M. Puviani, S. Borah, R. Zen, J. Olle, and F. Marquardt,
Boosting the Gottesman-Kitaev-Preskill quantum error
correction with non-Markovian feedback, arXiv:2312
.07391.

[56] X.-M. Zhang, Z. Wei, R. Asad, X.-C. Yang, and X. Wang,
When does reinforcement learning stand out in quantum
control? A comparative study on state preparation, npj
Quantum Inf. 5, 85 (2019).

[57] M. Bukov, A.G.R. Day, D. Sels, P. Weinberg, A.
Polkovnikov, and P. Mehta, Reinforcement learning in
different phases of quantum control, Phys. Rev. X 8,
031086 (2018).

[58] R. Porotti, A. Essig, B. Huard, and F. Marquardt, Deep
reinforcement learning for quantum state preparation with
weak nonlinear measurements, Quantum 6, 747 (2022).

[59] T. Haug, W.-K. Mok, J.-B. You, W. Zhang, C. Eng Png,
and L.-C. Kwek, Classifying global state preparation via
deep reinforcement learning, Mach. Learn. 2, 01LT02
(2021).

[60] V. V. Sivak, A. Eickbusch, H. Liu, B. Royer, I. Tsioutsios,
and M. H. Devoret, Model-free quantum control with
reinforcement learning, Phys. Rev. X 12, 011059 (2022).

[61] S. Giordano and M. A. Martin-Delgado, Reinforcement-
learning generation of four-qubit entangled states, Phys.
Rev. Res. 4, 043056 (2022).

[62] L. Moro, M.G. A. Paris, M. Restelli, and E. Prati,
Quantum compiling by deep reinforcement learning,
Commun. Phys. 4, 178 (2021).

[63] Y.-H. Zhang, P.-L. Zheng, Y. Zhang, and D.-L. Deng,
Topological quantum compiling with reinforcement learn-
ing, Phys. Rev. Lett. 125, 170501 (2020).

[64] Q.Chen,Y.Du, Q.Zhao, Y. Jiao, X. Lu, and X. Wu, Efficient
and practical quantum compiler towards multi-qubit sys-
tems with deep reinforcement learning, arXiv:2204.06904.

[65] Z. He, L. Li, S. Zheng, Y. Li, and H. Situ, Variational
quantum compiling with double Q-learning, New J. Phys.
23, 033002 (2021).

[66] W. Gong, S. Jiang, and D.-L. Deng, No-go theorem and a
universal decomposition strategy for quantum channel
compilation, Phys. Rev. Res. 5, 013060 (2023).

[67] L.M. Trenkwalder, E. Scerri, T.E. O’Brien, and V.
Dunjko, Compilation of product-formula Hamiltonian
simulation via reinforcement learning, arXiv:2311.04285.

[68] F. Preti, M. Schilling, S. Jerbi, L. M. Trenkwalder, H. P.
Nautrup, F. Motzoi, and H.J. Briegel, Hybrid discrete-
continuous compilation of trapped-ion quantum circuits
with deep reinforcement learning, arXiv:2307.05744.

[69] S. Rietsch, A.Y. Dubey, C. Ufrecht, M. Periyasamy, A.
Plinge, C. Mutschler, and D. D. Scherer, Unitary synthesis
of Clifford + T circuits with reinforcement learning, in
2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE) (2024), pp. 824-835,
arXiv:2404.14865.

[70] D. Kremer, V. Villar, H. Paik, I. Duran, I. Faro, and J. Cruz-
Benito, Practical and efficient quantum circuit synthesis and
transpiling with reinforcement learning, arXiv:2405.13196.

[71] N. Shutty and C. Chamberland, Decoding merged color-
surface codes and finding fault-tolerant Clifford circuits
using solvers for satisfiability modulo theories, Phys. Rev.
Appl. 18, 014072 (2022).

[72] D. Gottesman, Stabilizer codes and quantum error cor-
rection, arXiv:quant-ph/9705052.

[73] A. Steane, Multiple-particle interference and quantum
error correction, Proc. R. Soc. A 452, 2551 (1996).

[74] A.R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[75] A.Y. Kitaev, Quantum computations: Algorithms and
error correction, Russ. Math. Surv. 52, 1191 (1997).

