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One of the key concepts in loop quantum gravity is the quantization of spacetime geometry, with discrete
observables such as the quantum area and volume. The quantum state of the gravitational field is encoded in
so-called spin networks, and the conventional quantum-mechanical dynamics is substituted by a
description in terms of constrained quantum states, in which several constraints define the physical
subspace of the Hilbert space. One of these constraints, commonly called the Hamiltonian constraint,
remains an elusive object in loop quantum gravity because its action on spin networks leads to changes in
their corresponding graphs. As a result, calculations in loop quantum gravity are often considered
unpractical, and neither the eigenstates of the Hamiltonian constraint, which form the physical space of
states, nor the concrete effect of this graph-changing character on observables are entirely known. Much
worse, there is no reference value to judge whether the commonly adopted graph-preserving approx-
imations lead to results anywhere close to the nonapproximated dynamics. Our work sheds light on several
of these issues, by devising a new numerical tool that allows us to implement the action of the Hamiltonian
constraint without the need for approximations and to calculate expectation values for the geometric
observables. To achieve that, we fill the theoretical gap left in the derivations of the action of the
Hamiltonian constraint on spin networks: we provide the first complete derivation of such action for the
case of 4-valent spin networks, while updating the corresponding derivation for 3-valent spin networks.
Our derivations also include the action of the volume operator. By proposing a new approach to encode spin
networks into functions of lists and the derived formulas into functionals, we implement both the
Hamiltonian constraint and the volume operator numerically. We are able to transform spin networks with
graph-changing dynamics perturbatively and verify that the expectation values for the volume have rather
different behavior from the approximated, graph-preserving results. Furthermore, using our tool we find a
family of potentially relevant solutions of the Hamiltonian constraint. Our work paves the way to a new
generation of calculations in loop quantum gravity, in which graph-changing results and their
phenomenology can finally be accounted for and understood.
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I. INTRODUCTION

Although current experiments are still far from observ-
ing any traces of quantum behavior in gravity [1–3], the
necessity of a convergence between quantum physics and
general relativity has been conceptually established since
the pioneering works of Bronstein [4], Dirac [5,6] and
Hawking [7], among others [8,9]. The search for a
quantum theory of gravity led to several proposals,
one of which, loop quantum gravity (LQG), has at its
core the idea of quantized spacetime geometry. The
theory is based on a recasting of the Einstein equation
in terms of holonomies in a compact gauge group and
fluxes of canonically conjugate densitized triads,
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constructed with the so-called Ashtekar-Barbero variables
[10–12]. These new fields allowed for a derivation of
Hamiltonian constraints for the gravitational field [13]
and a quantization protocol in the molds of Dirac’s
quantization [6,14].
One of the bases commonly used in LQG is spanned by

eigenstates of certain geometric operators, the so-called
spin networks (these are closely related, for instance, to
ribbon graphs and string nets [15–17]). These are graphs
with spins/colors [or more formally representations of the
SU(2) group] assigned to their links and nodes that form
singlets out of the spins of incoming and outgoing links (in
other words, this enforces the decomposition of the input
irreducible representations into the output ones). Spin
networks provide a powerful graphical tool to perform
and represent otherwise cumbersome calculations [18] and
have been in use since the advent of the quantum
mechanics of angular momenta [19–21]. A major difficulty
in canonical LQG calculations, however, is the graph-
changing effect of the Hamiltonian constraint on spin
networks, which generates superpositions of spin networks
with different graphs from each input spin network, and
therefore can exponentially increase the number of inter-
vening states in computations. This work aims at contrib-
uting to fill this gap by providing a complete derivation of
the action of the Hamiltonian constraint on 3- and 4-valent
nodes. A related goal is to numerically implement the
corresponding formulas through a novel spin-network-
encoding approach in order to understand the effect of
graph changes on geometric observables, like the volume.
In this way, we can also elucidate the validity of the
commonly employed graph-preserving approximations, as
well as search for new solutions of the Hamiltonian
constraint.
This article gives full details of a letter, where we

summarize and highlight the most important results of
our investigation without details about technical aspects
[22]. It is structured as follows. In Sec. II, we summarize
the main findings of our work, before delving into them. In
Sec. III, we introduce the Hamiltonian constraint and its
basic building blocks. In Secs. IV and V, we introduce the
mathematical machinery used throughout the calculations,
namely, recoupling theory and intertwiners. Sections VI
and VII use recoupling theory to derive the action of the
Hamiltonian constraint on 3- and 4-valent node-like spin
networks, respectively. In Sec. VIII, we consider the action
of the volume operator. In Sec. IX, we introduce our
encoding of spin networks and operators, showing how we
are able to apply the Hamiltonian constraint on spin
networks and evaluate the volume expectation values. In
Sec. X, we present and discuss our results for the volume of
spin networks perturbatively transformed by the unitary
generated by the constraint. Finally, Sec. XI contains our
closing remarks, briefly discussing the consequences of our
findings.

II. MAIN RESULTS

We start with a brief overview of the theory and a
derivation of the action of the (scalar) Euclidean
Hamiltonian constraint (referred to simply as Hamiltonian
whenever there is no risk of confusion) on 3-valent and
4-valent spin networks, the simplest duals to triangulations
of bi- and tri-dimensional hypersurfaces. For the former case,
as inRef. [23], our derivations can be considered an update of
those presented in Refs. [24,25], in which an approach based
on the much less manageable Temperley-Lieb algebra was
employed [19]. Moreover, we show that working with
modern conventions leads to somewhat different results
[cf. Appendix (A2)]. In the case of 4-valent nodes, our
derivations are an extension, as well as a correction, of those
presented in Ref. [26]. This is the first in-depth derivation
of the action of the Euclidean Hamiltonian constraint on
4-valent nodes using the modern graphical-calculus machi-
nery [18,21]. It serves as a guide for both experts and
beginners in LQG, as well as for those generally interested in
spin network calculus for other purposes, like studies of non-
Abelian topological error-correction codes [15–17].
In addition, we introduce a new computational tool,

concretely as a Mathematica code, that implements the
action of the Hamiltonian constraint on spin network
nodes through a newly devised numerical approach. A key
feature of this approach is a map between spin networks
and functions of lists, on which the Hamiltonian acts as a
functional. The (symbolic) calculations, performed in a
computer based on our analytical formulas, involve no
approximations in the Hamiltonian and therefore re-
present the first complete, graph-changing, application
of the Euclidean Hamiltonian constraint on spin networks
with low-valence nodes in vacuo (and one of the first
numerical works in canonical LQG [27–29]), as well as of
the unitary transformation it generates, expanded pertur-
batively. We generate numerical data for the volume
expectation values of two perturbatively transformed
fiducial spin networks of valence 4 using the lapse as a
perturbation parameter and the Hamiltonian constraint as
a unitary-transformation generator. Our perturbative
expansion of the unitary goes up to the third order when
we consider nodes with the same link orientation, up to
diffeomorphisms, as the dual graph of a tetrahedron, and
up to fourth order when we prevent the Hamiltonian from
acting on one of the links. We compare the results with the
corresponding data generated with a graph-preserving
Hamiltonian and present the first concrete indication that
such Hamiltonians fail to capture the proper dynamics of
LQG spin networks. As we anticipate in Fig. 1(c), the
expectation values of the quantum volume are rather
different between graph-changing and graph-preserving
scenarios.
Furthermore, we use our code to look for low-spin

eigenstates of the Euclidean Hamiltonian, showing that
simple eigenstates do exist: states with only vanishing spins
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meeting at the intertwiner. Note that these eigenstates also
include spin networks with large numbers of inner loops, as
long as the innermost links meeting at the intertwiner are in
the trivial representation. Lastly, we propose a more
complex family of solutions built from any desired spin
network, the properties of which should be investigated in
follow-up works.

III. OVERVIEW

Using Ashtekar-Barbero variables, the Einstein-Hilbert
action can be recast in terms of smearings over three sets of
constraints corresponding to gauge invariance, diffeomor-
phism invariance and (Euclidean) time reparametrization
[13]. In the quantum theory, gauge invariance is well
understood, and consideration solely of spin networks with
spin singlets at every node (also called intertwiners)
suffices to satisfy the corresponding constraints. In precise
mathematical terms, gauge invariance enforces that the
Clebsch-Gordan inequalities are fulfilled at every node.

Spatial diffeomorphism invariance is a key symmetry in
general relativity and topological field theories [15], both of
which participate in the construction of LQG. In terms of
spin networks embedded in manifolds, spatial diffeomor-
phisms can be well understood as (invertible) smooth [30]
deformations of the spin network graphs. In a very
simplified description, to satisfy the diffeomorphism con-
straint, one needs to consider equivalence classes of (dual)
spin networks with respect to diffeomorphisms [14,31]: all
graphs related to each other by smooth deformations should
be superposed to compose states that satisfy the diffeo-
morphism constraints.
The last constraint, commonly known as scalar or

Hamiltonian constraint, dictates the dynamics of spin
networks, and we sometimes refer to it simply as the
Hamiltonian, for the sake of analogy with standard quan-
tum mechanics. When neither matter nor a cosmological
constant is considered, the eigenstates of all three con-
straints with null eigenvalue are the physical states of the
theory (strictly speaking, those normalizable with respect to
a suitable inner product). On the other hand, for the scalar
constraint, nonzero eigenvalues might represent, for exam-
ple, physical states of the geometry in the presence of
classical matter or a nonzero cosmological constant, both of
which are common in the formulation of loop quantum
cosmology [32,33].
In the absence of matter or a cosmological constant, we

can construct the scalar constraint from the volume operator
V̂ and the holonomies ĥ½p� (the link-related parallel-trans-
port operators commonly encountered in lattice gauge
theories) along a path p,

Ĉs ¼ lim⊠→0

X
⊠

iN⊠ϵijk
3l20

trfĥ½αji� − ĥ½αij�; ĥ½pk�V̂ĥ−1½pk�g:

ð1Þ

The above definition follows the proposal introduced by
Thiemann in Refs. [13,34,35] and further investigated in
Ref. [24]. In this equation, the large curly brackets stand for
the anticommutator, the symbol tr is the trace, and ϵijk is the
totally antisymmetric symbol. The symbol ⊠ represents
a partition of the manifold into tetrahedra, and the limit
⊠ → 0 means that the size of those tetrahedra gets
infinitesimally small (yet still nonzero [35]), while their
number diverges. It must be noted, however, that different
partition schemes using, e.g., prisms of choice (which can
still be broken down into tetrahedra), are possible, all of
which lead to the same equations up to some prefactors
[34,36]. As a result of this regularization procedure, only
the tetrahedra based at the nodes of the spin networks will
contribute to Eq. (1), and no tetrahedron will ever contain
more than one node [31] (in fact, shrinking the tetrahedra to
a size at which they contain either one or no nodes suffices
to describe the effect of this limit). The prefactor N⊠ is

