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Abstract

Characterizing the dynamics of quantum systems is a central task for the development of quantum
information processors (QIPs). It serves to benchmark different devices, learn about their specific
noise, and plan the next hardware upgrades. However, this task is also very challenging, for it
requires a large number of measurements and time-consuming classical processing. Moreover,
when interested in the time dependence of the noise, there is an additional overhead since the
characterization must be performed repeatedly within the time interval of interest. To overcome
this limitation while, at the same time, ordering the learned sources of noise by their relevance, we
focus on the inference of the dynamical generators of the noisy dynamics using Lindbladian
quantum tomography (LQT). We propose two different improvements of LQT that alleviate
previous shortcomings. In the weak-noise regime of current QIPs, we manage to linearize the
maximum likelihood estimation of LQT, turning the constrained optimization into a convex
problem to reduce the classical computation cost and to improve its robustness. Moreover, by
introducing compressed sensing techniques, we reduce the number of required measurements
without sacrificing accuracy. To illustrate these improvements, we apply our LQT tools to
trapped-ion experiments of single- and two-qubit gates, advancing in this way the previous state of
the art.

1. Introduction

The progress on quantum technologies witnessed over the past decades has relied on the development of
high-precision techniques to isolate, manipulate, and interrogate quantum systems. When these systems
increase in size, as required for instance in quantum-advantage demonstrations based on
quantum-information processors (QIPs) [1, 2], the development of efficient calibration and characterization
strategies becomes a central task [3, 4]. This requires a mix of tools to estimate quantum states, their time
evolution, and the operations used for their measurements, all of which are encompassed within the broad
subject of quantum tomography (QT). One may say that QT is both a blessing and a curse, for it provides us
with a well-defined route for the detailed learning of quantum systems but, at the same time, it entails a very
large complexity. In most cases, this complexity scales with a certain power of the Hilbert space dimension
d = 2N, and thus grows exponentially with the number of qubits N. The specific so-called sampling
complexity of various QT protocols is discussed in more detail in appendix A, which also serves to set our
notation and introduce key concepts in the QT literature. This includes rigorous proofs that incorporate the
limited accuracy one can achieve in any realistic system, including noise and the limited number of
experimental runs to sample the probability distributions associated to the quantum state.

In light of this exponential complexity, QT in full generality has been mostly limited to small-sized
systems, as illustrated in the estimation of quantum states p [5-7]. Small-size state-QT has become a

© 2025 The Author(s). Published by IOP Publishing Ltd
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standard practice in various platforms such as photons [8, 9], neutral atoms [10-12], trapped ions [13-15],
nuclear magnetic resonance [16, 17] and superconducting circuits [18, 19]. In an effort to minimize the
complexity, alternative QT schemes have been proposed, exploiting symmetry [20-22] and

entanglement [23—25] arguments to constrain the possible states in order to reduce the QT costs. A
reasonable constraint in this respect is that states produced in high-fidelity QIPs are close to ideal pure states,
and thus correspond to low-rank density matrices p. This can be exploited via compressed sensing (CS)
techniques, originally developed for the recovery of sparse signals by random sampling with a rate that is
smaller than the one expected from the signal bandwidth [26, 27]. Even if the resources of CS-QT still scale
exponentially with the number of qubits N [28-32] (see appendix A), the overall reduction can be important
in practice, and has allowed to push state-QT to larger registers [,PhysRevLett.113.040503], [33] including
the experimental CS-QT of 7-qubit states [34].

QT requirements become even more demanding when one is not only interested in states, but also in
their dynamics p(ty) — p(t) = &4, (po) [35-39]. As discussed in appendix A, even for a single snapshot of
this dynamics at t € T = [ty, t], the complexity of this so-called process-QT presents an even faster
exponential scaling with N. Therefore, most experiments of full process-QT have also been limited to
small-sized systems, such as two-qubit entangling gates in nuclear magnetic resonance [40, 41], photons [42,
43], trapped ions [44—46], and superconducting circuits [47, 48]. Paralleling our discussion of possible
strategies to reduce the cost of state-QT, one can restrict either the snapshot &; ;, to specific quantum
channels of Pauli type [49, 50], or apply compressed-sensing techniques assuming the channel has a reduced
Kraus rank r,, < d*> = 4N [29, 51]. Both of these techniques still have a complexity that scales exponentially
with N (see appendix A), although they can lead to a practical overall improvement. Note that in the context
of high-fidelity QIPs, low-rank channels lie very close to a specific target unitary operation, i.e. a quantum
gate, the knowledge of which can be exploited to define a basis and reduce the resource scaling of process
CS-QT to a polynomial one [52, 53].

Having discussed this, we can now delve into the central theme of the current work. If one is interested in
learning the noisy real-time dynamics of the QIP to estimate which is the optimal time duration of a gate,
i.e. the evolution time for which errors are minimized, the above process-QT of &; ;, require repeating the
whole procedure over and over again for each evolution time one is interested in ¢ € T. Since the dynamics of
closed quantum systems must be generated by an underlying Hamiltonian &, ,, (p) = U(t, 1) pU' (t, 1), e.g.
U(t,ty) = exp(—i(t— t)H) if the Hamiltonian is constant, one may sidestep this repetition overhead by
focusing on the estimation of the Hamiltonian H [54-57]. Using the N-qubit Pauli basis E,, € %p (A2), the
Hamiltonian can be expressed in terms of d> — 1 real numbers

P—1

H=>"coEa, (1)
a=1

which can be grouped in a Hamiltonian vector ¢ € R? ~1, where we have excluded a trivial overall shift of the
energies. Since d* = 4V, one may naively expect to face similar exponential scalings of the complexity.
However, when restricting the type of possible Hamiltonians using microscopic information [58-60], or
exploiting entanglement arguments [61], one can again reduce the complexity to a polynomial scaling. If
such detailed prior knowledge is not available, one can still exploit rather general constraints on the locality
of the interactions in physical systems, and develop QT schemes that employ polynomial resources to
estimate the Hamiltonian [62—-66] (see appendix A for the description of rigorous scalings).

From the perspective of CS, Hamiltonian tomography makes a drastic assumption by considering
dynamical quantum maps &; ;, with rank r,, = 1. In the context of QIPs, this amounts to limiting the possible
noise in gates to a systematic mis-calibration or drift leading to coherent errors. This type of errors does
certainly not exhaust all important sources of noise in experiments, and one thus needs to go beyond this
limit. For more generic errors, the dynamical quantum map has a larger rank and generally lacks an inverse,
falling into the class of completely-positive trace-preserving (CPTP) linear super-operators [67, 68]. In
particular, there is a type of CPTP maps called Markovian, which can be divided at any intermediate
time t' € [ty,1] as &4, = &4+ © &y 4, such that &,/ is also a physical CPTP map [69, 70]. For the
time-homogeneous CPTP maps of interest in our work, this divisibility follows from the existence of a
Liouvillian generator [71], generalizing the case of the Hamiltonian to a so-called Lindbladian
Gy (p) = i1y (p) = exp{(t — 1)L} (p) [72, 73], acting on physical states as

Z(p)=—i lanEa,p + Z%(EapEg - {EgEa,pD. (2)
o a,B
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Here, we have introduced the dissipative Lindblad matrix G € POS((Cdz’l), which must be positive
semidefinite to guarantee that the dynamical quantum map is indeed a one-parameter family of CPTP
channels [74]. The goal of Lindbladian QT (LQT) is to estimate the elements of the Lindblad matrix, possibly
in conjunction with those of the Hamiltonian, from measurement data. As noted in appendix A, LQT has in
principle the same number of parameters d*(d* — 1) to be learnt as full process-QT, with the advantage that
it need not be repeated over time. Moreover, the knowledge of the Lindbladian can give more physical insight
onto the error sources and how to optimize their suppression, as compared to QT of the full process matrix.

One may naively expect that estimating &;_,, via process-QT allows one to find the Lindbladian by taking
the matrix logarithm, such that LQT would reduce to standard process-QT. However, as noted in [71, 75-77],
this requires searching through the complex logarithm branches, of which there is an infinite number, and
can lead to inconsistencies in the presence of errors. LQT thus requires an independent tomographic strategy,
the origin of which may be traced back to [78], which put forth a linear inversion method similar to standard
process-QT [35, 36]. In the work [40], a microscopically-motivated parametrization of the dynamical
quantum map was used for a more accurate extraction of the Lindblad generators from the linear inversion.
However, in the presence of errors, the approximate inversion process can lead to unphysical estimates
leading to generators that do not yield a CPTP map. In [75, 76], a three-step procedure for Lindblad learning
was proposed, which starts with a possible unphysical estimate, and then applies a non-linear least-squares fit
with an added penalty for unphysical generators, followed by a final filtering step. Paralleling the advances in
Hamiltonian learning, recent works have also exploited the locality of interactions to improve LQT [79-81],
although we note that there are no rigorous proofs of the sampling complexity to our knowledge.

In this work, we unveil two directions of improvement for LQT by constraining the estimation in a way
that the associated dynamical map corresponds to an admissible physical process. The constraints are
imposed via a maximum-likelihood (ML) philosophy, as first considered in the context of state-QT [6] and
process-QT [37-39]. For LQT [82, 83], ML estimation goes along similar lines but, instead of using a generic
CPTP dynamical quantum map p(t) = &, ,,(po), it parametrizes the time evolution using the Lindbladian
p(t) = e(=)Z(py) (2), and incorporates it in a likelihood estimator. The estimation proceeds by a
non-linear optimization subject to constraints on the Hermitian nature of the Hamiltonian H, and the
positive semidefiniteness of the Lindblad matrix G. We also note that an alternative LQT strategy has been
presented in [84], which minimizes a least-square estimator. These LQT methods have been demonstrated in
experiments with superconducting circuits [82, 84] and trapped ions [83].

In this work, we partake in the development of ML-LQT, presenting advances that are then applied to
trapped-ion QIPs. First, we show that a linearization procedure in the regime of low-error gates attained by
modern QIPs transforms the ML-LQT estimator into a convex one which, in turn, allows for a more efficient
optimization. To make further improvements, we combine this linearized ML-LQT with CS, exploiting the
fact that the noise is not completely unstructured, but is instead controlled by a reduced number of leading
noise sources that will depend on the specific QIP. The corresponding Lindblad matrix will be controlled by a
few leading generators, which directly translates into its sparseness in that particular basis. We take advantage
of this feature by developing an accurate CS estimation of the Lindbladian with a reduced number of
measurements, demonstrating that informational completeness in CS-LQT is not necessary. We also
introduce statistical convergence criteria to avoid over-fitting the measurement data. Ultimately, we test the
proposed LQT methods on experimental data from trapped-ion QIPs. This broadens the previous
experimental implementations [83] by considering two-qubit gates, preparing the ground for more efficient
LQT schemes for multi-qubit dynamics that will be explored in the future.