[76] H. Bombin, Gauge color codes: Optimal transversal gates
and gauge fixing in topological stabilizer codes, New J.
Phys. 17, 083002 (2015).

[77] H. Bombin and M. A. Martin-Delgado, Topological quan-
tum distillation, Phys. Rev. Lett. 97, 180501 (2006).

[78] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[79] S. Bravyi, J. A. Latone, and D. Maslov, 6-qubit optimal
Clifford circuits, npj Quantum Inf. 8, 79 (2022).

[80] V. Kliuchnikov and D. Maslov, Optimization of Clifford
circuits, Phys. Rev. A 88, 052307 (2013).

[81] S. Bravyi, R. Shaydulin, S. Hu, and D. Maslov, Clifford
circuit optimization with templates and symbolic Pauli
gates, Quantum 5, 580 (2021).

041012-40

https://doi.org/10.1088/2058-9565/ad33ac
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://arXiv.org/abs/2301.13241
https://doi.org/10.22331/q-2023-11-08-1176
https://doi.org/10.1103/PhysRevA.107.010101
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.22331/q-2019-12-16-215
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.1088/2632-2153/abc609
https://arXiv.org/abs/2311.04750
https://arXiv.org/abs/2312.07391
https://arXiv.org/abs/2312.07391
https://doi.org/10.1038/s41534-019-0201-8
https://doi.org/10.1038/s41534-019-0201-8
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.22331/q-2022-06-28-747
https://doi.org/10.1088/2632-2153/abc81f
https://doi.org/10.1088/2632-2153/abc81f
https://doi.org/10.1103/PhysRevX.12.011059
https://doi.org/10.1103/PhysRevResearch.4.043056
https://doi.org/10.1103/PhysRevResearch.4.043056
https://doi.org/10.1038/s42005-021-00684-3
https://doi.org/10.1103/PhysRevLett.125.170501
https://arXiv.org/abs/2204.06904
https://doi.org/10.1088/1367-2630/abe0ae
https://doi.org/10.1088/1367-2630/abe0ae
https://doi.org/10.1103/PhysRevResearch.5.013060
https://arXiv.org/abs/2311.04285
https://arXiv.org/abs/2307.05744
https://arXiv.org/abs/2404.14865
https://arXiv.org/abs/2405.13196
https://doi.org/10.1103/PhysRevApplied.18.014072
https://doi.org/10.1103/PhysRevApplied.18.014072
https://arXiv.org/abs/quant-ph/9705052
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1038/s41534-022-00583-7
https://doi.org/10.1103/PhysRevA.88.052307
https://doi.org/10.22331/q-2021-11-16-580

QUANTUM CIRCUIT DISCOVERY FOR FAULT-TOLERANT ...

PHYS. REV. X 15, 041012 (2025)

[82] S. Schneider, L. Burgholzer, and R. Wille, A SAT encoding
for optimal Clifford circuit synthesis, in Proceedings of
the 28th Asia and South Pacific Design Automation
Conference (ACM, Tokyo Japan, 2023), pp. 190-195.

[83] D. Winder, Q. Huang, A. M.-v. de Griend, and R. Yeung,
Architecture-aware synthesis of stabilizer circuits from
Clifford tableaus, arXiv:2309.08972.

[84] P. Niemann, R. Wille, and R. Drechsler, Efficient synthesis
of quantum circuits implementing Clifford group opera-
tions, in 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC) (IEEE, Singapore,
2014), pp. 483-488.

[85] D. Amaro, M. Miiller, and A. K. Pal, Scalable characteri-
zation of localizable entanglement in noisy topological
quantum codes, New J. Phys. 22, 053038 (2020).

[86] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information, 10th ed. (Cambridge Univer-
sity Press, Cambridge; New York, 2010).

[87] N. Rengaswamy, R. Calderbank, S. Kadhe, and H.D.
Pfister, Logical Clifford synthesis for stabilizer codes,
IEEE Trans. Quantum Eng. 1, 1 (2020).

[88] A. Mondal and K. K. Parhi, Optimization of quantum
circuits for stabilizer codes, IEEE Trans. Circuits Syst. [
71, 3647 (2024).

[89] D. Tandeitnik and T. Guerreiro, Evolving quantum circuits,
Quantum Inf. Process. 23, 109 (2024).