(a) (c)

(b)

FIG. 1. Schematic representations of spin networks. (a) A
3-valent spin network node (bottom) is transformed under the
action of the Hamiltonian to give a modified structure containing
an inner loop (top), exemplifying the graph-changing character of
the nonapproximated Hamiltonian constraint. (b) A minimal
example of spin network: the dipole model. Two 4-valent nodes
are connected through their links pairwise, so that the dual to such
graph is formed by two tetrahedra with faces glued pairwise
(what cannot be visualized in 3D). These tetrahedra represent the
quanta of volume. (c) Under the action of a unitary generated by
the Hamiltonian, with a perturbative evolution parameterN called
lapse (which mathematically behaves similarly to the time in
standard quantum mechanics), a transformed spin network node
behaves differently when either graph-changing or graph-pre-
serving dynamics is considered. The volume, with contributions
up to second order in N displayed, decreases much slower with N
when the approximation of nonchanging graphs is adopted
(dotted curve, right dipole), while the correct dynamics produces
a steeper volume reduction with N at leading perturbative order
(solid curve, left dipole). The data for the volume dependence on
N for these two cases consider a single spin network node with
spins 1=2 on its four links and spin 0 (red) or 1 (black) in the
central link (not displayed in the dipole model) and therefore do
not entirely represent the dynamics of the dipole model, which
was included for illustrative purposes.
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called lapse and results from the Riemannian discretization
of a distribution that provides a Lagrange multiplier to
integrate the constraint. In Eq. (1), the lapse serves as an
amplitude modulator for the action of the constraint in each
tetrahedron, which effectively translates a 3D foliation of
spacetime (or a triangulation thereof) along a timelike
vector proportional in absolute value to N⊠. The paths αij
and αji are “triangular” loops of opposite orientations (i.e.,
αij ¼ α−1ji ), with segments tangent to two linearly indepen-
dent links (labeled by i and j) from a (physical) node and
span one of the faces of a regularization tetrahedron. The
path pk is a line segment tangent to yet another link from
the node (labeled by k), linearly independent from the two
links i and j, and spanning one of the edges of a
tetrahedron. The holonomies couple additional spins (in
the sense of a Clebsch-Gordan spin addition) to the
respective links of the spin network on which Ĉs acts.
Moreover, because αij and αji are (closed) loops, the term
ĥ½αij� − ĥ½αji� can add one additional link (between i and j)
to the spin network [see Fig. 1(a)].
Finally, the volume is a key geometric operator in LQG

[37–43], extracting information about the (quantum) geom-
etry of spacetime from quantum states. Discrete eigenval-
ues of the volume are based on the spins of the links
connected to a certain node of valence 4 or higher, with l0
being the Planck length. This provides an interpretation of
spin networks as the dual to a triangulation of a manifold,
associating a link to each face (2-simplex) of the triangu-
lation and a node to each tetrahedron (3-simplex), or
polyhedron in the most general case. In this sense, two
nodes connected by four links can be seen as two tetrahedra
with pairwise connected faces [see Fig. 1(b)]. The matrix
elements of V̂ are introduced later in the calculations. Since
the volume depends on the relative arrangement of links at
each node [38], we consider spin networks with linearly
independent triplets of links, each oriented along a face of a
tetrahedron. Diffeomorphisms (or averaging by them)
should not influence the effect of the volume or the
constraint on these spin networks [34]. One possible
exception, however, is given by spin networks that had
one or more of their links removed by the constraint, in
which case two diffeomorphically nonequivalent spin net-
works can generate equivalent ones after removing a link
by the action of the constraint [35].
At this point, it is worth noting that Thiemann presents

two possibilities for the implementation of a symmetric
constraint operator in Ref. [35]. In his first proposal, a
repeated action of the constraint (1) introduces inner loops
progressively deeper, without ever removing them. Then, in
order to obtain a symmetric operator on spin networks, the
author suggests to add by “brute force” the Hermitian-
conjugate term to every matrix element of the operator, i.e.,
hψ jĈsjϕi → hψ jĈsjϕi þ hϕjĈsjψi�. On the other hand, the
second proposal considers that the added links belonging to

the inner loops are smooth rather than analytic and that they
intersect a pair of analytic spin network links at nodes such
that all the links have collinear tangents. The collinearity of
the links allows these nodes of the inner loops to have
arbitrary valence, yet not be changed by the Hamiltonian
because nodes with collinear links (as well as 3-valent
nodes with coplanar links) are volume eigenstates with zero
eigenvalue [35], granting an anomaly-free action for this
symmetric constraint. Although this would allow two inner
loops with a single common link to intersect at the same
node of this link, we neglect these subtleties while adhering
to the second proposal for a symmetric constraint. It is
worth noting that this symmetrization additionally requires
a modification of the triangulation scheme: when the
Hamiltonian acts on a node introducing a loop in the
location where the deepest inner loop is, these loops get
coupled (i.e., the regularization tetrahedra there should
match the deepest inner loop and therefore cannot be
shrunk to arbitrarily small sizes). In this way, a loop link
can decrease its spin and be removed. We also note that
both symmetrization approaches involve changes caused
exclusively in the vicinity of the spin network nodes,
preventing “long-range” couplings between different nodes
by the constraint and implying that the nodes created by
loop couplings cannot have additional loops coupled to
them (so that the constraint commutes with itself, rendering
it anomaly free [34]), differently from what happens in
covariant loop quantum gravity.

IV. SU(2) RECOUPLING THEORY

Before deriving the action of Eq. (1) on spin network
nodes, we introduce the main working tools from recoupling
theory, i.e., the graphical calculus involving elements and
representations of the SU(2) group. Early papers in LQG
[24,25,42,44]made use of the now “old fashioned”, yetmore
graphically intuitive description of such systems in terms of
Temperley-Lieb tangles [19], which are closely related to
knots [45]. Tangles are usually proportional to spin networks
[42], but the complicated conversion factors between them,
which lead to the need for normalization not only in the
states, but also in commonly used functions like the Wigner
3j, 6j, and 9j symbols, make the Temperley-Lieb approach
less attractive when one aims at robust calculations that can
be performed numerically. For completeness, we report the
derivations using theTemperley-Lieb algebra inAppendixB,
while here instead we focus on the modern convention for
recoupling theory,mainly following the notation ofRef. [18],
as well as some identities from Ref. [21]. In this convention,
the Wigner 3j, 6j, and 9j symbols are the same that are
implemented in Mathematica.
The key idea of recoupling theory is to represent the

SU(2) group elements g in a given representation j∈N=2
(where we consider the naturals N to include zero), as
well as its coupling to other elements of the same group
in possibly different representations, in graphical form.
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Starting from the simplest element in any representation,
the identity, we write a single straight line with ends
carrying the two indices of the identity matrix (e.g., for
j ¼ 1=2, the 2 × 2 matrix has two indices commonly
associated with spin magnetic numbers �1=2),

ð2Þ

and with the representation indicated above the correspond-
ing link. For a given j, there are dj ¼ 2jþ 1 possible
choices of indices, and once two matrices are contracted,
summation over the indices at the corresponding connected
ends of the graphical representation is implied. If one
therefore connects the two opposite ends of the identity,
forming a closed loop, one ends up with its trace, which is
simply dj.
Another SU(2) element that deserves its own gra-

phical representation is given by the j-representation

tensor ϵðjÞmn ¼ ϵðjÞmn ¼ ð−1Þj−mδðjÞm;−n ¼ ð−1Þ2jϵðjÞnm, for

which ϵðjÞmnϵðjÞnk ¼ ð−1Þ2jδðjÞkm . Graphically, this tensor is
represented by a small solid arrow pointing from m to n,

ð3Þ

Consequently, one has the graphical relations

ð4Þ

ð5Þ

It should be noted that flipping the arrow in Eq. (3)
corresponds to swapping the order of the indices,
which leads to a prefactor of ð−1Þ2j. Since ð−1Þ4j ¼ 1,
Eq. (5) can be derived from Eq. (4) through an
arrow flip. The tensor ϵðjÞmn is invariant under SU(2)

transformations: given a Wigner matrix DðjÞm
n ðgÞ for

the SU(2) element g, DðjÞm
n ðgÞϵðjÞmpD

ðjÞp
q ðgÞ ¼ ϵðjÞnq ¼

DðjÞn
m ðgÞϵðjÞmpD

ðjÞq
p ðgÞ. Graphically, the Wigner matrix is

represented by a triangle with the group element g within,

ð6Þ

The invariance of the tensor ϵðjÞnq is therefore graphically
represented as

ð7Þ

A similar relation holds when the triangles point toward
the “free” ends of the links. It is worth noting that the

invariance of ϵðjÞnq holds for any g as long as it is present on
both Wigner matrices. Using Eq. (7), it is possible to show
that the Wigner matrices can be inverted through contrac-

tion with ϵðjÞmn on both of their indices,

ð8Þ

Equations (2)–(8) span the basic relations for represent-
ing single SU(2) elements graphically as links. Considera-
tion of graphs, however, requires the coupling of several
such links at nodes according to the SU(2) decomposition
rule into irreducible representations. This enforces the
Clebsch-Gordan (also known as triangularity) conditions
on the spins meeting at a certain node. Mathematically, the
(nontrivial) minimal-valence coupling is enforced by a
Wigner 3j symbol, an object proportional to the Clebsch-
Gordan coefficients. The Wigner 3j symbol is graphically
represented as a 3-valent node with a certain cyclicity that
describes whether the columns of the 3j symbol are ordered
clockwise (−) or counter-clockwise (þ) at the node,

ð9Þ

Swapping the cyclicity of the node, which is also known as
braiding, leads to a phase factor of ð−1Þj1þj2þj3 . Since j1,
j2, j3 must fulfill the Clebsch-Gordan conditions, such that
j1 þ j2 þ j3 ∈N, a double braid leads to a prefactor of
ð−1Þ2ðj1þj2þj3Þ ¼ 1. On the leftmost side of Eq. (9), the
Wigner 3j symbol contains an upper row of spins (irre-
ducible representations) and a lower row of associated spin
projections/magnetic numbers (tensor indices in a given

irreducible representation). The Wigner matrices DðjÞm
n ðgÞ,

represented as in Eq. (6) [which includes both Eqs. (2) and
(3) as special cases] are then contracted with the node legs
of the same representation in Eq. (9), which implies a
summation over the lower entries in the latter. The Wigner
3j symbol is also invariant with respect to SU(2) trans-
formations; i.e., it returns the node when this is contracted
with three inward oriented or three outward oriented
Wigner matrices representing the same SU(2) element g,