This article is organized as follows. In section 2, we describe the ML estimation for LQT. Section 3
contains our results for the linearization of ML-LQT for high-fidelity QIPs, together with two different
algorithms for the conjugate gradient (CG) descent. We present a comparison of the linearized ML-LQT to
the standard full ML-LQT, and identify in which regimes either of the two linearized algorithms has a better
performance. In section 4, we introduce a compressed-sensing technique to improve the linearized LQT for
situations in which the noise is structured and sparse, and one can estimate its generators with non
informationally-complete datasets. These improvements of LQT by linearization and CS are applied to
trapped-ion single- and two-qubit gates in section 5, advancing LQT to trapped-ion experiments with real
not-injected noise. We present our conclusions and results in section 6. We include a more detailed
discussion of the sampling complexity of QT in appendix A. Appendix B contains a detailed derivation of the
linearizsation in the context of LQT, whereas appendix C describe the details of two algorithms for linearized
ML-LQT.
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2. MLLQT

In this section, we present a more detailed account of ML-LQT, starting from the theory of Markovian
quantum master equations [74, 85, 86]. As noted in the introduction, for the dynamical quantum map

Sty = (=)< to represent a physically-admissible quantum evolution, the generator (2) must be expressed
in terms of a positive semidefinite Lindblad matrix G. Its diagonalization Gu,, = ,u, yields non-negative
eigenvalues -y, > 0 and associated eigenvectors u, = )  tio n€o. This allows us to rewrite the Liouvillian (2)
in terms of the Lindblad-type master equation

d"—1

d . 3 1

dii = _1[H7 p] + Tn <anL:r1 - E {LILnap}> ’ (3)
n=1

where L, =3 tq nEq are the so-called jump operators, and v, play the role of the corresponding decay
rates [74]. In the case of atomic qubits, these jump operators are not arbitrary but typically correspond to
leading noise sources, such as the amplitude-damping or dephasing processes [35]. Estimating the decay
rates and jump operators, especially when there are several noise sources present, provides more direct
insight than the full dynamical quantum maps, as one can order the error generators L, in decreasing order
of 7v,,. Moreover, the knowledge of y,,, L,, allows one to assess which ‘software’ and/or ‘hardware’
improvements of the QIP would be most effective in combating the actual noise.

In order to learn the Lindbladian, ML estimation introduces a cost function or estimator that quantifies
the differences between the observed and estimated probability distributions, such as the negative
log-likelihood estimator

C(p1.p2) ==Y _prlog(pas)- (4)
P

Here, the (multi)index k spans the sample space of the probability distribution. In the context of process-QT,
p1 and p; correspond to the observed and predicted probability distributions for the measurements
performed on the time-evolved state p(t) = &, 4, (o), respectively. The observed probabilities p; x are
approximated by the relative measurement frequencies f, the components of which are given by the specific
observed outcomes for each of the LQT configurations composed of the initialization, evolution, and
measurement steps. Going beyond state QT and process QT, these relative frequencies are no longer a

vector (A5) nor a matrix (A11), but instead a tensor f; ; , with indexes k = (s, 1, ;¢). In this work, we consider
the positive operator-valued measure (POVM) elements {M,, : j» € M} according to local Pauli
measurements (A4), which are applied to the time-evolved states from a set (A8) of initial states

{pos:s €Sy} after a set of evolution times of interest {#; : i € I;} C T. We note that, in contrast to
process-QT which typically focuses on a single channel at a single snapshot, the estimator (4) does in general
include various evolution times [82]. As discussed in more detail below, we remark that these times need not
densely cover the interval of interest |I;| > 1. In fact, for the Markovian evolutions hereby studied, it will
suffice to use a single snapshot |I;| = 1 to learn the Lindblad generators, whereas more snapshots will be
required in situations in which the noise is time-correlated [87]. Once we obtain an estimate of the
generators, it is possible to integrate the corresponding Lindblad master equation to infer the dynamics at
any desired time t € T.

The estimator in equation (4) also depends on the predicted probabilities p,, which are derived from the
solution of the Lindblad equation (3) when considering the same set of POVM elements, initial states, and
probing times. Hence, p; k(c, G) = Tr{M,,e(=0)Z(©6) () )}, such that the log-likelihood estimator (4) is
implicitly parametrized in terms of the Hamiltonian and Lindblad matrix (2). Due to the time-homogeneous
character of the Markovian dynamical map, we can set o = 0 without loss of generality, since there are no
memory effects in the quantum evolution that depend on the specific initial time. From this perspective, the
estimator (4) is related to the likelihood function L({f,p}) for the joint multinomial probability
distribution with which the outcomes would be observed with relative frequencies {f; }, assuming an
underlying statistical model that is parametrized by the Hamiltonian and Lindblad matrix {p, «(c, G) }. The
maximum of this likelihood function gives the model for which the observed outcomes are most probable,
and corresponds a minimum after taking the negative logarithm and rescaling the result C({fx, p2 x(¢,G)}) x
—log(L({fx,p2,k})) as in equation (4).

The ML-LQT protocol is schematized in figure 1, where we show different triples (po s, ;, M,,) that will be
referred to as configurations. Starting from a single reference state, a set of initial states {pg 5,5 € Sp} is
prepared by acting with local single-qubit gates, after which the system evolves under the Lindbladian we aim
at estimating for different times {#;,i € I,}, and is finally measured according to a POVM {M,,, . € Mis}. We

4



10P Publishing

Quantum Sci. Technol. 10 (2025) 045041 D Dobrynin et al

( Po.1
= & o) < b D \
Po2
. R § b, A) o P
s ; o &, (0, & Jﬁ (4,6}
Po —>< 03 O Non-linear
reference _ —_— B - g optimization
state LieJg
19
| B == - B 4
@ Outcomes CHpwfiD)
Initial states Time-evolved states Basis rotations 1Fans) POTTER -
Quantum NN
© © % gl ]
wete {1posh) > B - ooy o g@ o oy T B QO

Lindblad master eq. Born's rule -

Classical

Figure 1. Scheme for a LQT protocol: LQT is run both in the QIP and a classical computer. The former is initialized in a set of
quantum states {po s, s € So} C L(%) in a Hilbert space of dimension d = dim(.5%). These states evolve in time under the
experimental CPTP map we want to estimate {&;, ;,(po,s) : i € I;}, which need not be unitary due to noise in the experimental
controls, and the coupling to an ever-present environment .75 C /4. After the time evolution, the system is measured under a
POVM {My , : b € My, my, € My, }. Each of these settings result in specific outcomes my, € Zg that are arranged in relative
frequencies f; ; p m,. The classical computer is used to find the corresponding probabilities p; ; p.m, (H, G) that are parametrized in
terms of the system Hamiltonian H and Lindblad matrix G under the assumption that the CPTP map is well approximated by the
Markovian semi-group associated to the master equation generated by the Lindbladian (2). Combining the finite frequency and

the predicted probabilities, one can construct various possible estimators C(f, ; ;, ., »Ps,i,b,m, )> and solve a non-linear
b,

optimization problem using different gradient-descent strategies to obtain the estimates (H, G)

assume for now on that one performs local Pauli measurements (A4), such that = (b,m;) € My

= M}, X M,y,, where the vector b specifies the {x,y,z} basis for the measurement of each qubit, while the
vector my, € {+,—}“ determines the corresponding possible binary outcomes. Hence, the number of
independent configurations (A10) is larger than the number of parameters to be estimated per time step
feont,i = 3Nd*(d — 1) > d*(d* — 1), such that the LQT scheme is informationally complete (IC). The
log-likelihood estimator reads

Ctun (¢,G) = —Zfs,,mlog (Tr {Mue(t"_t")g(c’G) (po,s)}) , (5)

Syi

where the relative-frequency tensor f; ; ,, = Ny i p.m, /Ns,i p is an approximation to the observed probability,
calculated by the ratio of the number of observed my,-outcomes Nj ; ., With respect to the number of
measurements N ; , = zmb N i.b,m, for a particular initial state, evolution time and measurement basis.
Once the estimator is defined, its minimization subject to a positive semidefinite constraint provides the full
ML estimate of the Lindbladian

(ffull, Gfull) = argmin{Cg (¢,G)}

x subject to ce R¥ ™! G e Pos ((Cdz*l) ) (6)

We note that the positive semidefinite constraint can be imposed by using a Cholesky decomposition

G= LGLE in terms of a lower triangular matrix L with real and positive diagonal entries, paralleling some of
the approaches for state-QT [76, 88]. As a result, we can perform unconstrained numerical optimization
using general purpose optimization libraries, such as the C++ ALGLIB [89] for nonlinear CG descent. For
the descent iterations, we need to numerically approximate the gradient, which requires solving the Lindblad
master equation (2) for sets of neighboring ¢, G parameters, which we accomplish by vectorizing the density
matrix p — |p)) € C#, and calculating matrix exponentials of the corresponding Lindbladian. We will refer
to this method as full ML-LQT [82, 83] to distinguish it from the optimized routines for linearized and
compressed-sensing ML-LQT that have been devised in this work.

3. Linearized LQT in high-fidelity QIPs

Let us start by describing the first improvement for Lindblad tomography proposed in this work:
linearization. The full ML-LQT (6) is a non-convex optimization problem that can present multiple local
minima and saddle points, such that convergence to a global minimum is not guaranteed. As a consequence,

5
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one may end up in a local minimum yielding a biased estimate of the Hamiltonian, dissipation rates and/or
jump operators. To overcome these limitations, we propose to use a linearization that can be applied in
high-fidelity QIPs in which the coherent part of the time evolution is known U(t, %) = exp(—i(t — to)H),
such that H can be excluded from the learning process. We can then restrict the estimation procedure to the
effect of the Lindblad matrix G during a certain time scale At that is small even if the effect of the coherent
evolution is not. This is the case of gates in current QIPs, which are mildly affected by weak external noise.

With these assumptions, we can apply a linearization procedure based on error process matrices [90] to
the current ML-LQT, and show that the constrained minimization problem (6) turns into a convex one. In
this regime, as described in detail in appendix B, the parametrized probabilities can be written as linear
functions of the Lindblad matrix

Poin = Prip + Zq)ls),qi,ucl"i’ (7)
a,B

where the contribution from the ideal gate unitary reads
Pl =Tr{M,U(t;,t0) po,sU' (ti,10) } . (8)

The weak Markovian noise linear in G that we aim at learning is fully contained in the second term, which
depends on the following set of matrices {®, ; , } for each configuration, which are expressed similarly to
equation (8), namely

(I)P‘I

LT

:TI'{MHU(ti,to)(Spfq (t,',to) UT(t,',to)}. 9)

The specific effect of the noise is thus contained in
ti
5P (t;,ty) = Z/ dt' [Wi (") BMW (¢')] QBEOUDOJELv (10)
aB to

which depends on the matrices {B1} and W(¢') defined in equations (B4) and (B10). We refer the reader to
the appendix B for the the full derivation, which starts with a Lindblad representation in an operator basis
different from equation (2) in order to prepare the ground for the next compressed-sensing improvement.
The linearized log-likelihood estimator obtained after this weak-noise approximation reads as follows

Clin (G) - Zfsﬂ}li lOg p;‘,i,;t + Z q)f,qi,uGPq . (11)

Sy b p:q

Hereafter, the method based on equation (11) will be referred to as linear ML-LQT. Let us comment on
the relevance of this linearization for the optimization. In the full ML-LQT (5), when considering a complete
knowledge of the Hamiltonian, one must numerically integrate the full Lindblad master equation for each
time #;, given an initial guess of the Lindblad matrix Gean, and update it according to a gradient-descent
method in the search for the optimal solution to the non-convex minimization of equation (6). In the
linearized estimator (11), the evaluation of equation (9) still requires a numerical integration at each ¢;, but
this is highly simplified as we only need to exponentiate the Hamiltonian for an infinitesimal time step once,
and not repeat the exponentiation of the vectorized Lindbladian for each updated value of Gj;,. Moreover,
the important advantage of the linearized ML-LQT is that the optimization problem

Giin = argmin{Cj, (G)}
X subject to G¢€ Pos (Cdz*l) , (12)

has become convex, as the estimator is now a linear function of G, and the positive semidefinite constraint
draws a convex cone over the Lindblad matrices. Linearized ML-LQT is thus guaranteed to have a unique
solution Gy, in contrast to Gran, which can have a more complex minima landscape.