[90] A.M. Steane, Overhead and noise threshold of fault-
tolerant quantum error correction, Phys. Rev. A 68,
042322 (2003).

[91] C. Chamberland, A. Kubica, T.J. Yoder, and G. Zhu,
Triangular color codes on trivalent graphs with flag
qubits, New J. Phys. 22, 023019 (2020).

[92] E. Knill, Quantum computing with realistically noisy
devices, Nature (London) 434, 39 (2005).

[93] T. Tansuwannont and D. Leung, Achieving fault tolerance
on capped color codes with few ancillas, PRX Quantum 3,
030322 (2022).

[94] K. C. Miao et al., Overcoming leakage in quantum error
correction, Nat. Phys. 19, 1780 (2023).

[95] C. Ryan-Anderson et al., High-fidelity and fault-tolerant
teleportation of a logical qubit using transversal gates and
lattice surgery on a trapped-ion quantum computer, arXiv:
2404.16728.

[96] H. Bombin, M. Pant, S. Roberts, and K.I. Seetharam,
Fault-tolerant post-selection for low overhead magic state
preparation (2022).

[97] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D.
Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina, and
C. Monroe, Fault-tolerant operation of a quantum error-
correction code, arXiv:2009.11482.

[98] R.S. Sutton, D.A. McAllester, S.P. Singh, and Y.
Mansour, Policy gradient methods for reinforcement
learning with function approximation, arXiv:1706
.06643.

[99] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv:
1707.06347.

[100] T. Fosel, M. Y. Niu, F. Marquardt, and L. Li, Quantum
circuit optimization with deep reinforcement learning,
arXiv:2103.07585.

[101] M. Ostaszewski, L. M. Trenkwalder, W. Masarczyk, E.
Scerri, and V. Dunjko, Reinforcement learning for opti-
mization of variational quantum circuit architectures,
Adv. Neural Inf. Process. Syst. 34, 18182 (2021).

[102] T. Gabor, M. Zorn, and C. Linnhoft-Popien, The appli-
cability of reinforcement learning for the automatic
generation of state preparation circuits, in Proceedings
of the Genetic and Evolutionary Computation Con-
ference Companion (ACM, Boston Massachusetts,
2022), pp. 2196-2204.

[103] X. Xu, S.C. Benjamin, and X. Yuan, Variational circuit
compiler for quantum error correction, Phys. Rev. Appl.
15, 034068 (2021).

[104] J.R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush,
and H. Neven, Barren plateaus in quantum neural network
training landscapes, Nat. Commun. 9, 4812 (2018).

[105] C.Lu,J. G. Kuba, A. Letcher, L. Metz, C. S. de Witt, and J.
Foerster, Discovered policy optimisation, Adv. Neural Inf.
Process. Syst. 35, 16455 (2022).

[106] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C.
Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, JAX: Composable
transformations of python 4+ numpy programs (2018).

[107] https://github.com/remmyzen/rlftqc.

[108] S.Z. Baba, N. Yoshioka, Y. Ashida, and T. Sagawa, Deep
reinforcement learning for preparation of thermal and
prethermal quantum states, Phys. Rev. Appl. 19, 014068
(2023).

[109] J. Mackeprang, D.B.R. Dasari, and J. Wrachtrup, A
reinforcement learning approach for quantum state en-
gineering, Quantum Mach. Intell. 2, 5 (2020).

[110] R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek,
Perfect quantum error correcting code, Phys. Rev. Lett.
77, 198 (1996).

[111] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

[112] N. H. Nguyen, M. Li, A. M. Green, C. Huerta Alderete, Y.
Zhu, D. Zhu, K. R. Brown, and N. M. Linke, Demonstra-
tion of Shor encoding on a trapped-ion quantum computer,
Phys. Rev. Appl. 16, 024057 (2021).

[113] R. Zhang, L.-Z. Liu, Z.-D. Li, Y.-Y. Fei, X.-F. Yin, L. Li,
N.-L. Liu, Y. Mao, Y.-A. Chen, and J.-W. Pan, Loss-
tolerant all-photonic quantum repeater with generalized
Shor code, Optica 9, 152 (2022).

[114] D. Nigg, M. Miiller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014).

[115] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S.
Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H.
Pichler, M. Greiner, V. Vuleti¢, and M.D. Lukin, A
quantum processor based on coherent transport of en-
tangled atom arrays, Nature (London) 604, 451 (2022).