ð10Þ

The SU(2) invariance of the Wigner 3j symbol means that,
regardless of their representations, the Wigner matrices can
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be partially or even entirely absorbed into the nodes in
graphical notation, depending on which elements g are
connected to each node. As an example, if all three legs of a

given node are contracted with ϵðjÞnq symbols, therefore
displaying three outward or inward oriented solid arrows
in graphic form, they can be all simultaneously incorporated

into the node. Lastly, there is a correspondence between ϵðjÞnq

and theWigner 3j symbols, which graphically takes the form

ð11Þ

Now that the coupling of three links at a node has been
introduced, we present a few graphical relations involving
nodes and links. The first two relations allow for major
simplifications during calculations,

ð12Þ

ð13Þ

Note that these graphical relations are of topological nature,
in the sense that rotating or deforming them without
crossing links does not affect the outcomes.
Two (identity) links of arbitrary spins can be coupled by

introducing two nodes connecting them according to

ð14Þ

The sum on the right-hand side of Eq. (14) runs, in
principle, over j∈N=2, but considering that the two nodes
enforce that the triangle inequality has to be fulfilled by the
three spins meeting at them, the sum over j runs effectively
from jj1 − j2j to j1 þ j2. Although Eq. (14) can also be
used on links with arbitrary group elements assigned to
them, this requires extending the corresponding Wigner-
matrix links by contracting one of their ends with identities,
so that the identity segments of the links can be merged
through (14), and the Wigner matrices, in the form of
Eq. (6), sit at the external legs of one of the nodes on the
right-hand side of Eq. (14). When the same group element
is assigned to both of the links merged through this relation,
the node invariance [Eq. (10)] can be used to give an

expression corresponding to the direct coupling of two
Wigner matrices of the same g,

ð15Þ

ð16Þ

The manipulation of structures like the ones on the right-
hand side of Eqs. (14)–(16) is facilitated by

ð17Þ

which accounts for the swapping of the legs of spins j2 and
j3. The symbol within curly brackets in Eq. (17) is the
Wigner 6j symbol, defined through the contraction of four
Wigner 3j symbols (note that, for contraction, one needs

ϵðjÞnq to convert upper into lower indices and vice versa). In
graphical form, this contraction is represented as

ð18Þ

The three arguments in the upper row of the Wigner 6j
symbol [right-hand side of Eq. (18)] are the spins of the
three legs of any chosen node of the tetrahedron; the
remaining arguments are the corresponding spins of oppo-
site links of the tetrahedron (e.g., ji is opposite to ki)
organized column wise. The Wigner 6j symbol has a high
degree of symmetry: permuting its columns gives the same
outcome, as well as swapping the upper and lower argu-
ments in any two chosen columns. On top of that, owing to
the presence of four Wigner 3j symbols, the Wigner 6j
symbol is nonzero only if the triangle inequalities are
simultaneously satisfied in all of the nodes of the tetrahe-
dron, i.e., for the sets fj1; j2; j3g, fj1; k2; k3g, fk1; j2; k3g,
and fk1; k2; j3g. Similarly, contracting six Wigner 3j
symbols gives the Wigner 9j symbol,
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ð19Þ

Under permutations of any two of its rows or
columns, the Wigner 9j symbol picks up a phase
ð−1Þj1þj2þj3þk1þk2þk3þl1þl2þl3 . If two of its columns or
rows are identical and the phase factor is negative, the
Wigner 9j symbol is therefore zero.
Combining Eq. (17) with Eqs. (3) and (9), one

can derive the so-called 2-2 Pachner move (see
Appendix A),

ð20Þ

This transformation represents a change of intertwiner
basis, which is further discussed in the next section. The
2-2 Pachner move is also known as F-move in the field of
non-Abelian anyonic quantum error correction and plays an
important role in implementing lattice surgeries, Dehn-
twists, and braid moves [15,16].
Considering the large number of sums over spins, as

well as of Wigner symbols summed over, it is advantageous
to employ a few identities involving such quantities
[cf. Ref. [21], Eqs. (C.35a–e) and (C.37)]:�

l1 l2 0

l3 l4 k

�
¼ ð−1Þl1þl3þkδl1l2δl3l4ffiffiffiffiffiffiffiffiffiffiffi

dl1dl3
p ; ð21Þ

X
j

djð−1Þ2j
�
l1 l2 j

l1 l2 k

�
¼ 1; ð22Þ

X
j

dj

�
l1 l2 j

l3 l4 k1

��
l3 l4 j

l1 l2 k2

�
¼ δk1;k2d

−1
k1
; ð23Þ

X
j

djð−1Þk1þk2þj

�
l1 l2 j

l3 l4 k1

��
l3 l4 j

l2 l1 k2

�
¼

�
l1 l4 k1
l2 l3 k2

�
; ð24Þ

X
j

djð−1Þl1þl2þl3þl4þl5þl6þk1þk2þk3þj

�
l1 l2 j

l3 l4 k1

��
l3 l4 j

l5 l6 k2

��
l5 l6 j

l2 l1 k3

�
¼

�
k1 k2 k3
l5 l1 l4

��
k1 k2 k3
l6 l2 l3

�
:

ð25Þ

The SU(2) generators, being elements of the su(2), can
also be represented similarly to Wigner matrices. However,
the presence of an extra index, say i, means that they require
one additional leg with respect to Eq. (6), with spin 1.
These elements are sometimes called grasps and are a key
component of the quantum volume operator. Their graphi-
cal representation is

ð26Þ

V. INTERTWINERS AND SPIN NETWORKS

Intertwiners are equivariant multilinear maps between
tensor products of SU(2) representations. In other words,
they are invariant tensors of the SU(2) group. Given an
arbitrary number of representations ji acting on Hilbert
spaces Hji , the intertwiners are the elements of the space
(of spin singlets) InvSUð2Þð⊗i HjiÞ. The simplest (which we

refer to as trivial) intertwiner is ϵðjÞnq , which is the basis

element of the one-dimensional space InvSUð2ÞðHj ⊗ HjÞ
for a given j. The next (nontrivial) intertwiner, correspond-
ing to the Wigner 3j symbol, is the sole basis element of the
space InvSUð2ÞðHj1 ⊗ Hj2 ⊗ Hj3Þ for a given choice of j1,
j2 and j3. As can be seen from Eq. (12), which can be recast
as the contraction of two nodes with the same three spins
but different cyclicities [cf. Eq. (9)], i.e., as an inner product
of the basis element of InvðHj1 ⊗ Hj2 ⊗ Hj3Þ with itself,
the norm of the Wigner 3j symbol is 1. The identity of this
space can therefore be resolved simply as two (noncon-
tracted) copies of the Wigner 3j symbols, a ket followed by
a bra (in Dirac’s notation).
In general, n-valent intertwiners can be built from 2- and

3-valent ones through contraction. The protocol for con-
struction of n-valent intertwiners requires the use of n − 2
Wigner 3j symbols, each of which has one or two of its

indices contracted with one out of n − 3 ϵðjÞnq , which bridge
the 3j symbols pairwise. The chain of 3-valent nodes so
constructed has therefore one “free” 3-valent-intertwiner
leg per inner node and two such legs at the nodes at the ends
of the chain. These constructions, however, are, in general,
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not unique, as the corresponding space InvSUð2Þð⊗i HjiÞ
might have several basis elements corresponding to all
possible choices of inner-link spins. The identity 1 of
such spaces can then be resolved as the weighted sum over
all inner spins of the (noncontracted) doubled n-valent
intertwiners,

ð27Þ

For simplicity, we do not use Dirac’s bra-ket notation
explicitly, and instead, we merely present the spin networks
(or intertwiners at their nodes) as quantum states, with
“free” legs pointing in opposite directions for bras and kets
[right and left spin networks in Eq. (27), respectively], so
that inner products tie legs of corresponding spins [the
Wigner 3j symbols are real, so in the absence of Wigner
matrices there is no need for complex conjugation when
converting kets into bras]. The sum in Eq. (27) runs over all
(Clebsch-Gordan)-allowed values for the set of n − 3
internal spins fig. Using Eq. (13), it is possible to show
that the squared norm of each of the n-valent intertwiners in
Eq. (27) is ðQl dilÞ−1, which explains the weighting factors
in the sum. Equation (27) can greatly simplify calculations,
since introducing the intertwiner-space identity graphically
accounts for “breaking” any number of links of a spin
network and introducing (27) for the corresponding number
of external legs, which are contracted with the broken-link
ends of the spin network. The concept is similar to lattice
surgery [15,46,47]. By introducing the resolution of the
identity in spin network calculations, one can therefore
“surgically remove” portions of the spin network which,
once contracted with suitable intertwiners, form closed
secondary spin networks that can be converted into
functions through, e.g., Eqs. (18) and (19). As an example
that is useful for later calculations, we consider the
following use of the resolution of the identity:

ð28Þ

In Eq. (28), the three (magenta) dots represent the specific
locations chosen for “breaking” the links and contracting

with the legs of the 3-valent intertwiners that resolve the
identity of the space InvðHj1 ⊗ Hj2 ⊗ Hj3Þ. Note that this
contraction requires the braiding of the links of spins k1, j2,
and k3 on the right-hand side of Eq. (28), explaining the
flip in cyclicity. We note that, after accounting for some
“arrow-flipping” and “braiding-related” phase factors, a 2-2
Pachner move applied on the spin-j1 link of the spin
network on the left-hand side of Eq. (28) would lead to a 6J
symbol as the coefficient of a spin network of the form
given in Eq. (13), with an additional 3-valent intertwiner at
one of its ends. After resolving the “bubble”, one equiv-
alently obtains the right-hand side of Eq. (28).
As a special case, which is of great importance in

the study of the action of the LQG Hamiltonian con-
straint on spin networks, we look at the 4-valent inter-
twiners. They are composed by two Wigner 3j symbols

contracted by means of one ϵðjÞnq . The choice of the
legs that are paired leads to different bases of
InvSUð2ÞðHj1 ⊗ Hj2 ⊗ Hj3 ⊗ Hj4Þ, which can be mapped
into each other by a 2-2 Pachner move [cf. Eq. (20)]. The
number of elements in these bases is determined solely by
the number of allowed inner-spin values connecting the two
nodes: if the central link of spin i pairs the external links of
spins j1, j2, j3, and j4, forming triangularity-fulfilling sets
fj1; j3; ig and fj2; j4; ig, then i runs from maxfjj1 −
j3j; jj2 − j4jg to minfjj1 þ j3j; jj2 þ j4jg. The 4-valent
intertwiners have squared norm d−1i , as can be derived
with the aid of Eq. (13) (which removes the “inner bubble”)
followed by Eq. (5) (to remove the arrows) and Eq. (12),