In appendix C, we present two efficient methods for the convex minimization of the linearized ML-LQT
estimator (11), namely the diluted iterative algorithm (DIA) and the projected gradient descent with
momentum (pGDM). Both of these methods have been considered in the context of state-QT [88, 91] but, to
our knowledge, not for LQT. We start by comparing the generic CG methods for the full ML-LQT (6) to the
DIA approach for the linearized ML-LQT (12), which makes use of the analytical expression for the gradient
of the linear estimator Cy;,, (11), together with a line search and a CG descent, to converge towards the

unique global minimum GEI{A. We consider a two-qubit system N = 2, d = 4, subject to a small Markovian

6



10P Publishing Quantum Sci. Technol. 10 (2025) 045041 D Dobrynin et al

Linear DIA-CG
Full Nonlinear CG

=
T

||Gest - GtrueHF/HGtrueHF

1 1 " 1 1 n 1 n 1 1

0 20 40 60 80 100 120 140
descent iteration

Figure 2. Performance comparison of full and linear ML-LQT:. We use the DIA algorithm for the linearized ML-LQT (12),
discussed in appendix C, and a general-purpose CG method from the ALGLIB library for the full ML-LQT (6). We uniformly
draw 100 semidefinite positive matrices that play the role of a true Lindblad matrix Gyue € C'® ® C'° with (Tr{Gue } )t = 0.25.
We consider a single measuring time |I,| = 1 in T = [0, #], which we take to be #; = #;, and #1conr,i = 432 configurations to achieve
information completeness. The true Lindblad matrix is used to numerically generate the exact probability distribution
Ps,iypu(Girue) = Tr{Mue(t"“‘)g(O’G"uJ (po,s) }- We start by focusing on the asymptotic limit in which shot noise is absent, and
directly use the exact ps,; , (Girue) instead of the finite-shot relative frequencies f;;, ,,. We run the constrained minimization for the
linear and full ML-LQT, finding the corresponding estimates Giin (purple) and G (pink) for each of the random choices of the
Lindblad matrix. We quantify the precision of the estimates by calculating the Frobenius norm of the difference ||G — Girue||£>
properly normalized, where we recall that this norm is the square root of the sum of the squares of all the matrix entries. In the
figure we represent the mean and 20/80 percentiles for the distribution of this quantity among all the random draws of the
Lindblad dynamics.

noise corresponding to a random Lindblad matrix Gy, obtained by sampling a uniform random unitary in
the Haar measure sense [92]. This unitary is applied to an arbitrary state |1)) € C'> @ C'°, after which one
traces over one of the subsystems. As a result, we get a random positive semidefinite matrix Gy, € Pos(C")
of trace one, sampled uniformly according to the Hilbert—Schmidt distance [93]. To change the scale of Giyye,
we multiply the result by any desired prefactor, which is here set to (Tr{ Gy} )tf = 0.25. The Hamiltonian
Hiyye for each generated Gy is chosen to produce a 7/2 single qubit rotation along a random axis for each
run. Once a true Lindbladian is randomly chosen, we simulate numerically the dynamics without any
approximations, and obtain the exact POVM probabilities f; ; ,, > ps i, .» focusing on a single snapshot ¢; = .
By using the exact probabilities, we momentarily dispense with the effects of shot noise in order to compare
the convergence of the full and linearized ML-LQT approaches. In sections below, we will go beyond these
approximations and also consider real experimental data with shot noise and other SPAM errors.

In figure 2, we show how both the full-CG (6) (pink) and linear DIA (12) (purple) minimizations yield a
value of the estimated Lindblad matrix G that that gets closer to Gyye with each descent iteration. One can
see how, on average, the convergence of the linear DIA requires less descent iterations than the full ML-QT,
which is further supported by the guaranteed convergence of DIA to the global minimum ensured by the
convexity of the linearized estimator. Moreover, the calculation of the gradient for the full ML-LQT requires
that, at each step, one must solve the full Lindblad master equation with various values of the estimated
matrix G, instead of using the simpler linearized expressions for the gradient. Therefore, in addition to the
increased number of descent steps in the full ML-LQT, each of them requires more classical computational
resources. This results in the limited precision of the full nonlinear CG together with a significant runtime
slowdown of optimization compared to linear DIA; we observed on average ~50x and ~900x difference of
optimization time-per-iteration for 1 and 2 qubit estimations respectively, testing on a single-core CPU. As
shown in the figure, the full-GC algorithm shows a slower convergence and a wider confidence interval. On
the contrary, the linear DIA shows a much smoother convergence towards the true Lindblad matrix, even
after a small number of iterations, as it learns any random Lindbladian with a similar accuracy showcasing its
higher robustness. After a number of descent steps, the DIA error begins to saturate due to the limitations of
the inherent linear approximation. In contrast, the full-CG minimization continues to improve, provided
that one allows for a sufficiently large number of descent iterations. As expected, the linearized ML-LQT
(12) is a leading-order approximation, and one should not aim at accuracies for which other higher-order
corrections may become dominant.

In summary, the full ML-LQT can reach arbitrary precision in this idealized shot-noise-free situation, at
the expense of a much higher-cost in post-processing times and less robustness due to the the lack of
convexity. We note that this can be a limitation if the ML-LQT is used as a real-time diagnosis tool to
calibrate experimental devices, especially if the noise changes during the post-processing time. In a more
realistic situation in which shot noise and other SPAM errors would be present, the accuracy of the
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Figure 3. Comparison of DIA and pGDM for linearized ML-LQT. We repeat the linearized ML-LQT for 100 random Gire as in
figure 2, but now considering two different possibilities: (upper panel) well-conditioned matrix Girue, and (lower panel)
ill-conditioned matrix Gie. We represent the mean and 20/80 percentiles for the estimated Gy, according to DIA (purple) and
pGDM (pink), as a function of the number of descent iterations. All the definitions are the same as those detailed in the caption of
figure 2.

Lindbladian reconstruction cannot reach arbitrary precision, as we will see in more detail below. In the weak
noise limit, the higher-order corrections to the already-small effect of the noise may lead to even smaller
contributions that get completely overshadowed by the shot noise, unless one repeats the experiment an
extremely large number of times, which can be prohibitive in QIP platforms with relatively long cycle times,
such as trapped ions. Therefore, in such a situation, aiming at a higher accuracy by switching to the full
ML-LQT might actually be counterproductive.

Once the advantages of the linearized vs full ML-LQT have been identified, we can compare two different
optimization routines for the linearized case. We have so far explored the convergence of the DIA, which
deals with the positive-semidefinite constraint of G explicitly by using a Cholesky decomposition. As
discussed in appendix C.2, an alternative approach based on pGDM allows for updates on the estimated G
which do not satisty the constraint, but instead project back to the set of physically-admissible Lindbladians
in a subsequent step. These methods have been proven to be more efficient in the context of QT of states with
a high purity (low rank) [91], as they lie very close to the boundary of the space of physically-admissible
states. In this case, imposing the positive semidefinite and unit trace constraints at all steps can dramatically
slow down the convergence. In the case of linearized ML-LQT, the Lindblad matrix G has no trace
constraints as in state-QT, so it is not a priori clear if similar benefits will be found when running a pGDM
algorithm for the estimation of a low-rank Lindblad matrix. In order to make a quantitative comparison of
the convergence of the two linearized ML-LQT algorithms, we also take random samples of low-rank
matrices Gyye by considering Haar uniformly random projectors.

Once more, we focus on the N = 2,d = 4 case, using randomly generated two-qubit Lindblad matrices
Girue> and setting their scale so that with (Tr{ Gy })# = 0.01. The comparison for these linear estimators is
shown in figure 3, where we recall that we are still focusing on the idealized shot-noise-free regime. In the
upper panel, when Gy is sampled from the Hilbert—Schmidt uniform set and thus has many similar
eigenvalues, DIA (purple) exhibits faster convergence than the pGDM (pink). However, when Gy is a
random projector, we observe in the lower panel that pGDM takes over, converging to closer estimates
GESDM than the DIA G}?&A for a sufficient number of descent iterations. For a specific range of descent
iterations, the pPGDM method shows a much quicker descent for low-rank Lindblad matrices than for
uniform ones, although we also note that there is a larger variance depending on the specific random
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Lindbladian one is aiming to learn, as compared to the DIA. In summary, we can conclude that, if one
suspects that an experiment will be affected by a leading noise source such that Gy, will only have few
substantial eigenvalues, pGDM methods are favored with respect to DIA. In the following section, we will
discuss how the general linearized strategy, regardless of the DIA or pGDM approach used for the gradient
descent, can actually be improved even further in situations where the noise is really structured by using
compressed-sensing techniques.

4. Compressed sensing LQT with structured noise

The number of parameters that must be estimated in LQT d?(d* — 1) scales exponentially with the qubit
number d = 2V, As noted by the end of last section, however, the Lindblad matrix may have a much smaller
number of leading jump operators (3) that describe the main sources of noise. As discussed in appendix A,
the operator-sum representations of the dynamical maps (A12) associated to such a reduced Lindbladian
would thus have a low Kraus rank, which can be exploited by CS [29, 51, 52, 94, 95]. In fact, for

process-QT [52, 53], when one knows the specific unitary operator that lies close to the actual time
evolution, CS can be optimized to reduce the number of configurations to a polynomial one by exploiting
the sparseness of the process matrix in a certain basis. To our knowledge, the application of
compressed-sensing techniques to ML-LQT has not been considered yet. In this section, we explore how this
prior on the noise structure can also be exploited for our linearized ML-LQT, allowing us to obtain a faithful
estimation of the Lindblad matrix with a much lower number of measurements.

CS originates in the classical theory of signal processing, where the signal is described by a certain sparse
vector that can be recovered from an under-sampled set of measurements [26, 27]. A standard approach to
maximize sparsity is to minimize the 1-norm of the signal vector, defined as the sum of the absolute values of
its components. The incorporation of CS to process-QT allows for the estimation of the process matrix using
informationally incomplete data sets by defining a CS estimator that resembles this norm applied to the
process matrix [96]. In the present work, we use such a CS estimator to learn the Lindblad matrix in the
linear regime of equation (7). This procedure maximizes the sparsity of the Lindblad matrix subject to a
constraint with which the Lindblad model must be able to reproduce the observed measurement outcomes
with a certain error £ with respect to a least-square measure of the distance between the theoretical and
measured probability distributions. This can be formalized through the following constrained convex
minimization problem

Gl = argmin{ Ccs (G) = ) (IRe(Gag)| + [Im (Gap)|)
o,

X subject to ’|f—pu—ZGa5<I>°‘ﬁH2< \/Meonf€- (13)
a,p

Here, f,p" € R" are, respectively, the observed relative frequencies and the contribution of the ideal unitary
evolution to the estimated probabilities (8), both of which have been vectorized in the space of
configurations. The total number of configurations per time step is icont; = 3Vd?(d — 1), although we
remark that the CS method will use a smaller number as we are interested in reducing the sampling
complexity. Likewise, we have introduced a set of vectors & € C"< by reshaping the linearized
contribution of the Markovian dynamics (9) to the estimated probabilities (7). Let us remark that the
distance between the measured and estimated probabilities is no longer present in the cost function, but
instead appears in the constraint. While the previous ML estimation aims at inferring the Lindblad model
with which one could predict the observed outcomes with a higher likelihood, CS attempts to find the
sparsest Lindblad model at the expense of obtaining a lower probability to reconstruct the observations. In
fact, the above € acts as a trade-off parameter, as it balances the tendency to fit the experimental data
minimizing the least-square distance or maximizing the sparseness of G.