[116] J.T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-
tolerant conversion between the Steane and Reed-Muller
quantum codes, Phys. Rev. Lett. 113, 080501 (2014).

[117] J. 1. Cirac and P. Zoller, Quantum computations with cold
trapped ions, Phys. Rev. Lett. 74, 4091 (1995).

[118] Qiskit contributors, Qiskit: An open-source framework for
quantum computing (2023), 10.5281/zenodo.2573505.

041012-41

https://arXiv.org/abs/2309.08972
https://doi.org/10.1088/1367-2630/ab84b3
https://doi.org/10.1109/TQE.2020.3023419
https://doi.org/10.1109/TCSI.2024.3384436
https://doi.org/10.1109/TCSI.2024.3384436
https://doi.org/10.1007/s11128-024-04317-w
https://doi.org/10.1103/PhysRevA.68.042322
https://doi.org/10.1103/PhysRevA.68.042322
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PRXQuantum.3.030322
https://doi.org/10.1103/PRXQuantum.3.030322
https://doi.org/10.1038/s41567-023-02226-w
https://arXiv.org/abs/2404.16728
https://arXiv.org/abs/2404.16728
https://arXiv.org/abs/2009.11482
https://arXiv.org/abs/1706.06643
https://arXiv.org/abs/1706.06643
https://arXiv.org/abs/1707.06347
https://arXiv.org/abs/1707.06347
https://arXiv.org/abs/2103.07585
https://doi.org/10.1103/PhysRevApplied.15.034068
https://doi.org/10.1103/PhysRevApplied.15.034068
https://doi.org/10.1038/s41467-018-07090-4
https://github.com/remmyzen/rlftqc
https://github.com/remmyzen/rlftqc
https://doi.org/10.1103/PhysRevApplied.19.014068
https://doi.org/10.1103/PhysRevApplied.19.014068
https://doi.org/10.1007/s42484-020-00016-8
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevApplied.16.024057
https://doi.org/10.1364/OPTICA.439170
https://doi.org/10.1126/science.1253742
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.5281/zenodo.2573505

REMMY ZEN et al.

PHYS. REV. X 15, 041012 (2025)

[119] FakeManilaV2, https://docs.quantum.ibm.com/api/
qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider
.FakeManilaV2 (accessed: 2024 — 02 — 20).

[120] FakeJakartaV2, https://docs.quantum.ibm.com/api/
qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider
.FakeJakartaV2 (accessed: 2024-02-20).

[121] FakeGuadalupeV2, https://docs.quantum.ibm.com/api/
qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider
.FakeGuadalupeV?2 (accessed: 2024-02-20).

[122] FakeTokyo, https://docs.quantum.ibm.com/api/qiskit-ibm-
runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
(accessed: 2024-02-20).

[123] M. E. Taylor and P. Stone, Transfer learning for reinforce-
ment learning domains: A survey, J. Mach. Learn. Res. 10
(2009).

[124] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, Transfer learning
in deep reinforcement learning: A survey, IEEE Trans.
Pattern Anal. Mach. Intell. 45, 13344 (2023).

[125] C. Gidney, Stim: A fast stabilizer circuit simulator,
Quantum 5, 497 (2021).

[126] F. Arute, K. Arya, R. Babbush et al., Quantum supremacy
using a programmable superconducting processor, Nature
(London) 574, 505 (2019).

[127] R.S. Gupta, N. Sundaresan, T. Alexander, C.J. Wood,
S.T. Merkel, M. B. Healy, M. Hillenbrand, T. Jochym-
O’Connor, J.R. Wootton, T.J. Yoder, A. W. Cross, M.
Takita, and B.J. Brown, Encoding a magic state with
beyond break-even fidelity, Nature (London) 625, 259
(2024).

[128] A.G. Fowler, M. Mariantoni, J. M. Martinis, and A.N.
Cleland, Surface codes: Towards practical large-scale
quantum computation, Phys. Rev. A 86, 032324 (2012).

[129] Y. Ye et al., Logical magic state preparation with fidelity
beyond the distillation threshold on a superconducting
quantum processor, Phys. Rev. Lett. 131, 210603 (2023).