ð29Þ

Note that the 4-valent intertwiner on the right part of the
graph on the left-hand side of the equation (corresponding
to Dirac’s ket) has both its 3-valent nodes braided, so that
the cyclicities are inverted. If the inner spins i and i0 do not
match, the inner product gives zero. Similarly, if the
external spins of any of the contracted legs do not match,
the inner product is also zero, but we omit the correspond-
ing Kronecker deltas whenever possible. In Eq. (29), in
order to make its interpretation clearer, we have displayed
the connection points between external links of the two
4-valent intertwiners participating in the inner product
(represented in red). It is worth noting that, by choosing
the intertwiners in a different basis, such as the one
obtained after applying a 2-2 Pachner move, the same
result can be obtained in a different way. First, Eq. (13) is
used to get rid of the upper and lower “bubbles” in the
graph, then Eq. (5) merges the arrows, and finally the
remaining loop, which represents the trace over the identity
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in the inner-spin representation, gives a factor of di. This
calculation is represented as

ð30Þ

Note that the deformation of the lines in the graphs, e.g.,
rounded in Eq. (29) and blocky in Eq. (30), is irrelevant. All
that matters is the adjacency between graphical elements.
For the sake of visual simplicity, we henceforth omit these
(red) contraction points.
It might seem that once we have completed the study of

bases of the InvSUð2Þð⊗i HjiÞ spaces we are ready to
proceed with the action of the Euclidean Hamiltonian
constraint on general spin networks. This perspective,
however, fails to acknowledge the importance of a funda-
mental component of spin networks, namely, the Wigner
matrices at the links. The holonomies in Eq. (1) act on spin
networks according to Eqs. (15) and (16), so that the spin
networks at both the domain and image of the map (1)
contain SU(2) group elements assigned to their links. Once
the quantum states are described by spin networks, the
inner product requires taking integrals with Haar measure
over all SU(2) elements at the links of the spin network.
These integrals couple two links with the same assigned
SU(2) element, one from the bra and another one from the
ket, according to

ð31Þ

Note that the orientation of the arrows in Eq. (31) is
irrelevant: as long as they are parallel, flipping both of them
gives a phase ð−1Þ4j ¼ 1. We show below that the
Kronecker delta in Eq. (31) is critical to ensure orthogon-
ality of states in the image of the map (1).
The operator defined in Eq. (1) acts on 3-valent node-like

spin networks (i.e., spin networks that include the inter-
twiner and its “neighborhood”, potentially representing a
local component of a larger spin network), henceforth
denoted NLSNs, of the form

ð32Þ

Using Eqs. (7) and (10), several of the SU(2) elements
in Eq. (32) can be absorbed into the ones effectively con-
tributing to the action of the Hamiltonian, namely, the
set of elements ft; l; r; u; e; dg → f1; lt−1; rt−1; u; e; dg →
f1; 1; 1; tl−1urt−1; elt−1; drt−1g. Renaming tl−1urt−1 ¼ g
and pushing the elements elt−1 and drt−1 further down
through the spin network with the aid of Eq. (7), leaves us
with the following NLSN:

ð33Þ

In other words, it is possible to assign SU(2) group
elements to the links in the representations j1, a, and b
in Eq. (33), although this would only further complicate
calculations. Similarly, the same can be done in the other
two nodes connected with the Wigner matrix of the element
g in the representation ε, leading to different elements
assigned to each of the links in Eq. (33). We note, however,
that a temporary conversion back to Eq. (32) is implicit
prior to the application of the volume operator, since the
grasp operators actually act as derivatives on the SU(2)
elements. By comparison with Refs. [24–26], it might seem
surprising that we are considering a 3-valent NLSN with an
additional bridging link between two of its legs, even more
when one considers the presence of a Wigner matrix there.
As we show in the next section, however, this is precisely
the general form of the spin network nodes generated by the
scalar Euclidean Hamiltonian constraint (1). In fact, it is
also the general form of the input nodes acted upon by
Eq. (1). If one wants to consider a spin network node with
no added loops, applying Eq. (11) on both right and left
lower nodes of Eq. (33) when ε ¼ 0 gives, up to a
normalization factor, the “naked” 3-valent spin network
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node (i.e, the intertwiner). In order to investigate the effects
of the symmetry/Hermiticity of Eq. (1) (and therefore also
the reversibility of its action) on spin networks, one must by
any means start with a spin network of the form (33) to be
able to observe that the Hamiltonian both increases and
decreases ε, therefore removing the Wigner matrix when
ε → 0. Note that setting the SU(2) element in the bridging
link equal to g ¼ 1 in the output spin network precludes the
use of Eq. (31) when taking the inner product between spin
networks, which basically destroys the orthogonality
between NLSNs of the form (33). In order to enforce
orthogonality between 3-valent NLSNs with different
values of any of the spins j1, j2, j3, a, b, or ε, one applies
Eq. (31) on the contraction of two spin networks of the
form (33) according to

ð34Þ

Note that, since the bra spin network is Hermitian con-
jugated, its Wigner matrix in Eq. (34) (left of the graph) is
inverted. In the first row of Eq. (34), we use Eq. (8), then
perform the integral over g according to Eq. (31) and finally
use Eq. (5) to achieve the form in the second row. After
application of Eq. (13), the graph in the second row of
Eq. (34) can be converted into the graph in the third row.
The bottom-most graph is then converted into a function
with the aid of Eqs. (5) and (12). For spin networks of the
form (33) with different spins at the external legs (say,
fj1; j2; j3g on the bra and fj01; j02; j03g on the ket), the inner
product then gives δε;γδa;αδb;βδj1;j01δj2;j02δj3;j03d

−1
a d−1b d−1ε .

Similarly, [after properly absorbing SU(2) elements
that effectively do not contribute to the action of the
Hamiltonian] the 4-valent NLSNs acted upon and gener-
ated by Eq. (1) have the form

ð35Þ

Orthogonality between spin networks of the form (35) can
be shown through

ð36Þ

The derivation of Eq. (36) follows the same steps as in
Eq. (34), with one additional step in the last row,
where Eqs. (13) and (5) have to be used before
Eq. (12). For spin networks of the form (35) with different
spins at the external legs (say fj1; j2; j3; j4g on the bra and
fj01; j02; j03; j04g on the ket), the inner product then gives
δε;γδa;αδb;βδi;i0δj1;j01δj2;j02δj3;j03δj4;j04d

−1
a d−1b d−1ε d−1i . It is easy

to show that changing the basis of 4-valent intertwiners in
both bra and ket does not affect the inner product.
When applying Eq. (1) several times on spin networks,

patterns with deeper and deeper inner loops connecting
pairs of legs emerge. Equation (11) shows that, by con-
sidering the inner product between two such spin networks
with different inner-loop structures, their graphs can be
made the same through inclusion of links in the trivial
representation [e.g., ε ¼ 0 in Eq. (35)]. The group elements
assigned (pairwise) to the corresponding links on each of
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the spin networks participating in the inner product are the
same, and through Eq. (31), it is possible to see that, when
the representations do not coincide, as is the case when any
inner loop is missing in one of the spin networks, the inner
product is zero [owing to the Kronecker delta in Eq. (31)].
We emphasize that such orthogonality is a direct result of
the integration (31), and neglecting the presence of a
Wigner matrix on any of the inner loops makes sets of
nonequivalent spin networks nonorthogonal. One is there-
fore left only with the task of calculating the norm of such
complicated spin networks. This can be performed by
induction. Let us assume that we know the squared norm
Nn−1 of a spin network sn−1 with n − 1 inner loops.
Adding one extra inner loop as close as possible to the
intertwiner (i.e., deeper than any of the n − 1 loops), gives
us the spin network sn. On the other hand, Nn−1 can be cast
as N>1

n−1d
−1
i , where N>1

n−1 is the coefficient obtained from
all inner loops and d−1i is the norm of the intertwiner,
which remains after the contributions of all inner loops are
factored out of the graph. If we now consider sn, its squared
norm will be N>1

n−1N1, where N1 is the squared norm of the
spin network (35), s1, which remains after converting the
n − 1 outermost loops into coefficients. If the innermost
loop in s1 contains links of spins i, an, bn, and εn, then,
from Eq. (36), we see that N1=d−1i ¼ d−1an d

−1
bn
d−1εn , which

means that adding a new loop as close as possible to the
intertwiner will lead to a multiplicative factor of N1=d−1i in
the squared norm. By induction, we then see that, if the
“naked” intertwiner has squared norm d−1i , adding loops
with external links with spins ak, bk, and εk gives the total
squared norm d−1i

Q
k d

−1
ak d

−1
bk
d−1εk , to which the only spins

that do not contribute are those of the outermost links of
the NLSN.
It is useful to work with normalized spin networks

for some calculations, such as the derivation of the
quantum volume operator, which requires diagonalization.
Normalization of spin networks can be achieved by
multiplying them with the inverse of their norm, rendering
orthonormal the set of spin networks of the form (33)
or (35).

VI. ACTION OF THE SCALAR CONSTRAINT
ON 3-VALENT SPIN NETWORKS

A. Overview

In this section, we present a detailed derivation of the
action of the constraint (1) on 3-valent NLSNs of the form
(33). The derivation consists in a sequential implementa-
tion, via recoupling theory, of the action on the considered
NLSN of each of the operators appearing in Eq. (1). For
readers that are not interested in these technical details, we
recommend skipping directly to the final formula of this
section, Eq. (49), which explicitly shows the form of the
Hamiltonian matrix elements.