Although, as advanced in the introduction and explained further in appendix A, CS for process-QT can
get considerable improvements even without prior knowledge of the sparsifying basis [29, 51], one can get
further improvements towards a polynomial scaling when this is known [52, 53]. This basis dependence
becomes very transparent at the level of the Markovian jump operators (3). To quantify these possible
improvements, we start by considering LQT for a 2-qubit system as before, but considering a restricted set of
Markovian noise jump operators L, € {Ldeph, 1, Ldeph,2, Ldamp,1> Ldamp,2, Lo} instead of randomly sampling an
unstructured Lindblad matrix. We include single-qubit dephasing with rates Ygeph,1 7 Vdeph,2 and jump
operators Lyeph,1 = 0; ® 13, Laeph,2 = 12 ® 03, single-qubit amplitude damping with rates Ygamp,1 7 Ydamp,2
and operators Lyamp,1 = 0— @ 13, Lgamp,2 = 12 ® o_ and, finally, correlated bit-flip errors Lys = 0, ® o, with
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Figure 4. Comparison of compressed sensing and full ML-LQT: We follow the same prescription described in the caption of
figure 2, but now considering a single true G, a sufficient number of descent iterations for any of the CS or full ML-LQT
estimation methods, and plotting the relative Frobenius norm of the estimation error as a function of the number of
configurations. (Left panel) Skyline plot of the decomposition of the Lindblad matrix Gy in the Pauli basis. (Middle and right

panel) Frobenius norm distance of Girue and Gy, estimated with either CS-LQT with € = 1.2 (blue) or full ML-LQT (pink). We
consider again a single evolution time #; = f, and iteratively grow the number of configurations by increasing the different initial
states and measurement POVM:s that are included in the corresponding cost functions/constraints. In particular, we grow
randomly from initial batches with #1¢onf,; = 33 by adding 671¢onf,i = 21 at each step. The random selection of the configurations is
repeated 50 times, and we present the median and the 20/80 percentiles of the results. For #1¢onf,; > 240 (QPT informational
completeness) both methods attain a similar reconstruction of Grue. On the other hand, for a number of configurations well
below that number, the CS estimation shows a better accuracy and a higher dispersion of the data, as some of the random
configurations may give less information for the CS estimations. The dashed lines represent the optimal sequence of
configurations for both methods among the 50 repetitions, highlighting that CS can attain a very high accuracy already for low
configurations #1cenf,i = 54 (circles). The corresponding estimated Lindblad matrices are displayed in the insets which, by direct
comparison to Gy on the left panel, showcase the improvement of CS-LQT with respect to ML-LQT.

a rate pr. All these decay rates and associated jump operators will define the true Lindblad matrix Gee we
aim at learning.

In light of these jump operators and in order to exploit the sparseness of the Lindbladian, we use the
Pauli basis (A2) in the linearization. To obtain an estimate Gf}f via equation (13), we need to calculate the
linearized contributions to the predicted probabilities (7). In the present case, we set H = 0 such that the ideal
evolution is the identity and we are simply estimating the qubit decoherence as a quantum memory. Hence,
the vector p" (8) can be readily obtained. Finally, the set of vectors &8 (9) require a numerical evaluation of
equation (10) which, ultimately, requires using b5, = Jp,« in equations (B4)—(B5) for the Pauli-basis choice.
Once all these quantities are at our disposal, we employ the general augmented Lagrangian algorithm from
the C++ ALGLIB library [97] for the constrained minimization (13) choosing a target € parameter.

The main motivation for turning to CS-LQT techniques is that one can obtain accurate estimations using
a smaller set of configurations. We recall that, for the 2-qubit case, the total number of configurations in the
ML-LQT is #icont,i = 3Nd?(d — 1) = 432 per time step, while informational completeness requires
d?(d* — 1)? = 240 linearly-independent configurations. In order to address the accuracy of the CS-LQT in
under-sampled situations, we randomly draw a small number of triples (p; o, ;, M,,) from all possible
configurations, and gradually increase the set by subsequently including 0#1¢onfg,; additional random
configurations until all of the #1¢onf; = 432 configurations are incorporated, considering again a single
|I;| = 1 snapshot at t = #. In this informationally-complete regime, the CS-LQT should give similar estimates
to the linearized ML-LQT.

For each CS estimation (13), which uses a specific choice of configurations for which the measurement
data would be collected, we calculate the Frobenius norm of the difference between the estimated GEE and
the true sparse Lindblad matrix Gy, which is depicted in the left panel of figure 4. The central and right
panels illustrate the result of our numerical simulations, where the true Gy is used to generate the
foinn 7> Ps,i,p(Girue) probability distribution, dispensing again with the effects of shot noise and SPAM errors
for the moment. We depict the normalized Frobenius distance between the estimated and true Lindblad
matrices as a function of the number of configurations being included in the linear CS-LQT (central panel)
and ML-LQT (right panel) estimators. The solid lines represent the mean, while the shaded areas are the
20/80 confidence intervals, showing how the accuracy of the estimation grows for different random ways in
which the number of configurations is increased. In addition, the dashed lines represent the optimal
configuration choice for this specific G,e among the 50 repetitions, with a filled circle that indicates the
Frobenious distance for #1¢,nfig,i = 54, being the corresponding estimated Giipcs, Gjyom represented in the
corresponding insets. The comparison of these dashed lines shows that the CS-LQT strategy can reach a
much more accurate estimate for an under-sampled data set than the linear ML-LQT approach. As we can
directly see in the insets, the CS-LQT estimated Lindblad matrix resembles more closely the true one (left
panel), whereas the linear ML-LQT estimation is corrupted by many small non-zero coefficients, lowering
considerably the overall estimation accuracy. The superiority of CS-LQT is a consequence of the sparseness
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of the true Lindblad matrix Gy, and the underlying sequence of configurations underlying the optimal
CS-LQT estimation are those that providing more relevant information about the noise, determined by the
Lindblad matrix eigenbasis. The identification of this eigenbasis can be based on microscopic knowledge
about the QIP, or from the knowledge acquired by running full ML-LQT for small system sizes, and then
extrapolating the conclusions about the noise structure to larger systems.

In summary, ML-LQT chooses to retain the small components of the estimated Lindblad matrix in order
to reach a higher likelihood between the measured and estimated probabilities. However, this leads to a larger
error with respect to CS-LQT in undersampled regimes, as the latter neglects almost all of those very small
components by minimizing the sparseness-based cost function (13). The CS estimate captures the most
prominent noise components at this level, providing more than a ten-fold reduction in the number of shots
with respect to the ML-LQT with all 432 configurations. Therefore, if a large number of measurements are
inaccessible experimentally, or one scales to larger system sizes where the shots need to be distributed among
more configurations, CS-LQT will offer a superior solution to ML-LQT if one has some prior knowledge
about the structure and sparseness of the noise.

5. Single- and two-qubit trapped-ion LQT

Trapped-ion systems have played a key role in the development of quantum computers. In the seminal
work [98], it was proposed that ion crystals can function as registers for the realization of a quantum
computer. In this setup, quantum information is encoded in the electronic levels of the ions and manipulated
using a universal gate set that involves additional lasers to excite their collective vibrations. This proposal,
which was first implemented in [99], paved the way for extensive experimental and theoretical work,
establishing trapped ions as one of the leading platforms in the pursuit of constructing fault-tolerant
quantum computers [100, 101].

At present, trapped-ion QIPs have served to experimentally realize various noisy intermediate-scale
quantum (NISQ) algorithms over the years [102—108]. Moreover, there are ongoing efforts in developing
trapped-ion quantum error correction (QEC) [109-123], and developing a detailed microscopic noise
modeling to assess the QEC performance under realistic experimental conditions [124—128]. The success of
NISQ and QEC endeavours heavily relies on the high-fidelity universal gate set native to the trapped-ion
platform [129-134]. Trapped ions have also pioneered several QT experiments for the characterization of
entangled states [14, 15, 25, 135, 136], as well as single- and multi-qubit gates [44—46, 137—141]. In fact,
many pioneering schemes for QT, such as randomized benchmarking [142, 143] and extensions
thereof [144], or gate set tomography [145], were first implemented with trapped ions [130, 133, 146—152].
In the context of LQT, there has only been one previous experiment to the best of our knowledge, which
focused on the spontaneous emission of a single trapped-ion qubit under different engineered decay
channels [83]. However, LQT has not been applied to learn the Lindblad generators of real non-injected
noise in high-fidelity gates including, in particular, LQT for noisy two-qubit gates. The goal of this section is
to fill in this gap using data from the experiments in [152-154].

In order to apply the linearized ML and CS tools for LQT in real trapped-ion systems, we first need to
reconsider the above strategies for a finite number of measurements Ny, such that p; , = f; i ;1. As
discussed below equation (5) and in appendix A, one records the number of times N ; j , that the
my-outcome is observed for each initial state py s, evolution time t; € T, and measurement basis b. We
consider that Ny are equally distributed among each setting Nypors = 3Vd?|I;| x Ny, such that
Nee =" my Ns,i,b,m, 18 the same Vs, i, b, and we can obtain the relative frequency by simply taking a ratio
fs,i.b.my, = Ns.ib.m, /Nsc. The ML-LQT and CS-LQT strategies presented in the previous sections will not only
be limited by the effects discussed previously, such as the accuracy of the non-linear minimization or the
number of configurations included in the estimator, but also by stochastic errors associated to this shot noise.
In addition, SPAM errors in the state-preparation and measurement will also affect the inference.

Another point that has not been addressed in detail yet is that, when learning from real data, we do not
know the true Lindblad matrix, and thus cannot provide estimates for the accuracy of our estimates, or find
how many descent iterations and how many configurations would be required to reach an specific target. We
now describe a simple way in which the readout data is not only used to extract the model parameters by ML
or CS, but also for error analysis and hypothesis testing. In principle, if one could collect large numbers of
data, it would be possible to use the multinomial distribution of the likelihood function to perform a
statistical analysis of errors and confidence intervals for the estimation [155]. In this section, we follow a
much simpler strategy that could actually be performed during the gradient descent or as one increases the
number of configurations, providing us with a simple criterion of convergence: the Pearson x3 test [156].
This test assesses the goodness of a fit between a joint multinomial distribution with probabilities
parametrized by the estimated Lindbladian ¢, G, and the finite-frequency approximation to the distribution
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measured in the experiment. The reduced Pearson 3 statistics reads

~ 2
X2 o Nihots Z (ps,i,b,m,, (C, G) _f&i,h,mb)
P = - .
(d* 1) s,i,b,my ps,i,b,mb ((?7 G)

(14)

This quantity converges to the reduced x* of a Gaussian distribution with variance o3 =2/(d — 1) in the
large-Nyhots limit, and can be used as a simple indicator of goodness of fit: x3 >> 1 when the parametrized
probabilities are not an adequate model to reproduce the data, and x3 < 1 when there is overfitting, and the
theoretically parametrized probabilities are improperly accounting for the noise, or the underlying error bars
would be over-estimated. A heuristic converge criterion is to stop when the Pearson x3 falls below unity

X%’,c = 1. An important note on the applicability of the method is that the number of counts in any of the
‘bins’ Nycfs i p,m, should not be too small [156], which might be the case for high-fidelity gates. We can now
obtain estimates for the discrepancy between observed outcomes and the values expected under the
Markovian Lindblad model as one performs subsequent descents in the non-linear minimizations, or as one
includes more configurations in the estimators towards informational completeness. In this way, we can
decide when to stop the LQT learning without knowing the true Lindbladian.