[130] S. HeuBen, L. Postler, M. Rispler, I. Pogorelov, C.D.
Marciniak, T. Monz, P. Schindler, and M. Miiller, Strat-
egies for a practical advantage of fault-tolerant circuit
design in noisy trapped-ion quantum computers, Phys.
Rev. A 107, 042422 (2023).

[131] Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90, 062320
(2014).

[132] R. Acharya et al., Quantum error correction below the
surface code threshold, arXiv:2408.13687.

[133] N. Berthusen, J. Dreiling, C. Foltz, J.P. Gaebler, T. M.
Gatterman, D. Gresh, N. Hewitt, M. Mills, S. A. Moses, B.
Neyenhuis, P. Siegfried, and D. Hayes, Experiments with
the 4D surface code on a QCCD quantum computer, Phys.
Rev. A 110, 062413 (2024).

[134] B. W. Reichardt, D. Aasen, R. Chao, A. Chernoguzov,
W. v. Dam, J. P. Gaebler, D. Gresh, D. Lucchetti, M. Mills,
S. A. Moses, B. Neyenhuis, A. Paetznick, A. Paz, P.E.
Siegfried, M. P.d. Silva, K. M. Svore, Z. Wang, and M.
Zanner, Demonstration of quantum computation and error
correction with a tesseract code, arXiv:2409.04628.

[135] B. Hetényi and J. R. Wootton, Creating entangled logical
qubits in the heavy-hex lattice with topological codes, PRX
Quantum 5, 040334 (2024).

[136] B. W. Reichardt et al., Logical computation demonstrated
with a neutral atom quantum processor, arXiv:2411.11822.

[137] N. Delfosse and B. W. Reichardt, Short Shor-style syn-
drome sequences, arXiv:2008.05051.

[138] D. Bhatnagar, M. Steinberg, D. Elkouss, C. G. Almudever,
and S. Feld, Low-depth flag-style syndrome extraction for
small quantum error-correction codes, in 2023 IEEE
International Conference on Quantum Computing and
Engineering (QCE) (IEEE, Bellevue, WA, 2023), pp. 63-69.

[139] S. Kosub, A note on the triangle inequality for the Jaccard
distance, arXiv:1612.02696.

[140] FakeLimaV2, https://docs.quantum.ibm.com/api/
qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider
.FakeLimaV2 (accessed: 2024-02-20).

[141] E. Knill and R. Laflamme, Concatenated quantum codes,
Technical Report LA-UR-96-2808, 369608, 1996.

[142] M. Grassl, P. Shor, G. Smith, J. Smolin, and B. Zeng,
Generalized concatenated quantum codes, Phys. Rev. A
79, 050306(R) (2009).

[143] D. Gottesman, Surviving as a quantum computer in a
classical world (2024), preprint on webpage at https://
www.cs.umd.edu/class/spring2024/cmsc858G.

[144] S. Gronauer and K. Diepold, Multi-agent deep reinforce-
ment learning: A survey, Artif. Intell. Rev. 55, 895 (2022).

[145] S. V. Albrecht, F. Christianos, and L. Schéifer, Multi-Agent
Reinforcement Learning: Foundations and Modern Ap-
proaches (MIT Press, Cambridge, MA, 2024).

041012-42

https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeManilaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeJakartaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeGuadalupeV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeTokyo
https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-023-06846-3
https://doi.org/10.1038/s41586-023-06846-3
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.131.210603
https://doi.org/10.1103/PhysRevA.107.042422
https://doi.org/10.1103/PhysRevA.107.042422
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://arXiv.org/abs/2408.13687
https://doi.org/10.1103/PhysRevA.110.062413
https://doi.org/10.1103/PhysRevA.110.062413
https://arXiv.org/abs/2409.04628
https://doi.org/10.1103/PRXQuantum.5.040334
https://doi.org/10.1103/PRXQuantum.5.040334
https://arXiv.org/abs/2411.11822
https://arXiv.org/abs/2008.05051
https://arXiv.org/abs/1612.02696
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.fake_provider.FakeLimaV2
https://doi.org/10.1103/PhysRevA.79.050306
https://doi.org/10.1103/PhysRevA.79.050306
https://www.cs.umd.edu/class/spring2024/cmsc858G
https://www.cs.umd.edu/class/spring2024/cmsc858G
https://www.cs.umd.edu/class/spring2024/cmsc858G
https://www.cs.umd.edu/class/spring2024/cmsc858G
https://www.cs.umd.edu/class/spring2024/cmsc858G
https://doi.org/10.1007/s10462-021-09996-w

	Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning
	I. INTRODUCTION
	II. BACKGROUND
	A. Quantum error correction
	B. Logical qubit encoding circuit
	C. Fault-tolerant state preparation
	D. Reinforcement learning

	III. REINFORCEMENT LEARNING FRAMEWORK FOR QUANTUM CIRCUIT DISCOVERY
	IV. LOGICAL STATE PREPARATION
	A. Task description and reward function
	B. Results

	V. VERIFICATION CIRCUIT SYNTHESIS
	A. Task description and reward function
	B. Results

	VI. INTEGRATED FAULT-TOLERANT LOGICAL STATE PREPARATION
	A. Task description and reward function
	B. Results
	1. All-to-all qubit connectivity
	2. Restricted qubit connectivity

	VII. SCALING TO HIGHER DISTANCE CSS CODES
	VIII. CURRENT HARDWARE CONTEXT AND OPPORTUNITIES FOR FUTURE SCALING
	IX. CONCLUSIONS AND OUTLOOK
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: TABLEAU REPRESENTATION
	APPENDIX B: HYPERPARAMETERS AND DETAILS OF THE TRAINING
	APPENDIX C: COMPARISON OF DISTANCE FUNCTIONS
	APPENDIX D: CALCULATION OF THE COMPLEMENTARY TABLEAU DISTANCE AND PRODUCT STATE
	APPENDIX E: MINIMIZING THE NUMBER OF GATES IN THE REWARD FUNCTION
	APPENDIX F: LIST OF STABILIZER GENERATORS
	APPENDIX G: LOGICAL STATE PREPARATION CIRCUITS FOR ALL-TO-ALL QUBIT CONNECTIVITY WITH STANDARD GATE SETS
	APPENDIX H: TRANSFER LEARNING FOR DIFFERENT LOGICAL STATES
	APPENDIX I: LOGICAL STATE PREPARATION CIRCUITS FOR IBM QUANTUM DEVICES
	APPENDIX J: TRANSFER LEARNING TO DIFFERENT CONNECTIVITY
	APPENDIX K: VARYING THE VERIFICATION CIRCUIT SYNTHESIS TASK REWARD WEIGHTS
	APPENDIX L: EXAMPLES OF RL-DISCOVERED CIRCUITS FOR THE VERIFICATION CIRCUIT SYNTHESIS TASK
	APPENDIX M: EXAMPLES OF RL-DISCOVERED FAULT-TOLERANT LOGICAL STATE PREPARATION CIRCUITS SHOWN IN TABLE I
	APPENDIX N: EXAMPLES OF WHEN LSP+VCS FAILS WITH RESTRICTED CONNECTIVITY
	APPENDIX O: LOGICAL ERROR AND ACCEPTANCE RATE OF CIRCUITS FOUND BY INTEGRATED FAULT-TOLERANT LOGICAL STATE PREPARATION
	APPENDIX P: CIRCUITS FOR FAULT-TOLERANT LOGICAL STATE PREPARATION IN RESTRICTED CONNECTIVITY
	1. The |0⟩L state of the [[7,1,3]] Steane code on 2D grid connectivity (Google Sycamore)
	2. The |+⟩L state of the [[7,1,3]] Steane code on 2D grid connectivity (Google Sycamore)
	3. The |0⟩L state of the [[7,1,3]] Steane code on heavy-hex connectivity (IBMQ Guadalupe)
	4. The |+⟩L state of the [[9,1,3]] Shor code on 2D grid connectivity (Google Sycamore)
	5. The |-⟩L state of the [[5,1,3]] perfect code on IBMQ Tokyo

	APPENDIX Q: VARYING INTEGRATED FAULT-TOLERANT LOGICAL STATE PREPARATION TASK WEIGHT REWARDS
	APPENDIX R: DISCUSSIONS ON SCALABILITY
	1. Scalability of the simulator
	2. Encoding concatenation
	3. Memory scaling
	4. Potential avenues for advanced RL techniques

	APPENDIX S: DISTANCE-5 CIRCUITS
	References