B. Action on 3-valent NLSNs

Let us start with a spin network of the form (33).
Following Refs. [24,25], both the links (i.e., the Wigner
matrices) and the paths of the holonomies in Eq. (1) will be
oriented towards the node, so that inverse holonomies are
associated with segments oriented away from the node. The
orientation is important, since the consecutive application
of the holonomies in Eq. (1) should follow a chain of
contractions closed by the trace.
We proceed with the application of the first holonomy

of the directly ordered term on the right-hand side of Eq. (1)
to the fiducial spin network. At first, we consider the action
of ĥ−1½pk� only along the path p1 cocurvilinear to the link
of spin j1, i.e.,

ð37Þ

As previously explained, the Wigner matrices of inverse
SU(2) elements corresponding to inverse holonomies are
directed outward from the node. The holonomies are in
the fundamental representation, i.e., spin 1=2, as shown in
Eq. (37). We extend the lower end of the spin-1=2 Wigner
matrix on the right-hand side of Eq. (37) by contracting it
with the 1=2-representation identity, Eq. (2), so that the
latter can be coupled to the spin network link of spin j1 with
the aid of Eq. (14). The spin resulting from the coupling
assumes all values m allowed by the Clebsch-Gordan
conditions, namely, m ¼ j1 � 1=2. Note that the lower
“free” link of spin 1=2 in Eq. (37) is technically one of the
legs of the node, the intertwiner of which temporarily
becomes 4-valent, having an inner link with spin j1. The
action of the holonomies ĥ−1½p2� and ĥ−1½p3� along the
links of spins j2 and j3, which we do not explicitly show,
follow analogous relations with permuted labels.
Spin networks like the one in the lower row of Eq. (37)

are eigenstates of the volume operator. The latter acts on the
(physical) nodes of the graph, giving zero contribution from

TAMING THIEMANN’S HAMILTONIAN CONSTRAINT IN … PHYS. REV. D 112, 026024 (2025)

026024-11



nodes with valence below 4, while the central node
contributes with a volume defined by the spins of the links
attached to it. We provide a detailed derivation of the action
of the volume operator on such spin networks in Sec. VIII,
but for now we merely represent the eigenvalues of the

operator as Vð3.5Þ
m;j1;a;b

, where the superscript denotes that the
intertwiner has valence 4, but one of its links (the holonomy
one) is merely temporary. The next operator on the right-
hand side of Eq. (1) is the holonomy ĥ½pk�. For the specific

case of the path p1 along the j1-representation link, ĥ½p1�
is graphically represented by a Wigner matrix directed
toward the node, with its lower index contracted with the
upper index of ĥ−1½p1�. It is worth noting that, since
ĥ½p1�ĥ−1½p1� ¼ 1 [the SU(2) identity in the fundamental
representation], the contraction of these holonomies,
graphically shown as a contraction between two Wigner
matrices, one for g and one for g−1, leads to temporary spin-
1=2 links corresponding only to identities (straight lines),

ð38Þ

Note that the deformation of the links on the last two rows
of Eq. (38) is irrelevant; i.e., only the arrangement of the
ends of the links matters, as we show below. The choice of
the SU(2) element g for the Wigner matrices corresponding
to the holonomies applied in Eqs. (37) and (38) results from
another absorption of noncontributing group elements. In
fact, the SU(2) element associated with the holonomies in
Eq. (1) could be chosen at random, yet expressing it as
k ¼ y−1gy allows one to implement the coupling shown in
Eq. (37) with g−1 replaced with g−1y and leave an addi-
tional Wigner matrix for the element y−1 on the lower spin-
1=2 link. Similarly, the coupling between g−1y and k in
Eq. (38) leads to a left Wigner matrix for the element y on
the upper spin-1=2 link. The Wigner matrix for the loop
holonomies ĥ½αij�, once contracted to the Wigner matrices

of y and y−1, perfectly matches the element g of the inner-
loop link of the NLSN. Thus, one can in fact directly
consider g as the SU(2) element associated with the
holonomies in the Hamiltonian.
The holonomies over the triangular loop, ĥ½αij� − ĥ½αji�,

should be applied on the final NLSN obtained in Eq. (38) in
such a way that the sequence of contractions in Eq. (1) is
properly ordered and closed. Since αij and αij have
opposite orientations, they are attached to the loose ends
of the two spin-1=2 temporary links (which are physically
at the same point of the manifold) in different ways. The
presence of a trace in Eq. (1) enforces that all virtual links
should be tied together, such that no loose virtual links
remain. As a result, for ĥ½α23�, we get
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ð39Þ

While transitioning from the left-hand to the right-hand
side in the upper row of the above equation, Eq. (10) has
been used on the node joining the links of spins
fj3; b; εg. In the (upper) right-hand side of Eq. (39),
the holonomy along the loop αij has been graphically
represented as a Wigner matrix in the fundamental
representation with ends that have been extended by
identities, one of which, on the right side, is converted
into two ϵð1=2Þ symbols with the aid of Eq. (5). The trace
in Eq. (1), which we do not write explicitly in Eq. (39),
enforces the contraction of each of the free indices of this
Wigner matrix (or of its identity-extended version) to the
temporary links introduced by the holonomies along the
link p1 (“vertical” direction in the graphs), leading to
the formation of “square” loops in the bottom row of
Eq. (39) after a braiding operation on the uppermost
node according to Eq. (9) (notice that the kinks have
no physical meaning and serve merely for graphical
convenience). Additionally, at the node containing

spins fa; α; 1=2g, Eq. (10) has been used to introduce
three solid arrows. The effect of coupling the identity
extensions of the Wigner matrix of g to the links of spins
a and b can be accounted for by applying Eq. (14) to
each of these links. In particular, for the right funda-
mental-representation identity, the coupling to the spin-b
link involves only the segment between the two ϵð1=2Þ
symbols, which then become integrated into loops.
Similarly, the ϵðaÞ symbol is moved down in order for
the identities in the a and 1=2 representations to be
coupled. The Wigner matrix of the holonomy is coupled
through Eq. (15) to the Wigner matrix of g in the spin
network. Each of the sums resulting from couplings
between the spin network and the holonomy runs over
the original link spin plus or minus 1=2. These three
couplings leave triangular loops at the links with spins j2
and j3, which, alongside with the small “square” loop,
can be factored out of the spin network with the help of
the resolution of the identity [cf. Eq. (28)],
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ð40Þ

Note that the tetrahedra in the first row of Eq. (40)
contain a different number and arrangement of ϵ symbols
when compared to Eqs. (18) and (28). Yet, through
Eqs. (10) and (5), it is possible to see that these are
equivalent up to phase terms [cf. Eq. (A3)]. The latter can
originate either from changes in the cyclicity of nodes
[cf. Eq. (9)] or changes in the direction of the solid arrows
[see text preceding Eq. (3)]. After the three loops are
removed in the first row of Eq. (40), a fourth loop can be

removed, as shown in the second row of the same equation.
The four tetrahedral structures factored out of the spin
network with Eq. (28) can be converted into Wigner 6j
symbols according to Eq. (18), and for some of the
tetrahedra, braiding at the nodes or flips in the direction
of solid arrows are required, leading to the phase factor in
the third row of Eq. (40).
We now proceed with the application of ĥ½α32� on the

outcome of Eq. (38),
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ð41Þ

Similar to the procedure in Eq. (39), Eq. (10) has been used
at the node joining the links of spins fj3; b; εg between the
right- and left-hand sides in the upper row of the above
equation. Furthermore, the holonomy along the loop α32
has been graphically represented as the inverse Wigner
matrix to the one representing ĥ½α23�, with ends also
extended by identities. The contraction of each of the free
indices of this Wigner matrix to the temporary links
introduced by the holonomies along the link p1 therefore
happens in opposite order, leading to the formation of new
“square” loops in the bottom row of Eq. (41) after a
braiding operation on the fm; j1; 1=2g node [cf. Eq. (9)].
The effect of coupling the identity extensions of the Wigner

matrix of g to the links of spins a and b is described by
Eq. (14). The ϵðaÞ symbol has been moved up in order for
the identities in the a and 1=2 representations to be
coupled. The Wigner matrix itself is coupled through
Eq. (16) to the Wigner matrix of the NLSN, and the
intertwiners contracted to the resulting Wigner matrix are
braided to properly contract with the free legs from
adjacent coupled links. After introducing pairs of arrows
through Eq. (5) at the links of spins j2; β, and m, the
resulting triangular loops at the legs with spins j2 and j3,
alongside with the small “square” loop, can be factored
out of the spin network with the help of the resolution of
the identity [cf. Eq. (28)],
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ð42Þ

Between the second and third rows of Eq. (42) we have used Eq. (10) to introduce ϵ tensors at the node connecting the
spins fj2; α; γg, leading to a double arrow on the spin-γ link or, through Eq. (5), a ð−1Þ2γ phase factor instead. As in
Eq. (40), the conversion between the tetrahedra in the first row of Eq. (42) and the one in Eq. (18) requires braiding
operations and flips in the directions of the solid arrows, resulting in the appearance of phases.
The contributions from terms inversely ordered in the anticommutator in Eq. (1) require the application of holonomies

in a different order. First, the holonomies along the loops αij or αji are applied, leaving virtual spin-1=2 links connected to
two different links of the spin network. Then, the holonomies along the path pk, interleaved by the volume operator, are
applied in such a way that all virtual links form closed loops to be factored out. The application of ĥ½α23� on the spin network
(33) gives
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In Eq. (43), just as in Eq. (39), a pair of solid
arrows has been created on one of the identity
extensions of the Wigner matrix to be coupled to
the spin network. The coupling between the spin-1=2
identity segment connecting the two arrows and the
spin-b link of the spin network leads to the splitting of
the ϵ tensors as seen in the bottom row of Eq. (43).
We then proceed with the application of the inverse
holonomy ĥ−1½p1�,

ð44Þ

Note that, to pass from the second to the third row of
Eq. (44), a braiding [cf. Eq. (9)] has been performed in the
uppermost node of the spin network after applying
Eq. (14). Before applying the volume operator in the last
row of Eq. (44), we can factor out the loops introduced on
the spin network by the coupling to the holonomies,

TAMING THIEMANN’S HAMILTONIAN CONSTRAINT IN … PHYS. REV. D 112, 026024 (2025)

026024-17



ð45Þ

In the second row of Eq. (45) we have used the 2-2 Pachner move (20) to convert the spin network into a form on which the
action of the volume operator is well known. Since this NLSN is one of the eigenstates of the volume operator, one merely
gets a coefficient from V̂. The action of the holonomy ĥ½p1� on this spin network then simply ties the temporary spin-1=2
links together,