5.1. LQT for single-qubit gates
Let us now consider these aspects for the LQT of trapped-ion quantum gates. We start from the simple
single-qubit rotations, focusing on a /2 rotation around the x axis

.@(rf,ro)
—i=2

Rx(©(tn0) = e £ 0 (1,1) = / (), (15)

to

where f; — 1y is the gate time, and 2(¢') defines a possibly-modulated Rabi frequency for the specific qubit
transition. The ideal target unitary U(t;, ty) = (1, — io,)/+/2 is obtained by setting O (t, ) = 7/2 in the
expression above. As trapped-ion QIPs routinely achieve very high fidelities for single-qubit gates [101], we
can start by assuming a perfect knowledge of this unitary, and focusing the LQT on the estimation of the
unknown Lindbladian matrix Gir.. We use the measurement data from the *’Ca™ experiments by P.
Schindler et al [153, 154], in which the configurations include |Sy| = 4 initial states, a single time at the end
of the gate |I;| = 1, and |M| = 3 for the measurements in the b € {x,y,z} single-qubit basis, each of which
has a binary Pauli outcome m;, € {—1,+1}. Therefore, the total number of independent configurations is
ficonf = 12, among which the total number of measurements Ny,o; = 1.2 - 10° were distributed uniformly.
Note that the number of configurations equals the required number of Lindbladian parameters

d?(d*> — 1) = 12 if one were to learn both the Hamiltonian and the Lindbald matrix. To gauge the relevance
of the shot noise, we start by running our previous LQT algorithms on numerically simulated data, where we
sample Nyt times from the ideal probability distribution p'; |~ (8). We thus generate Ny,ots uniform
random numbers and numerically simulate the Bernoulli trials, collecting the number of obtained outcomes
N; i b0 for a fixed number of shots Nyc = 10* per initial state, evolution time and measurement basis. In the
present case, we have a single evolution time #; = t;. In this way, we simulate the effects of shot noise in the
finite frequencies f; , . As there are no other sources of noise, one expects that running the LQT algorithms
will provide a structureless Lindblad matrix G,, leading to estimated jump operators {L*}3_, (3) that have
no preferred direction in the qubit’s Bloch sphere. On the other hand, the eigenvalues ;" can be used to
quantify the level of the contribution of the shot noise to the decay rates 7, = max{4} : n € {1,2,3}}. For
Nihots = 1.2 - 10° shots, we obtain 7, &~ 0.8 - 10~>. This sets a lower bound below which the estimated decay
rates, which will be derived using the real experimental data below, would be dominated by the shot noise
and thus be inconclusive.

Let us now analyze the real experimental data which, in addition to shot noise, will also be afflicted by
SPAM errors. In the left panel of figure 5, we display the results of the estimated Lindblad matrix GﬂA
obtained by solving the linearized ML-LQT (12) for the 7/2 pulse using the DIA for gradient descent. On the
right panel, we display the Pearson reduced x-test, showing that we fall below the critical x . = 1 very fast

as the number of descent steps is increased, reaching a minimal value of X3 ,;, = 0.695 that supports a

reasonably good fit. By diagonalizing the estimated Lindblad matrix GR!4, we obtain a single leading decay

rate Ymax = 5.6 - 107> > 7, while the other two are below the 102 level. Considering that this leading
decay rate is almost 10 x bigger than the estimated shot noise, we can conclude that our DIA ML-LQT is not
limited by shot noise for the number of measurement Nyt = 1.2 - 10° performed in the experiment. We can
thus discern the underlying structure of the sources of noise from the LQT. In fact, the jump operator
corresponding to the maximum decay rate is found to have the following decomposition
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Figure 5. linearized ML-LQT for trapped-ion single-qubit gates: We consider the informationally complete setting with
feonfig,i = 12 configurations, each measured projectively with N ; , = 10* shots, and solve the linearized ML-LQT (12) with our

DIA. (Left panel) Skyline plot of the estimated Lindblad matrix G‘EA, showing predominant contributions for elements involving

the X and Z Pauli matrices. (Right panel) Pearson 3 as a function of the gradient descent iteration. After just a few interactions,
starting from a diagonal G with Tr{G}# = 0.25, we already obtain a value well below the xj . = 1, signaling a reasonable
convergence.

Liax = 130, + 1,0, + n,0, with |n,| = 0.77, |n,| = 0.36, |n.| = 0.53, which shows that the main error
generator of single-qubit gates is biased towards the gate rotation axis.

We note that, for the single-qubit case, we have also run the CS-LQT (13), but the estimates are similar to
those of linear ML-LQT, as the size of the Lindblad matrix is already small and there is no big sparsity that
can be exploited. We will show below that CS becomes more useful for two qubits.

5.2. LQT for two-qubit Mglmer—Sorensen (MS) gates

Let us now turn to the LQT of entangling trapped-ion gates. In particular, we focus on the two-qubit MS
gate [157, 158]. This gate exploits the quantized vibrations of the ion crystal, i.e. phonons, to generate
entanglement between a pair of qubits that belong to the same ion crystal. This gate has become a workhorse
in trapped-ion quantum computing, as it allows to achieve high-fidelity gates even in the presence of thermal
fluctuations, i.e. without requiring perfectly groundstate-cooled vibrational modes. For two qubits, this
unitary gate can be interpreted as the coherent evolution under an Ising-type Hamiltonian

. G)(tf,tu)

Rux (6 (11, 1p)) = e~ 80 (16)

Here, O(ft,1y) is the pulse area that depends on the gate time t — f,, laser parameters such as intensity and
frequency, as well as the frequencies and Lamb-Dicke parameters associated to the vibrational modes that
mediate the interactions [159]. In particular, assuming that the MS gate is obtained by a pair of beams of
opposite detuning =+, with respect to the qubit transitions, driving the sidebands for the longitudinal
center-of-mass mode of frequency v, near-resonantly for a two-ion crystal, one finds

v,
O (1, 1y) = ”giz Zi*” /dtl/ deQ (1) Q (1), (17)

where 7 p is the Lamb-Dicke parameter, and €)(¢) is the Rabi frequency. Here, we have assumed that the gate
time fulfills ¢ — #y = 27/ (L — v,), i.e. a single-loop MS gate is realized, and that the laser intensities are
calibrated such that ©(t, ) = 7/2, and the target MS gate is U(tg, o) = (14 — iox ® 0x)/V/2.

We use the experimental data gathered on the °Ca™ setup described in [152], which includes |Sy| = 16
initial states, a single time at the end of the gate |I;| = 1, and M| = 9 for the measurements in the two-qubit
basis b € {xx,xy,xz,--- ,zz}, each leading to [M,,, | = 3 independent outcomes, e.g. my € {(+1,+1),
(+1,—1),(—=1,41)}. Therefore, the total number of independent configurations is r1cons = 432, for which
the data set contains a total number of measurement outcomes Ngpois = 1.44 - 10° this time. In contrast to the
single-qubit case, the configuration set now exceeds the d?(d* — 1) = 240 real parameters that are required to
determine the Lindbladian, as we already discussed in the previous numerical simulations.

As in the single-qubit case, we can first simulate numerically the ideal MS gate subject to shot noise by
sampling Ngphots times from the ideal probability distribution Peip (8). Since the number of shots per
configuration Ny. = 10% is smaller than in the single-qubit case Ny = 10%, one can expect the effect of shot
noise to be larger. In fact, we find that the shot-noise threshold for the decay rates is set at 7, = 1.7 - 1072,
which is larger than before. As a direct consequence of shot noise, we find that the goodness of fit for the
ML-LQT algorithm is worse in this case, reaching chi-square values that still do not reach the convergence
criterion X%’,min =21>1= X12>,c~ We depict the estimated Lindblad matrices GE&A, > for both the DIA for
linear ML-LQT and the CS-LQT in figure 6. The skyline plot for the linear DIA displays a fluctuating and
non-sparse landscape (upper panel), with most of the peaks below the percent level being associated to the
structureless shot noise. It should be noted that the biggest decay rate that can be extracted in this way is

13



10P Publishing Quantum Sci. Technol. 10 (2025) 045041 D Dobrynin et al

GDIA
lin
G]C"f using CS-LQT (lower panel), both with with #1¢enfig,; = 96. The shot-noise has a rough contribution of 0.01 to the estimated
Giints for any of the two approaches, such that only elements above this level have a conclusive estimation in presence of the

current level of shot noise.

Figure 6. LQT estimates of trapped-ion two-qubit gates: Skyline plots of obtained using linear ML-LQT (upper panel) and

Amax = 6.7 - 1072, which is less than four times larger than the shot noise threshold, and thus more sensitive
to this noise than the trapped-ion single-qubit case, which had a larger number of shots per configuration.
The lower panel of figure 6 displays the CS-LQT estimate for the Lindblad matrix, which is also affected by
the same level of shot noise, but has a sparser structure so that most of the small peaks associated to shot
noise no longer appear.

In addition to the undesired effect of shot noise, one should also mention that there might be errors in
the MS gate that go beyond the LQT assumptions, including SPAM errors of the unitaries used for state
preparation and readout, as well as time-dependent and non-Markovian effects that can be expected when
considering the dynamical phonons of the two-ion crystal as a small dynamic and thermally-fluctuating
environment. In order to discern among these possibilities, insight can be gained by moving to the CS
techniques for LQT. After determining G using the ML-LQT method, we can diagonalize it and derive a new
basis set .o/’ in which the sparsity of the transformed Gy, matrix would increase, which raises the possibility
that CS techniques may actually provide an advantage for LQT. Assuming that the experimental noise only
changes mildly in the time between the ML-LQT an the CS-LQT, we can repeat the Lindblad learning using
CS in the sparse basis set <7, which would point to a route to make the most of the available number of shots
by distributing them among the configurations that carry more information about the relevant noise
sources. Since the experimental data [152] is already fixed, we will analyze the prospect of this idea using the
same data set, but arranging the configurations so that the ones with more information come first to
optimally benefit from CS.

In figure 7 we show the results of this analysis. We start by running the full ML-LQT Gl considering the
IC set of configurations with r1¢nfg,; = 432. With this, we can plot the respective normalized Frobenius

distances with respect to the GPI*

o or Gf‘f estimates, as a function of the number of configurations
considered, bearing in mind that there will be an intrinsic error associated to the underlying linear
approximation. The pink line represents the accuracy of the linear DIA approx, which lies above the CS-LQT
estimate (blue) for small numbers of configurations. We find that only after informational completeness is
attained Nconfig,i = 240, does the linear DIA approach become preferable with respect to the CS-LQT. Finally,
we use the information of Gy to learn about the sparsifying basis .7, and adapt the CS-LQT approach by
incorporating this information in the linearization (9) via a new set of matrices {B4} (B4). In this way, the

Lindblad matrix has a higher sparseness, and the CS sensing can actually capture more accurately the
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Figure 7. LQT performance for trapped-ion two-qubit gates: We apply the full ML-LQT (6) for f1config,i = 432 and a total of
Nipots = 1.44 - 10° measurements. The estimated Ggy is used to calculate the Frobenius distances with respect to the linear

estimates based on DIA or and CS learning GE;A (pink), Gfﬁ (blue), restricted to a smaller number of configurations

Nconfig,i < 432. The specific configurations are selected randomly, and grown in batches of §71¢onfig,i = 21 following the approach
of figure 4. Below information completeness at 71config,; = 240, one can see how the CS-LQT approach presents a clear benefit with
respect to the linear ML-LQT. The solid lines represent the median, and the shaded areas the 20/80 percentiles. The orange solid
line (shaded area) represents the mean (percentiles) of the CS-LQT using the .7 eigenbasis.

relevant noise sources even for a small number of configurations well-below informational completeness.
The results displayed in orange in figure 7 clearly show that the advantage of this idea for the CS-LQT since,
when working in the .7 basis, we find that the estimation GC3 | s performs, on average, considerably better
than the previous approaches, always for configuration numbers that are lower than the

lin
informationally-completeness threshold 71,,s = 240.
6. Conclusions and outlook

In this work, we have introduced and demonstrated two improvements for LQT that advance the
characterization of current high-fidelity QIPs. First of all, we have shown how one can linearize the ML
estimation of the Lindbladian in the limit of weak noise, which turns the previous non-convex
minimizations of LQT [82—84] into a convex problem. We have presented a pair of descent algorithms for
linearized ML-LQT that build on the analytical expressions of the gradients of the linear ML estimator, and
we have shown that both of these algorithms simplify considerably the classical computational cost of
previous full non-convex ML-LQT. We have presented a numerical analysis to show in which situations each
of the proposed linear schemes should be preferable, which depends on the rank of the Lindblad matrix one
wants to estimate.