ð46Þ
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In the first equality of this equation, we have made use of
Eq. (10) in the central intertwiner of the spin network
to recover the desired arrangement of ϵ tensors. In the
resulting term, the two contractedWignermatrices leave an
identity behind, forming a loop that can be removed with
Eq. (13). For this loop to be factored out, however, a
braiding according to Eq. (9) has to be implemented in one
of the nodes forming the loop, leading to the phase
factor ð−1Þ12þmþj1.
Finally, we look at the action of the holonomy ĥ½α32� on

the spin network (33),

ð47Þ

As in the case of Eq. (40), the couplings between links in
Eq. (47) are dictated by Eqs. (14) and (16). We then

proceed with the application of ĥ−1½p1�,

ð48Þ

The loops in the spin network in the third row of Eq. (48)
can then be factored out with the aid of the resolution of the
identity [cf. Eq. (27)]. We thus obtain
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ð49Þ

Note that on the right-hand side of the upper row of Eq. (49) we have used the invariance of intertwiners, Eq. (10), on the
node of spins fα; b; mg. The same property has also been used later on the node of spins fα; j2; γg, and the resulting double
ϵðγÞ has directly been converted into a phase factor ð−1Þ2γ at the last row of Eq. (49).
The last step in this calculation is precisely the application of ĥ½p1�V̂, as explained in Eq. (46).
To summarize Eqs. (37)–(49), the action of Eq. (1) on a spin network of the form (33) for a fixed choice of directions for

the holonomies reads
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ð50Þ

In this equation, we have used ð−1Þ2aþ2mþ2β ¼ 1 in the
first term within square brackets (namely, in the prefactor of

Vð3.5Þ
m;j1;α;β

) and ð−1Þ2bþ2mþ2βþ2j1 ¼ ð−1Þ4α ¼ 1 in the sec-

ond one (in the prefactor of Vð3.5Þ
m;j1;a;b

). Note that taking
a ↔ α, b ↔ β and ϵ ↔ γ in Eq. (50), which swaps input
and output states, only affects the coefficient on the right-
hand side of the equation by interchanging the two terms
within square brackets, which effectively corresponds
to a −1 prefactor [to help in the conversion of prefactors,
note that ð−1Þ2bþ2j1þ2α¼ð−1Þ2aþ2α¼−1, ð−1Þεþγ ¼
ð−1Þ1−ε−γ and ð−1Þmþj1 ¼ ð−1Þmþj1þ2ð1=2þmþj1Þ ¼
ð−1Þ1−j1−m]. The negative prefactor is in consonance with
the definition of hermiticity, i.e., for any two spin networks
jsi and js0i, hs0jĈsjsi ¼ hsjĈsjs0i� [note that Eq. (50)
contains an imaginary prefactor i as well]. The complete
action of Ĉs on the spin network requires considering all
possible rotations of pk and αjk, with the caveat that new
loops αjk should be applied deeper (i.e., closer to the
intertwiner) if other loops α0j0k0 with j0 ≠ j or k0 ≠ k are
already present in the input spin network.

VII. ACTION OF THE SCALAR CONSTRAINT
ON 4-VALENT SPIN NETWORKS

A. Overview

In this section, we present a detailed derivation of the
action of the constraint (1) on 4-valent NLSNs of the form
(35). The derivation consists again in the sequential
implementation of the action on the considered NLSN of
each of the operators in Eq. (1), via recoupling theory.

Since, for a 4-valent NLSN, choosing the links to which the
loop holonomy couples (say, by fixing the loop α23) still
leaves two possible links which can be used to span the
regularization tetrahedra (e.g., p1 or p4), we arrive at two
inequivalent contributions to the matrix elements of the
Hamiltonian acting on 4-valent spin networks, namely,
Eqs. (78) and (79). These equations correspond, respec-
tively, and for the aforementioned example, to the choice of
p1 or p4 as the directions of the support links when a loop is
introduced between directions p2 and p3. It is worth noting
that these expressions are not mere extensions of Eq. (50),
derived for 3-valent NLSNs. For readers that are not
interested in the lengthy details of the derivation, we
recommend skipping it directly and going to the final
formulas of this section and their subsequent discussion.

B. Action on 4-valent NLSNs

Let us thus investigate the action of the scalar constraint
(1) on spin networks of the form (35). As in the previous
section, we start with the action of the first holonomy of the
directly ordered term on the right-hand side of Eq. (1) on a
NLSN. It is important to notice that, for each possible
inclusion of an inner loop (say, connecting links along the
directions p2 and p3), there are up to two possible choices
of a third direction along which the holonomies ĥ½pk� and
ĥ−1½pk� can be applied. Since the directions of pk and of the
support links of αij are linearly independent, whether pk

can be chosen to be directed along one or two legs of the
spin network for each choice of αij depends on the
geometric arrangement of the spin network links relative
to each other. In the canonical approach, it is usually
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assumed that the spin networks are embedded in 3D (as a
consequence of the foliation adopted for the definition of
the Ashtekar-Barbero variables). We therefore derive con-
tributions to the action of the scalar constraint arising from
both choices of pk for each choice of inner loop, assuming
that the four links are arranged as the dual graph of a
tetrahedron, up to diffeomorphisms. Our choice provides

the most general possible result, so that consideration of a
simpler Hamiltonian action that excludes one of the links of
the spin network can be attained by selectively removing
certain terms from our expressions. Let us first consider the
application of the holonomy ĥ−1½p1� along the path p1

cocurvilinear to the link of spin j1,

ð51Þ

We reiterate that, after coupling the identity extension
of the introduced Wigner matrix to the spin-j1 link of
the spin network through Eq. (14), the new coupled spin
takes values m ¼ j1 � 1=2. Note that the direction of the
temporary link containing the Wigner matrix of g−1 is
drawn off-tangent relative to the direction the holonomy is
applied in, since the temporary link has actually no spatial
extension, and its direction is arbitrary as long as one
remembers the correct order of contraction of its ends.

In order for the spin network structure to match the ones
we investigate the action of the volume operator on
[cf. Eq. (82)], we employ Eq. (17) to swap the upper legs
of the spin network at the end of Eq. (51) [note that the
−n − l terms in the phase factor come from flipping ϵðlÞ and
ϵðnÞ before and after applying Eq. (17)]. When acting on the
spin network in the last row of Eq. (51), the volume
operator then gives
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ð52Þ

Spin networks of this form are not eigenstates of the
volume operator. As is shown in Sec. VIII, the volume
operator maps such (normalized) spin networks to linear
combinations of spin networks with the same structure.
Luckily, each such spin network belongs to an equivalence
class, and the action of the volume operator never maps
spin networks from a certain equivalence class into another.
For now, the coefficients of the linear combination resulting
from the application of the volume operator on these spin

networks are denoted
�
Vð4.5Þp;q
l;j1;j4;b;a;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dpdqd−1l d−1j1

q �
, where

the square-root contribution comes from normalizing and
denormalizing the spin network prior and posterior to the

action of the volume operator, respectively. The superscript
(4.5) denotes that the intertwiner has valence 5, but one of
its links (the holonomy one) is merely temporary, while p
and q, on the one hand, and n and j4, on the other hand, are
the two-entry indices of its matrix elements. In the last row
of Eq. (52), we employed again Eq. (17) to swap the upper
legs of the spin network.
We now apply the holonomy ĥ½p1� on these spin net-

works, resulting in an NLSN with two virtual spin-1=2
links located at the 4-valent node (note that the spin-k link
has no physical extension). As in previous equations, the
Wigner matrices of g and g−1 contract to give the identity.
Accordingly,
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ð53Þ

Finally, we apply the holonomy ĥ½α32�, which is represented by a Wigner matrix with ends extended by identities, one of
which, on the left side, includes two arrows introduced through Eq. (5). The trace is also applied to contract all the
holonomy indices in the end, but we do not explicitly write it in the following equations:

ð54Þ

The effect of coupling the identity extensions of the
Wigner matrix of g to the links of spins a and b can be
accounted for by applying Eq. (14) to each of these links. In
particular, for the left fundamental-representation identity,
the coupling to the spin-a link involves only the segment
between the two ϵð1=2Þ symbols, which then become
integrated into loops. The ϵðaÞ and ϵðbÞ symbols have both
been moved up to get the identities in the a and b
representations coupled to the fundamental-representation
ones. The Wigner matrix of the holonomy is coupled
through Eq. (15) to the Wigner matrix of the spin network.
Each of the sums resulting from couplings between the spin

network and the Wigner matrix corresponding to the
holonomy runs over the original spin of the spin network
link plus or minus 1=2. These three couplings leave
triangular loops at the legs with spins j2 and j3. On top
of that, contracting all the holonomies converts the tem-
porary spin-1=2 links into two loops, one of which
connects the links of the spin network diagonally (with
a “tilde” shape). This loop has to be removed before the
other loop on the left upper side of the spin network could
be factored out through the resolution of the identity. We
show in Appendix A, Eq. (A1), that the diagonal link can
also be factored out to give
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ð55Þ

where we have made use of the invariance of intertwiners, Eq. (10), to create ϵ tensors on the nodes of spins fm; q; 1=2g,
fq; a; kg and fγ; ε; 1=2g on the left-hand side of Eq. (55), as well as on the intertwiners of spins fm; a; ug and fu; β; j4g on
the right-hand side of the same equation. Note the factor ð−1Þ2ε originating from the contraction of two ϵðεÞ tensors and the
use of the simplification ð−1Þ2uþ2aþ2m ¼ 1.
The remaining loops can be also factored out with the aid of Eq. (28),

ð56Þ

For this specific contribution to the constraint, we use Eq. (25) to simplify the final expression.
Starting from the final spin network in Eq. (53), we can also apply the inverse holonomy ĥ½α23�, with ends extended by

identities. After reorganizing the arrows around the node joining the spins fj2; ε; bg using Eq. (10), the spin-a and spin-b
links of the spin network can be coupled to the identity extensions of the holonomy with the help of Eq. (14), while the
Wigner matrices can be merged through Eq. (16). We obtain
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ð57Þ

In this case, however, Eq. (28) can be used right away to factor out three inner loops from the resulting spin network, while
the remaining diagonal link can be factored out afterwards (see Appendix A). To facilitate this factorization, we include
pairs of arrows in the links of spins m, j3, and β with the aid of Eq. (5) [and use ð−1Þ2uþ2αþ2j1 to simplify the final
expression]. This leads to

ð58Þ
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While still considering ĥ½p1� to be directed along the
link of spin j1, we now look at the other term in the
anticommutator of Eq. (1), namely, the contribution
that starts with the application of ĥ½α32� on the spin
network (35). For that, we include two ϵð1=2Þ tensors on
the right identity extension of the applied Wigner matrix.
Furthermore, we use the invariance of the nodes
[cf. Eq. (10)] to reorganize the arrows at the node joining
the spins fϵ; j2; bg. Using Eq. (14), we couple the spin-b

link of the spin network to the spin-1=2 identity between
the two ϵð1=2Þ tensors of the right extension of the Wigner
matrix. Likewise, the section of the spin-a link of the
spin network right above the ϵðaÞ tensor is coupled to
the left extension of the Wigner matrix. In sequence, using
Eq. (10), we can rearrange the arrows in the negative-
cyclicity node joining the spins fε; 1=2; γg [effectively
creating an ϵðγÞ out of ϵðεÞ and ϵð1=2Þ] before applying
Eq. (28) to factor out the two inner loops. This gives

ð59Þ

We then proceed with the application of ĥ−1½p1�. Its Wigner matrix contracts with one of the temporary spin-1=2 links
created by ĥ½α32�. We apply a braid [cf. Eq. (9)] at the node where this link is connected, so that the latter can be moved to the
“interior” of the spin network. The resulting diagonal link can be factored out, as shown in Eq. (A1). Thus, we obtain
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For the spin network in the last row of this equation, we then use Eq. (20) between the nodes of spins fα; a; 1=2g and
fa; u;mg. As before, we use Eq. (17) to swap the upper legs of the spin network and braid the temporary links, getting

GUEDES, MENA MARUGÁN, MÜLLER, and VIDOTTO PHYS. REV. D 112, 026024 (2025)

026024-28



ð61Þ

We can then use the invariance of intertwiners to rearrange the arrows around the nodes of spins fj4; α; kg and fk; β; lg,
followed by the application of the volume operator according to Eq. (52). Note that the rearrangement of arrows includes a
flip in the tensor ϵðkÞ, leading to a phase factor ð−1Þ2k.
Finally, we apply the holonomy ĥ½p1�, which ties the two temporary spin-1=2 links of the spin network while contracting

the Wigner matrices of g and g−1 to give the identity. The formed “bubble” can be factored out with the help of Eq. (13),
resulting in the desired NLSN,

ð62Þ
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The last contribution that considers holonomies applied alongp1 is the one startingwith the application of ĥ½α23�. Both indices
of the corresponding Wigner matrix are contracted with identities, which extend themselves to embrace the NLSN as in the
previous cases. Before coupling the holonomy to the spin network, we use the invariance of the Wigner 3j symbols, Eq. (10), to
reorganize the arrows associated with the node connecting the links of spins fj2; ε; bg. After employing Eqs. (14) (coupling
identity segments below the arrows) and (16), we apply Eq. (5) to the spin-j3 and spin-β links to create a pair of arrows on each of
them.One arrow from each pair can be extracted alongside the inner loopswith the aid of Eq. (28), andwe can then apply Eq. (10)
to the nodes joining the spins fa; α; 1=2g, fb; β; 1=2g, and fj2; γ; βg to obtain the final spin network [note that the doubled ϵðαÞ
symbols are canceled via Eq. (5)]. This gives

ð63Þ
Acting with ĥ−1½p1� on the spin network resulting from Eq. (63) allows for coupling the identity extension of ĥ½α23� to the

spin-j1 link of the NLSN. Before and after applying Eq. (14), we braid the fundamental-spin links around the nodes joining
the spins fa; α; 1=2g and fm; j1; 1=2g, respectively. The Wigner matrix itself remains in one of the free ends of the
temporary fundamental-spin links, while the other end is contracted with the corresponding temporary link resulting from
the application of the holonomy on the loop α23. The inner loop formed by this contraction can then be factored out
employing Eq. (28). We can next use Eq. (10) to create a trio of arrows around the node where the links of spins fn; α; mg
meet [see the third row of Eq. (64)]. One of these arrows, representing the ϵðnÞ symbol, allows us to use Eq. (17) to swap the
upper legs of the spin network. Similarly, creating a trio of arrows around the node with spins fb; β; 1=2g allows us to use
Eq. (20) in the connecting spin-b link. Note that, before applying the volume operator, one needs to reduce the tensors ϵðuÞ,
ϵð1=2Þ and ϵðmÞ on the third row of Eq. (64) to a prefactor ð−1Þ2m. As in Eq. (52), the action of the volume operator on the
resulting spin network [see the last row of Eq. (64)] gives a linear combination of spin networks with the same structure. We
can then act on it with the holonomy ĥ½p1� to generate the desired spin networks, as in Eq. (62). In total, we obtain
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Since we are considering the most general case for the application of Eq. (1) acting on the spin network (35), we must also
take into account holonomies applied along the direction p4. For the first term in Eq. (1), we consider the application of the
holonomy ĥ−1½p4� on the spin network,

ð65Þ

The coupling of the identity extension of the Wigner matrix corresponding to ĥ−1½p4� with the spin-j4 link of the spin
network is described by Eq. (14). The resulting spin network is already in the graphical form suitable for application of the
volume operator, as described in Eq. (82), resulting in the linear combination

ð66Þ

We then apply the holonomy ĥ½p4�. Its Wigner matrix contracts with the free end of the g−1 Wigner matrix, forming a
temporary identity link. This gives
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ð67Þ

The two temporary spin-1=2 links are then contracted by the trace with the identity extensions of the Wigner matrix
representing the holonomy ĥ½α32� after performing a braiding at the node of spins fm; 1=2; j4g. We apply Eq. (5) in both
identity extensions of the Wigner matrix, as well as Eq. (10) to the node of spins fε; j2; bg in order to reorganize the arrows.
The section between arrows of the identity extensions are then coupled to the spin-a (namely, the section below ϵðaÞ) and
spin-b links by using Eq. (14). Similarly, the Wigner matrices are coupled by means of Eq. (15). We obtain

ð68Þ

After using Eq. (4) on the spin-1=2 link with two arrows
in the spin network obtained in the last row of this equation
and introducing new pairs of arrows at the links of spins β
and j3 via Eq. (5), we can use Eq. (28) to factor out three
inner loops from the spin network. We can then use Eq. (10)
to redistribute the arrows around the resulting node of spins
fj2; β; γg [see the second row of Eq. (69)], leading to a

double ϵðβÞ that can be factored out employing Eq. (4). By
braiding the node of spins fα; 1=2; ag [note the corre-

sponding factor ð−1Þαþaþ1=2] and rearranging arrows
around that same node, as well as the node below, the
remaining diagonal link can be factored out via Eq. (A2)
(cf. Appendix A). In this way, we get
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ð69Þ

Starting from the spin network in the last row of Eq. (67), we can apply ĥ½α23� (and the trace), using Eqs. (14) and (16)
[as well as Eq. (10) to reorganize arrows around the node fj2; ε; bg] to obtain a spin network with temporary inner loops
(note the double braiding on the leg along direction p4 and the resulting phase factor),
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In the spin network in the last row of Eq. (70), we can use Eq. (A1) to factor out the diagonal link,

ð71Þ

The remaining inner loops in Eq. (71) can be factored out with the help of Eq. (28). Note that we can use Eq. (5) on the
links of spins β, j4, and j3 to introduce additional arrows that can be extracted when factoring out the tetrahedral structures.
This leads to
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ð72Þ

The phase factors in the last row of Eq. (72) are the result of recombining arrows using Eqs. (10), (4), and (5).
In order to consider the contribution arising from the other order of operators in the anticommutator of Eq. (1) for

pk ¼ p4, we start from Eq. (59) and apply ĥ½p4� on its final spin network. The identity extension of theWigner matrix of g−1

is coupled to the spin-j4 link through Eq. (14), and its lower end is contracted with one of the spin-1=2 links produced by
ĥ½α32�, forming an inner loop. We can factor out the inner loop with Eq. (28), braid the remaining temporary spin-1=2 link,
and use Eq. (10) to introduce three arrows around the node connecting the links of spins fa; n; j1g [this leads to the second
row of Eq. (72)]. Using Eq. (20), we can then move the remaining spin-1=2 link to the center of the spin network,
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ð73Þ

After braiding the fundamental-spin link from the interior to the exterior of the NLSN and changing the cyclicity of its node,
we apply once again Eq. (20), now to the spin-n link. We also use Eq. (10) to rearrange the arrows around the node of spins
fα; k; j1g [this gives the second row of Eq. (74)]. An additional braiding at the node of spins f1=2; l; mg, followed by the
introduction of ϵ tensors on the node of spins fk; β; lg [cf. Eq. (10)], gives the following spin network, on which the volume
operator can be directly applied:
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ð74Þ

Finally, we apply ĥ½p4�, which forms a closed loop that can be factored out with the aid of Eq. (13) to recover the desired
NLSN,
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ð75Þ

The last contribution in the scalar constraint (1) can be derived from the spin network obtained in Eq. (63). We apply
ĥ−1½p4�, using Eq. (14) to couple the identity extension of the Wigner matrix to the spin-j4 link. The contraction of indices
forms a diagonal link that can be factored out with the help of Eq. (A1). This gives
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ð76Þ

After using Eq. (10) to reorganize the arrows around the node of spins fb;m; lg, we can employ Eq. (20) to move the
temporary spin-1=2 link upwards. We thus obtain

ð77Þ
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A simple rearrangement of arrows in the last spin network in Eq. (77) allows us to apply the volume operator, Eq. (66),
followed by the remaining holonomy, according to Eq. (75).
Putting Eqs. (51)–(64) together, we obtain all the contributions in Eq. (1) when a specific choice of loop, α32, and

holonomies along p1 are considered,

ð78Þ

Similarly, Eqs. (65)–(77) give the result corresponding to Eq. (1) when α32 and holonomies along p4 are considered,
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ð79Þ

Note that Eqs. (78) and (79) are seemingly not simply
related to each other by Eq. (17). In these equations, we
explicitly wrote two separate sums over p [and also over l
in the case of Eq. (78)] because the values summed over are
different for each sum. Furthermore, there are five other
different possible choices for the loop αij. For the loop α14,
bridging the links of spins j1 and j4 in our assignment of
spins, Eqs. (51)–(77) can be directly used if preceded and
followed by a flip in the direction of the central ϵðiÞ
[cf. Eq. (35)]. For the loops α13 and α24, however,
application of the formulas derived in this section has to
be preceded and followed by Eq. (20), which allows us to
change the basis in the 4-valent intertwiner space so that the

formulas hold. The last two loops, α12 and α34, extend
themselves diagonally through the spin network and
require a braid between either legs in the p1 and p3

directions or p2 and p4 directions, both before and after
employing Eqs. (51)–(77). It can be shown that applying
the derived Hamiltonian between braid moves gives the
same result as directly employing Eq. (1) with holonomies
applied along the twisted loops α12 and α34.
A last relevant point concerning the action of the