This last observation led us to develop a CS approach for LQT, exploiting the structure of the noise, in
particular the existence of leading error sources, to estimate the Lindbladian with a smaller number of
configurations, such that one could make the most of the available number of measurement shots. We have
shown that CS-LQT can yield important advantages in small QIPs that are limited by shot noise, which could
also be extended to larger systems in order to partially minimize the exponential scaling in required
resources, provided the eigenbasis for CS can be extrapolated from the one learnt for the smaller system sizes.
We have applied our improved LQT toolbox to experimental trapped-ion data for single- and two-qubit
gates considering, for the first time, real non-injected noise. We have shown that our LQT techniques allow
us to extract the leading sources of noise, identifying the main Lindblad jump operators responsible for the
incoherent noise. For two-qubit entangling gates, we have shown that CS combined with a method to obtain
knowledge about the sparsifying basis can be the key to obtain accurate LQT estimates using a fairly small set
of measurement shots.

As an outlook, we believe that it would be interesting to develop LQT further in three directions. On the
one hand, it would be desirable to develop rigorous estimates about the sampling complexity, both for the
ML-LQT and CS-LQT strategies discussed in this work, putting them at the same level of other QT protocols
for state and process estimation in which the resource scalings are clear, and optimal solutions have been
devised. Another interesting avenue for further research is the generalization of LQT to account for
non-Markovian dynamics in open quantum systems. Here, the possibility to include various intermediate
times in the evolution #; € T will play a crucial role to capture time correlations of the noise. Searching for
optimal schemes depending on the structure of the colored noise is an interesting open question. Finally, we
would like to mention a promising direction for future research in LQFT, exploring alternative compressive
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tomography techniques [160] that go beyond traditional CS assumptions by incorporating rigorous
certification of informational completeness through semidefinite programming. Extending these approaches
to encompass LQT can lead to an autonomous verification when the acquired measurement data suffice
reconstruct the Lindbladian without requiring a priori assumptions on the low rank or the structure of the
leading noise generators. Moreover, adaptive strategies that dynamically optimize the choice of the
measurement basis along the tomographic procedure are also very interesting, promising further reductions
and automation on the required sampling resources. Crucially, these methods do not require prior
knowledge of the noise structure or its representation basis, enabling more robust and flexible tomography
protocols applicable to complex noise.
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Appendix A. Complexity of QT

This appendix serves to set our notation following that of [155], and to review key QT results for the
characterization of QIPs. We will devote special attention to understanding the complexity of the various QT
strategies, which will serve to frame more precisely our work on Lindbladian tomography.

In the context of QT, one typically starts from the characterization of quantum states in systems with a
single register of N' qubits, which can be repeatedly prepared in a specific state p. This state, which we aim at
estimating from measurement data, is mathematically described by a positive semidefinite operator of unit
trace p € D(J&) [68], where & = C? @ -N. ® C? is the d = 2~ dimensional N-qubit Hilbert space. By
repeated preparation, we have n copies of the state at our disposal, which quantify our resources by fixing the
number of samples Ngots = 1 of an underlying probability distribution from which we aim at inferring p.
These copies are thus measured sequentially for QT according to a POVM [35], which is defined by a
collection of [M| POVM elements associated to the measurement outcomes {M,, : 1 € M}. Each of these
POVM elements corresponds to a positive semidefinite operator M,, € Pos(.%) that acts on an individual
copy of the state p, and the set is constrained to resolve the identity > oMy =14 [68]. Mathematically, the
POVM can be understood as a mapping from state space to a probability space in which the probability
vector p encodes the full measurement statistics. According to Born’s rule, this mapping reads

pHp:ZTr{MHp}euGRIMfl, (A1)
m
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where {e,, : 1 € M} are the standard unit vectors. The components of p fulfill p,, > 0and }_  p, =1, which
makes the formal connection to a probability distribution. A measurement is said to be IC if it allows one to
invert the above mapping, and use the measured probabilities p to recover the d> — 1 real parameters that
characterize a generic quantum state p € D(J%) [68].

An IC-POVM must thus contain |Mi,a > d* linearly-independent elements, exceeding by one the
required number of parameters to estimate p due to the constraint » oMy =14 [161]. A standard
IC-POVM follows from the Pauli basis, where we recall that the operators {E,, : a € {0,--+,d* — 1} } form
an orthogonal basis of the space of linear operators L(.J%) if Tr{El Eg} = dd,, s, where we consider the
Hilbert—Schmidt scalar product. By taking tensor products of Pauli matrices, we can define the unormalized
Pauli basis as

N

E. € %P = {]lz,O'x,O'y,O'z}® y (AZ)

leading to Hermitian and involutory basis operators El, = E,,, E2 = 14, which thus have m,, = +1
eigenvalues. We can define a POVM with elements proportional to the orthogonal projectors onto the
corresponding eigenspaces

1 1;+ muE,
,U, = (a7m04)7 MOt,ma = d2 _ 1 ( 2 > I (A3)

where we excluded Ey = 1,®- - ®1, = 14 for = 0. The IC-POVM thus contains [M| = [M,, x M, | =
2(d* — 1) elements, and one typically speaks of d*> — 1 measurement settings with 2 possible outcomes each.
We note that only [Mj,q| = d* POVM elements are linearly independent due to the constraint
(@ —=1)>,, Mam, =14 Vo

This measurement setup would allow one to infer the non-trivial expectation values (E,) = 2(d? — 1)
Tr{Mu, +p} — 1 that are required for the estimation of the state p [67]. However, except for the single-qubit
case, most of these POVM elements correspond to joint operators not native in most QIPs, e.g.
M, o (144 0" ® o) is a projector onto the even-parity subspace of N = 2 qubits, which typically requires
entangling CNOT gates preceding an ancilla-qubit projective measurement [67]. To avoid introducing
ancillas, which would also need their own characterization, and the additional complexity of working with
sequences of entangling gates, we focus on a different IC-POVM with local Pauli projectors

pw=(b,mp), Mpm, = %thmbl & ®szv,rnb,\,' (A4)
Here, b; € {x,y,z} indicates the Pauli basis of the jth qubit projector, and 1, = 1 the corresponding
eigenvalue, e.g. P, 1 = (1, + 0,)/2. Altogether, we have 3V measurement bases with d possible outcomes
each. Therefore, the POVM has M| = |[Mj x M,, | = 3Vd elements, although not all of them are
independent, as the set of projectors with a fixed basis resolves the identity > my P(b1,m,) @+ @
P(yy.my,) = La. Accordingly, we have [Mling| = 3V(d — 1) + 1 > d” independent POVM elements and, thus,
an IC-POVM.

According to the QT scenario described above, one would ideally need to prepare the same state p
repeatedly and measure it a number of times that scales with either 4V times for global Pauli
measurements (A3) or 6~ times for local ones (A4). In practice, however, any of these resource counts is an
idealization, as various sources of noise and errors occur in any experiment, rendering the measurements
imperfect. At the very least, one is always confronted with projection/shot noise due to the finite number of
measurement shots Nj per measurement basis [162], which can only provide us with a relative-frequency
approximation of the probability vector

Nb.m
f:Z - heb,mb%pa Zfb,m;,: 1 (AS)
b,m

Nshots
Jmy b,my

Here, Nj s, stands for the number of observed my, outcomes associated to the measurement basis b, such that
Ny = Zmb Np,m, and Ngpors = Y, Ny is the total number of shots in the experiment and, thus, the number of
copies of the state p that the register must be sequentially prepared into Ngots = 1. Hence, a more realistic
description should account for errors in the inversion of equation (A1), which can lead to the estimation of
unphysical states when dealing with overcomplete POVMs, require one to move to ML methods.

In general, QT can only aim at estimating the state p by an approximate p with a certain error € > 0. This
error can be quantified by the trace-distance of the corresponding states e =||p — p|l1=Tr{+\/(p — p)*},
where one uses the Schatten 1-norm [68]. Therefore, a more meaningful question regarding the complexity
of state-QT is to quantify the resources required to reach a desired target error €. In the present context, this
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should be expressed in terms of the required number of copies of the state at our disposal, which also
correspond to the total number of measurement shots that will be performed Ny, and will be larger than
the previous idealized scalings. As shown in [30-32, 163], the optimal strategy using a fixed sequence of
POVM elements employs randomized measurements, which are obtained by acting with Nypos
uniformly-sampled random unitaries U € U(.J4) prior to a sequence of specific projective measurements of
the resulting states on the computational basis. By finding both upper and lower bounds on the resources,
these works show that this scheme is optimal and requires Ny o 2°N /2 copies of the state [30, 31, 163].
Note that a better scaling Ny o 22N/ €2 can be achieved if one has access to a multiple-copy register
p@Nsmos and can perform collective entangled measurements [31, 164]. Finally, the sampling complexity can
change if the number of outcomes of each of the projective measurements is independent of the system size.
An important example is that of the binary-outcome Pauli measurements in equation (A3), where the scaling
is instead Nyt o< 24N /2 and is also optimal [165].

Due to this exponential sampling complexity, the resources for the standard approach to state-QT
become prohibitive already for intermediate-sized systems. As discussed in the introduction, there has been a
considerable effort in devising alternative schemes with a lower cost by e.g. restricting the set of possible
states to an ansatz with a smaller number of parameters. This can be motivated by a specific symmetry, such
as permutation symmetry [20-22], which leads to a polynomial scaling with Ngpos. Instead, one can restrict
the set of possible states according to their entanglement content, and perform efficient QT within the set of
area-law states employing polynomial resources [23-25]. A different assumption is that of low-rank QT
which, although allowing for a smaller gain, is less restrictive and, arguably, common to the majority of states
created in recent experiments. With the low errors achieved by current QIPs, these states are close to ideal
pure states p ~ [1))X1)| and, thus, have a low rank r < 2V, Building on ideas of CS to recover a large sparse
vector or matrix by randomly sampling a much smaller number of its elements [26, 27], CS QT has been
shown to require a number of copies Nypots that scales with O(N7222N /e2) when based on Pauli
measurements [28, 29]. This scaling can be improved further to O(r*2" /&?) by considering collective
measurements on the multiple-copy register p®~sos [30, 31]. Although these sampling complexities still scale
exponentially with the number of qubits N5, the improvement is considerable in comparison to the
previous scaling Nypors o 24V /e? in standard state-QT.

Let us now discuss the complexity of QT for the time evolution of a quantum system, commonly referred
to as quantum process tomography [35-39]. This task is also of primary importance in QIPs for which the
precise characterization of a universal gate set [35] allows one to identify, model, and possibly amend the
errors in a quantum computation. Knowing the precise error model of the native gate set is important for an
accurate estimation of the error threshold in fault-tolerant quantum computation [166—170]. In an idealized
error-free situation, the exponential scaling of resources follows directly from the description of any
admissible quantum evolution by a dynamical quantum map &;;, € C(J%) Vt € T = [to, #¢]. Each snapshot
of the dynamical quantum map belongs to the set of completely-positive and trace-preserving channels
C(#) acting on the space of linear operators L(7%) [68]. In the following discussion, we will only refer to
the tomography of a quantum channel, and hence consider a single snapshot at t € T. This channel admits a
representation in terms of a process y matrix

Po p(t) = gi‘ﬁo (pO) = ZXaﬁ (ta tO)EopoE}.B- (A6)
a,3

For equation (A6) to represent an admissible physical process, the process matrix x (%) must be
semidefinite positive and subjected to a so-called [35] trace constraint

Xag (t, o) € POS ((Cdz) » D Xap (tt0) ESE, = 1g. (A7)
o,

Accordingly, d*(d* — 1) real parameters per snapshot are required to describe the time evolution
p(t) € D(H4), and one will similarly to state-QT face exponential scalings [171].

In order to determine the time evolution of x (¢, ty), the standard process-QT [35, 36] requires the
preparation of |So| = d” linearly-independent initial states {po s : s € Sp}. A typical choice is to consider all
possible tensor products of four states

Po,s € {|OXO, [LXL], [+X-+], [ +iX+i[}® (A8)

where {|0),|1)} are the qubit computational basis, and {|+) = (|0) +|1))/v/2,|+i) = (|0) +i|1))//2} are
two other cardinal states on the qubit Bloch sphere. Additionally, one must probe the system with an
IC-POVM measurement at various instants of time, each of which is described by |Mj,q| > d*
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linearly-independent elements {M,, : 1 € M}, e.g. the IC-POVM in equation (A4). One thus gets a formal
mapping between the process matrix and a probability matrix

X (t,10) = [p (t,10)] 1 = Tr{Mu&i, (Pos)} (A9)

the columns of which correspond to the probability vectors for the measurement statistics. To recover the full
dynamical quantum map, this equation must be inverted [35, 36] at each instant of time {t;: i € I} C T,
which has an additional overhead increasing the QT complexity even further. The independent triples

(po,s, ti,M,,) form our LQT configurations. Considering the set of initial states (A8), and the independent
POVM projectors used in our work (A4), we thus have

Neonf,i = 3Nd2 (d - 1) (AIO)

configurations per time step. Each of this requires preparing a single copy of the time-evolved states, such
that the resources in terms of the number of configurations is iconfig = Y _; ficont,i- In QPT, one typically
focuses on reconstructing the quantum channel for a single snapshot ; € T.

In a realistic scenario, one must again consider the estimation error €, which will require repeating the
measurements a total number of times Nipors that is much larger than the above configurations. Due to the
finite number of repetitions, shot noise only provides us with an approximation to the above probability
matrix which, using equation (A4), reads

Fltisto) zzz%ehmb@e@p(t,m). (A11)
s b,my s,isb
Here, N ; p m, stands for the number of observed my-outcomes associated to each measurement basis b, and
now also to each initial state py ; for the specific snapshot t; € T. Hence, Ny ; = Zm,, N i b,m, is the number
of shots per initialization and measurement basis, and Nghots = D . ; ,, N, p is the total number of shots
performed for the process-QT. "

In general, the rigorous proofs that underlie our previous discussion on the sampling complexity of
state-QT cannot be directly ported to process-QT [51], except in some particular cases. Paralleling our
description of state-QT, one can restrict the processes &; ;, to specific types, in search for more efficient
strategies for process-QT. For instance, if the process is restricted to the family of Pauli channels, one can
devise almost optimal QT strategies, and even provide mathematical proofs addressing the sample
complexity [49, 172]. In this type of channels, one considers the above Pauli basis E,, € %p (A2) as the
orthonormal operator basis in equation (A6), and the channel ansatz is restricted by imposing that the
process matrix must be diagonal xas (%) = pPp,o (t — t0)0a 8, Where d, g is the Kronecker delta. Then, the
positive semidefinite constraint simply requires the positivity of pp o, > 0, and the trace constraint becomes
> o Pp.a = 1, such that the channel is fully determined by a probability vector pp(t — t) with components
known as the Pauli error rates. Process-QT then requires estimating the vector of Pauli error rates by an
approximate one p(f — ) with a given 1-norm distance & =||p,(t — to) — pp(t —to) |[i=>_,, |Pp.a(t — f0)
—ralt—to)].

In a similar spirit to the previous QT scenario, one may consider a quantum register of Nypots qubits that
can be initialized in different states, then evolved under the channel that we aim at estimating, which may
also be interleaved with a fixed sequence of unitary gates. Finally, each of the Ny, resulting states can be
measured individually with a fixed sequence of POVM elements. In this case, we do not have exact copies of
the same state as in state-QT, which are probed by distributing the finite number of Ngots experimental shots
among the smaller number of measurement settings, but rather a collection of configurations involving
different time-evolved states measured in different settings, among which we distribute the total number of
shots Nihots- As discussed in [49, 50], when the channel to be estimated is a snapshot &, ;, of the Pauli type,
and one uses intermediate random Pauli gates to average over the noise, the resources scale with
Nihots = O(N2°N /%) which, up to a logarithmic correction, is similar to the optimal scaling for the QT of
states [30, 31, 163]. Indeed, a lower bound presented in [50] shows that, up to these logarithmic corrections,
this Pauli-channel tomography is already optimal. It is interesting to note that performing Pauli tomography
can actually lead to quantum advantage, as the complexity using a quantum processor can lead to an
exponential reduction [173].

Similarly to our discussion of quantum state tomography, we now discuss a less restrictive assumption
that allows applying CS for the QT of channels [29, 51, 52, 94, 95]. The process-matrix description (A6) is
equivalent to the Kraus operator-sum representation [174, 175], namely

&ty (Po) = ZKn (t,t0) POKZ (t,t0), (A12)

n
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where the Kraus operators are constrained to resolve the identity in order to describe a CPTP map. Indeed,
this constraint can be obtained by constructing the Kraus operators as follows

> Ki(tt0)K, (t10) =14, K,(t20) =v/Xn D VanFa, (A13)

where x, and v, = ) v4 n€q are the eigenvalues and eigenvectors of the process matrix, x (, %) vy = XnVn,
respectively. For some quantum channels, it may turn out that the process matrix has zero eigenvalues, such
that the sum in the Kraus decomposition (A12) is truncated

gfﬁo (Po) ~ ZKn (ta tO) pOKjl (tv tO) ) (A14)

n=1

terminating at a certain Kraus rank r,, < d> = 4. This is the case, for instance, of pure-unitary dynamics in
which r, = 1.

Just as the QT of most states produced by current QIPs can be improved by assuming low-rank states, the
gates that these processors employ to produce such states are very close to unitaries, and thus have a low
Kraus rank r,, < 4N. As discussed in [29, 51], CS of low-rank channels using a fixed sequence of state
preparation, evolution, and Pauli measurements, allow one to derive upper bounds on the required resources
Nihots < O(N2°N /&%), Although, to our knowledge, there are no lower bounds to precisely determine the
sampling complexity and argue about optimality, the exponential scaling in resources is clear. At this point, it
is important to note that, if one could further restrict the low-rank channel by knowing which specific
unitary operator the time evolution is close to, which is typically the case of high-fidelity QIPs, one could use
a specific basis where the process matrix is sparse, and obtain further improvements for QT. In fact, if one
has this prior information, although there are still no strict upper and lower bounds for the sample
complexity, the number of QT configurations has been shown to scale polynomially [52, 53].

When the dynamics is purely unitary, instead of estimating the quantum channels for various snapshots
to reconstruct a coarse-grained version of the dynamical quantum map, one may directly target the system
Hamiltonian H generating such a time evolution. Indeed, for dynamical quantum maps (A12) with Kraus
rank r,, = 1, the constraint (A13) can be fulfilled by considering a single time-ordered exponential with a
time-dependent Hamiltonian Ky(t, t)) = 7 {exp(—i ftgdt’ H(t"))}, the estimation of which can be less
resource intensive, specially when the Hamiltonian is constant (1). The idea is that the typical Hamiltonians
describing physical QIPs do not actually require d* — 1 parameters when one chooses an appropriate
operator basis, such as E, € %p (A2). Taking into account the tensor-product character of this basis, and the
typical locality of interactions, one can restrict oneself to

H~ anEa. (A15)
a=1

Here, the Hamilonian is parametrized by a smaller set of real coefficients {c, : @« € {1,--- ,m}} with

m = O(poly(N)) < 4~ [4], which clearly resembles the situation that motivated the low-rank truncation of
the quantum channel (A14). Remarkably, if the initial state commutes with the Hamiltonian, the estimation
of the Hamiltonian only requires solving a linear system of equations for the vector of couplings ¢, which lies
in the kernel of an observable correlation matrix C. This matrix consists of equal-time two-point functions
in the operator basis Co 3 = Tr{i[E,, Eg|p} [62-66, 176]. Allowing for adaptive sequences where the initial
state, control fields, and measurements, can be varied according to a Bayesian update, one can find an
estimate ¢ considering a fidelity error F(¢,¢) = |é7¢|?/(||€]/3]|c||3) < 1 — & [176]. In the work [176], the
authors showed that, up to logarithmic corrections, the complexity of this Hamiltonian learning is
polynomial Nyor, = O(N°k*P /(e A)3/?), where a k-local Hamiltonian in D dimensions has at most

m = O(NK’P) terms, and the correlation matrix is assumed to have an energy gap A.

As emphasized in the introduction, in order to account for realistic errors in QIPs, one should upgrade
closed-system Hamiltonian QT to open quantum systems that do not evolve unitarily. The theory of open
quantum systems aims at describing the dynamics of the system after tracing over an ever-present
environment p = Trg{|Wsg)(WUse|} € D(5%) with |Ugg) € SE, which can be generally described by an exact
integro-differential equation known as the Nakajima—Zwanzig equation [74, 85, 86]. When the coupling to
the environment is weak, and the timescale of interest is much larger than the environmental correlation
time 7, one can approximate it by a much simpler Markovian master equation. In more detail, 7 sets a
characteristic timescale for the decay of the environmental correlations and, when the time-scale of interest is
much larger At>> 7, one can coarse-grain to derive a time-local differential equation for the quantum
system that is not affected by environmental memory effects. In this Born—-Markov limit, this equation has a
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Lindblad form (2), such that dp/dt = £ (p) is fully determined by the Hamiltonian H and Lindblad matrix
G. The goal of Lindbladian QT is to estimate both the Hamiltonian H and Lindblad matrix G (2). Let us note
that, by choosing the Pauli basis with E; = [;, one can incorporate some of the Lindbladian contributions in
the Hamiltonian part H+— H= H+ Y, Im{Go, } Es, such that the fully incoherent part of the dynamics is
encapsulated ina (&2 — 1) x (d — 1) positive semidefinite matrix G — G € Pos(C? ~!). In the main text,
we avoid the tildes to simplify notation. Hence, in addition to the d* — 1 real parameters for the Hamiltonian
{Ca = ca +Im{Gyq } }, we require an additional set of (d* — 1)? real parameters for {G,z}. Altogether this
yields d?(d? — 1), which is the same parameter count one finds for the full process matrix.

Appendix B. Linearizing LQT

In this appendix, we elaborate on the linearization of the Markovian evolution operator exp((t — #).Z),
following an approach based on error process matrices [90]. The main idea in [90] is to factor out the target
unitary U(#, ) in the estimation of the process matrix x (¢, ) of a noisy gate (A6), and to only learn the
error process matrix Y (¢, ;). As discussed in the main text, in the limit of weak noise, this factoring can
have important practical consequences in ML-LQT and CS-LQT, rendering the constrained optimization
convex and the Lindbladian estimation much more efficient. We assume knowledge of the coherent part of
the evolution U(t,ty) = exp(—i(¢ — #)H), which narrows the learning task to the sole estimation of the
Lindblad matrix G. The state of the system at a time #;; = t; + At can be derived from the Lindblad master
equation, which, in the weak-noise limit, can be approximated by a Suzuki-Trotter expansion. Moreover, the
dissipative evolution operator now admits a linear approximation exp (ZGAf) = (I + £;At) even when the
coherent part is not small, where I(p) = p is the identity channel. Preparing the ground for the linearized
compressed-sensing formulation, we will allow the Lindbladian to be defined as

Z6(p) = > Gra( BBy — 1 {BiBy.0}), (B1)
p:q

where we consider any operator basis L(#) = span{%} with Z = {B, : p € {0,--- ,d* — 1}}, and only
impose that Tr{B, } = 0. To simplify the presentation, we keep the same notation of the G matrix as in the
Pauli-basis equation (2), although the main idea is that the matrix will be different and sparser if we allow the
B,=>) bhE,, to be certain linear combinations of Pauli operators. A clear and simple example is that of a
single-qubit spontaneous emission where using B, = (0, —i0,)/2 = 0~ can increase sparseness.

The equation for time evolution from the sth initial state can then be expanded as

ps (ti1) ~ Ultion, 1) ps (6) Ut (tig1, 1) + U(tigr, 1) Y Gp Aty bELY

P a,p
1
X (Eaps () Ef, — 3 {EEEis (ti)}) Ul (tig1,1:). (B2)
This leading-order evolution can be rewritten compactly as
peltin)) =) | Xog + Y _BhGuAl | UsiEaps(6) ESUL,, (B3)

a,f 7,0

where we have introduced a short-hand notation Ua; = U(#;41, ), and the following quantities following
from an expansion in the Pauli basis and standard algebra

Xas = Ba0030, BE, = b0b% — 1 (600 +do0dl"), (B4)
which also depend on
i =>"w T {ELELE, | (B5)
¥,6

We can now make use of equation (A6) to identify a process matrix for the infinitesimal dynamical quantum
map in the weak-noise limit. The only difference is that the state resulting from this map is then acted with
the unitary as follows

ps(tig) ~ Une | D x&5 (tip1,t) Eaps (6) Eg | Uk, (B6)
a,p
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Since we have factored out the effect of the ideal target unitary U(#;11, ;) from deviations caused by the
dissipation, this process matrix actually contains information about the noise and is known as the
infinitesimal error matrix [90, 177], namely

Xog (tiy1,1) = X{xﬁ + ZB%GMAL (B7)
7,0

The novelty in our work with respect to [90] is that, as noted above, we allow for a more general general
basis, and will consider this linearization in the context of ML estimation.

The contribution from the first term ! actually leads to the ideal unitary, whereas the second term
Ax®(ti11,1) is responsible for the small errors in the weak-noise limit. The full dynamical quantum map
for the time evolution t € T can be obtained by composing the above infinitesimal maps for small time
periods At to obtain the following temporal sequence of M channels with At = (# — t,)/M and
t; = fo + (Ar)i. This can be schematically depicted as follows

— X" (t1,0) — U(t1,t0) — X" (t2,11) — U(ta,t1) — oo — X (tm, tm—1) — U(tmr, tm—1) —,  (B8)

As we can see, the dynamical quantum map is described by the composition of, first, the infinitesimal error
channel, followed by the infinitesimal unitary evolution, which is then repeated sequentially. In most
theoretical treatments of noisy circuits, however, one models a faulty gate by the action of the full ideal
unitary composed with the the full error channel. To make connection with these studies, we can swap the
order of any unitary V and x*" by a simple unitary transformation

_V_Xerr_ — _Xi}'r_v_
where we have introduced the following basis transformation for the error process matrix
X =WINGL W, Wap =Tr{ ELUL B, UL, |- (B9)

With this transformation, we can swap all x*""(#;11 ;) in equation (B8) to the left, such that the dynamical
quantum map is described by

— X" (t1:10) — XU(n10) (B2511) — XUty 00y U(010) (B3522) — - — Ulti,00) — Ulta,t1) —U(ts,1) — ...

In the first order approximation [90], the composition of a sequence of error process matrices can be written
as a sum. Using the group composition for the unitary evolution and letting At — 0, we can convert the
sums into time integrals, such that

t
X (110) % X 3 G [ A (W) B (0],
pq fo
Waﬂ (tl> =Tr {ELU(t() + f/, to)Eﬁ UT(t() + t/, to)} R

(B10)

making it a linear function of the Lindblad matrix G. As a result, the density matrix for the evolution of an
initial state p; also becomes a simple linear function of G.

Once we have obtained the full time evolution in terms of the weak-noise error process matrix, we can
apply it to the ML-LQT (12) or CS-LQT (13) discussed in the main text. In both cases, we need to calculate
the predicted measurement probabilities for a triple (po s, i, M,,). Using the above expression, we find

Pis = Dis +Z¢ffucaﬁ (B11)
a,p

with the definitions introduced in equations (8) and (9) of the main text.

Since we have assumed to know the gate unitaries by design, and the measurement configurations are
experimentally predefined, the p* probabilities and the ® matrix should be calculated only once. Afterwards,
we choose an estimator for G — G, which will be obtained by fitting the modeled values of p; ;. u to observed
frequencies f; ; ,,. For instance, the log-likelihood cost function is now explicitly written as

Cin (G) == fisplog|pls,+> 8 Gag |, (B12)

1,5,04 a,

which is the solution presented in the main text (11) for linearized ML-LQT , and also appears in the
CS-LQT constraint (13) after a least-squares approximation.
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Appendix C. Convex gradient descent for linear LQT

In this appendix, we adapt some of the efficient methods for convex quantum state tomography to our
linearized ML-LQT . In particular, we consider the DIA [88] and the pGDM [91] in the context of
Lindbladian tomography.

C.1.DIA
Let us consider the DIA [88] for our convex problem of linearized ML-LQT , which we rewrite here for
convenience

minimize Cy, (G)=— ka log (p} + Tr { @} G})
k (C1)
subject to G:LGLI;,

where we recall that the multi-index k = (s,1, ) contains all information about the initial state, evolution

time, and POVM element, L is a lower-triangular matrix, and we have simplified the notation further by
using matrix products. In contrast to process-QT, G is not constrained further to have unit trace. The DIA
algorithm starts by deriving a closed analytical expression for the gradient by varying C with respect to G,
which, for our linearized ML-LQT estimator, gives

o N e reTsel -
6Ciin (G) = ZP%U{@EG}H{@JG}_Tr{R(SG}, (C2)

a

where we have introduced the matrices

R=="(f®]) (pt +Tr{2fG}) ", (C3)
k

§G=0OL,L! + LOLL. (C4)

We note that R is hermitian, since ®, is hermitian. Rewriting the variation in a ‘vector-of-matrices’ form we
get

5Cyn = Tr { (LZ;R,RLG) : (5LG, aLg)T} = (g0.02), (C5)

with vectors defined as follows

T T
gon = (RLLTR) " 2= (1g,LL) . (C6)

We note that the vector g is the gradient of the estimator Cy;, with respect to L, LTG and, thus, the minimum
is found when

T
dCyin 9Cyiy t
== ¥ ) —9 = RL.=L-.R=0. (C7)
8pia <5‘LG 8L2> G 6

By setting 0z = —7gp,» the estimator Cy, follows the gradient descent to the global minimum. One can
perform different standard line-search techniques to choose an optimal value of 7, which decreases Cy;, as
fast as possible at each step. For a chosen 7),,, the update of the G matrix is given by

G = (Cn + 5LG7n) (CL + (ng,n) — (1= 7,Ry) Gy (1 — 7,R,). (C8)

The gradient descent is known to be a sub-optimal optimization algorithm since it possesses no
information about the previous directions of the descent, and thus can exhibit zig—zag trajectories for
problems with large condition numbers. One of the most efficient deterministic algorithms circumventing
this deficiency is CG [178]. Using the recommendation from [179], we employ the Polak—Ribiére type of
nonlinear CG for the solution of equation (C1).
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Require: Ginir = Go — 20 = (LQ(),LJrG,())7 £ €(0,1), ¢

1: n=0, compute Ro;

2:8pia0 = (RoLGvaL(E,oRO)’ ho = —8pI1a,0>

3: while | Tr{R,Lg,. }| > € do

4. n=n+1;

5:  line search of n, for z, = zy—1 + Muhy—1;

6: compute R, (z,,);

7 gDIA,n = (R”LG””LE,nR”);

<gDIA,n’gC,n - ‘ggDIA,n—l) 0}
)

8: setry, = max
<gDIA,n71? gDIA,ﬂ71>

9 hu=—gpp, + Vuhn—1;
10: return 2= (Lg ., L%, ) = G =L, LL .

The line search for 7, at step 5 can be implemented by choosing arbitrary 1’, "/, and calculating
z) =2z, +n,h,—1and z, =z, 1 +n, h,_,. Then, using the three values Cy;, (zn,l) =Cjn(n=0),
Ciin (z,’l) =Cin(n=1.), Ciin (z,i’ ) = Cyin(n=n)’), one interpolates a quadratic polynomial
Ciin(n) = an? + bn + ¢, and uses its minimum as the 7),,. One should be careful though not to use too large
values of ', n’’, because it could result in breaking of the first order approximation in ||G||At < 1
underlying the linearization. We also note that step 8 introduces the so-called the Polak—Ribiére factor for the
CG descent. In this work we chose "’ = 21’ and optimized the value of 7’ for each figure featuring the DIA
algorithm from the range (0.1, 1). £ was fixed at 0.5.

C.2.pGDM
In this part of the appendix, we adapt a different type of methods to deal with the positive-semidefinite
constraint in the linearized ML-LQT. In state-QT, the use of a Choleski decomposition to explicitly deal with
the constraints of the density matrix has been shown to be responsible for a convergence slowdown of QT
algorithms [91, 180, 181], particularly when the state p to be estimated approaches a pure state and thus has
a very small rank. These works use a method to speed up the estimation by exploiting a projected descent,
such that the density matrix is not constrained to be positive-semidefinite along the descent (it is just
required to remain hermitian), but it is instead projected back to the physical space after each ML descent
iteration. A suggested algorithm in [91] is the pGDM, which showed superior convergence for QT of
high-purity and thus low-rank states.

The pGDM for the linearized ML-LQT can be presented as follows. We denote by G and G physical
positive-semidefinite and possibly unphysical matrices, respectively. Since we do not use the Cholesky
decomposition, the gradient of the linear estimator is found by varying with respect to G directly

5Clin (G) =Tr {R(SG} = <ngDMa 5G> y (C9)

such that g,gpm = R. The syntax of the algorithm is much simpler in this case.

Require: Gipit, 0.9 < v < 1,17 >0, ¢;

l:n= 0, Go = P{Ginit}7M0 = 0;

2: while ‘Clin((_;n) — C]in(Gn71)| > e do
3: n=n+1;

4: My = yMn—1 — ngpeom(Gn-1);

5: Gn = P{Gn—l +Mn};

6: return G,.

We note that, in step 4, we introduce a so-called momentum increase/change, which is controlled by the
‘friction’” constant -y and the accumulation constant 7). As in the DIA of the previous subsection, one should
be careful not to set too large values of 7 that would imply a breakdown of the first-order approximation
underlying the linearization. We note hat, in contrast to DIA, the gradient descent step 7 is not optimized by
using a line search, nor do we apply a CG strategy. Instead, both 7 and the descent directions are held fixed.
In step 5 of the algorithm, the projection P is done by diagonalizing the corresponding matrix and setting to
zero the contribution from all negative eigenvalues. We also note that one could pre-calculate the new
momentum update at the position based on the previously accumulated inertia, namely use
gpooMm (Gr—1 + M, _1) instead of gygpm(Gy—1). This is called the Nesterov update [182], and it has been
shown to be beneficial in many non-linear minimization problems. Additionally, when Cy;, (Gn) increases
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above a threshold, one can reset the descent momentum to zero [183]. In this work we found the values of
v=0.99,7 =3 x 1074, and no Nesterov update to achieve the fastest convergence to the minimum.
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