Euclidean scalar constraint on 4-valent NLSN is how
Eqs. (78) and (79) can be modified to render their action
graph preserving. The general approach in LQG is based on
an extension of the loops αij → α̃ij, so that the enlarged
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loops α̃ij cover an entire spin network “patch” with borders
defined by (a minimal number of) links and intertwiners
[48,49]. The precise form of the loops α̃ij therefore depends
on the spin network of choice, as well as on which “patch”
the graph-preserving Hamiltonian is acting on. This renders
the analysis of graph-preserving dynamics limited to
NLSNs impossible, and one is forced to extend the fiducial
intertwiner in such a way that all its legs are connected to
other intertwiners, forming closed loops α̃ij on which the
graph-preserving Hamiltonian can act. We note that a small
modification of the NLSN studied here can still cover a
small range of (modular segments of) connected spin
networks on which a few such loops α̃ij can be applied.
If we include one inner loop at location 2 and one at
location 4, promoting their “additional” links to virtual
central links of two other independent intertwiners, we can
apply Eqs. (78) and (79) limiting their action solely to these
loops at locations 2 and 4. As a result, one considers a
ladder-like spin network (or rather a “chain”-shaped one,
when accounting for the choice of link arrangement at each
node) with intertwiners connected by their upper or lower
pairs of legs and loop couplings restricted to solely happen
above and below the fiducial intertwiner, neglecting large
loops coupled from the sides (for which the action of the
graph-preserving Hamiltonian depends on the precise
number and connectivity of intertwiners through the entire
“side patches” of the spin network). It is worth noting that
these modified NLSNs can cover five other (modular
segments of) spin network graphs, namely, by setting
one or two of the spins of the outermost links to zero
(e.g., by having all of them equal to zero, one creates a spin
network “bubble” in which the two lower legs of the
intertwiner are connected to each other, and similarly for
the two upper legs). Let us finally comment that other
realizations of graph-preserving dynamics are possible
[50–52], such as the coarse graining of spin networks to
a fixed graph starting from the action of a graph-changing
constraint [50]. Since the challenge of characterizing the
properties of the (graph-changing) Hamiltonian constraint
(1) is already extremely demanding, we do not discuss such
alternatives in the present work, nor explore their physical
consequences.

VIII. ACTION OF THE QUANTUM
VOLUME OPERATOR

The quantum volume operator is a key observable in
LQG, both owing to its presence in the scalar Hamiltonian
constraint (1) and to the conceptual implications of its
eingenvalues and expectation values (which imply, among
other things, that geometric properties of spacetime itself
can have quantum features). There are, however, some
open questions regarding the most suitable regularization
approach to obtain the action of the quantum volume
operator on spin networks. Several different regularizations

lead nonetheless to the same expression for the quantum
volume operator up to a prefactor [31,36,38]. We therefore
leave an arbitrary prefactor V0 on the volume operator,
proportional to the Planck volume. This approach allows
for some freedom of choice of a preferred regularization
and renders dimensionless results that can be later properly
scaled by the desired prefactor.
It is important to emphasize that, when acting with the

scalar constraint on an n-valent NLSN, the volume operator
appearing in Eq. (1) actually acts on an (nþ 1)-valent
node, since the holonomy ĥð−1Þ½pk� temporarily raises the
valence of the node. Still, this increased valence does not
imply that the volume operator simply acts on an (nþ 1)-
valent NLSN, since the volume cannot directly “grasp” the
temporary spin-1=2 link introduced by the holonomy and
therefore acts on n out of the nþ 1 legs of the spin network
[24,25]. When the volume operator is directly applied on an
n-valent NLSN, however, its action is different, and all
triplets of linearly independent links selected out of all the n
node legs can be “grasped” [42].
In the basis of spin networks, the volume operator is

composed of other operators Ŵ that can be represented as
spin networks which attach themselves to the input spin
network through so-called “grasps”. The resulting spin
network contains additional inner structures that can be
factored out (with the help of the expressions obtained with
recoupling theory and introduced in Secs. IV and V) to
recover the input graphical structure, rendering Ŵ a map
between spin networks with the same graph. In fact, when
acting on the entire (kinematical) Hilbert space of spin
networks, the volume operator forms an infinite block-
diagonal matrix, and we can without loss of generality
restrict the analysis to the specific block to which each spin
network of interest belongs, forming equivalence classes of
spin networks that can be mapped into each other by Ŵ.
The matrices corresponding to these operators have to be
diagonalized in the basis of normalized spin networks in
order to build the (desired block of the) volume-operator
matrix. Formally, for each possible choice of three linearly
independent links from each node, one applies the operator
Ŵ on all spin networks of the same equivalence class to
build its matrix. The corresponding matrices for each
choice of three links are summed with certain weights,
taking the square root of the absolute value of the result.
The sum over all nodes of such square-root matrices gives
the volume-operator matrix representation in the normal-
ized spin network basis. It is worth noting that this protocol
for construction of the quantum-volume matrix follows
Ref. [38], yet more complicated protocols, requiring the
sum of absolute values of Ŵ for each triplet of links before
calculating the square root (which demands multiple
diagonalization steps to derive a single volume matrix),
are also found in the literature [42]. Our choice of
volume operator does not only admit a much more prac-
tical numerical implementation, but also renders the
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Hamiltonian constraint anomaly free (i.e., the commutator
of the constraint with itself for different lapses is zero on
spin networks) [34]. For details on the derivation of the
quantum-volume operator, we refer to Refs. [38,42].
Smearing densitized triads (the conjugated fields to the

holonomies) results in angular-momentum-like operators

Ĵðe;vÞi . The index i refers to a choice of SU(2) generator, and
ðe; vÞ is an assignment of link e incoming to or outgoing

from a node v of the spin network. The operator Ĵðe;vÞi acts
on holonomies, given as in Eq. (6), by applying on them
the generators of SU(2) [cf. Eq. (26)]. If e is the link

along which the holonomy is applied, Ĵðe;vÞi DðjÞm
k ðgÞ ¼

−iðτðjÞi Þmn DðjÞn
k ðgÞ when e is incoming to v and

Ĵðe;vÞi DðjÞm
k ðgÞ ¼ iDðjÞm

n ðgÞðτðjÞi Þnk when e is outgoing from

v, otherwise Ĵðe;vÞi DðjÞn
k ðgÞ ¼ 0.

We define ŴðvÞ
feα;eβ ;eγg ¼ ηijkĴðeα;vÞi Ĵ

ðeβ ;vÞ
j Ĵ

ðeγ ;vÞ
k , where ηijk

is the structure constant of su(2) and feα; eβ; eγg is a set
of links meeting at the node v. Following Ref. [38], we
define the operator Q̂¼ ð1=48ÞPfeα;eβ ;eγg κðfeα; eβ;eγgÞ×
ŴðvÞ

feα;eβ ;eγg, where κðfeα; eβ; eγgÞ is a factor that usually

depends on the regularization scheme. Through a process
of averaging, κðfeα; eβ; eγgÞ can be made independent of
the regularization, assuming values �1 depending on the
relative orientation of the linearly independent links in
its argument (with respect to the natural orientation of

reference frames on the manifold). For the sake of
simplicity, we equivalently assume from here on
that for 3-valent nodes κðfeα; eβ; eγgÞ ¼ 6 whenever
the set feα; eβ; eγg has an ascending index order and
κðfeα; eβ; eγgÞ ¼ 0 otherwise (note, e.g., that for
fe1; e2; e3g there are six ordering choices, three for which
κ ¼ 1 and three with κ ¼ −1, but in this last case a
rearrangement in the indices of ηijk gives an extra factor
of −1), while for 4-valent nodes κðfe2; e3; e4gÞ ¼
κðfe1; e2; e4gÞ ¼ 6 ¼ −κðfe1; e2; e3gÞ ¼ −κðfe1; e3; e4gÞ,
and κðfeα; eβ; eγgÞ ¼ 0 otherwise. The volume operator for

a single node is then V̂ ¼ V 0
0

ffiffiffiffiffiffiffi
jQ̂j

q
(or a sum thereof over

different nodes, for general spin networks), where V 0
0

differs from V0 by a numerical factor extracted from
ffiffiffiffiffiffiffi
jQ̂j

q
.

The structure constant in ŴðvÞ
feα;eβ ;eγg, which is given by

the Levi-Civita symbol, can be graphically represented by a
3-valent node with spin-1 links up to a factor of i

ffiffiffi
6

p
, which

we include in V 0
0 together with the 1=48 factor arising from

Q̂. The operator ŴðvÞ
feα;eβ ;eγg can therefore be represented by

three grasps [cf. Eq. (26)], connected via spin-1 links to a
single node.

We first consider the action of ŴðvÞ
feα;eβ ;eγg on a 3-valent

spin network previously modified by a holonomy, as in the
last row of Eq. (37) (with the Wigner matrix omitted). In
this case,

ð80Þ

In Eq. (80), the three grasps are contracted with the spin
network links of spins a, b, and m, while the temporary
spin-1=2 link is “ignored” by the grasps. The orientation
chosen for attaching the grasps follows the order of
contraction of the indices assuming that holonomies for
the spin-a, spin-b, and spin-j1 links are directed towards
the node [cf. Eq. (32)]. Using Eq. (10), applied at the
node with spins fm; 1=2; j1g, the holonomy along the

spin-j1 link can be shifted to the links of spins m and
1=2, both of which will be directed outwards from the
node, resulting in an opposite order for the grasp with
the spin-m link compared to the other two grasps. The
prefactor in Eq. (80) comes from the three grasps
[cf. Eq. (26)]. We can then factor out the spin-1 structure
of the spin network on the right-hand side of Eq. (80) as
follows:
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ð81Þ

In the first equality of Eq. (81), the arrows around the node
joining the spins fm; 1=2; mg have been rearranged using
Eq. (9), and a braiding has been performed at the same
node, moving the spin-1 link to the left. After changing the
direction of ϵðmÞ, giving a phase factor of ð−1Þ2m, a Pachner
move, Eq. (20), gives the spin network in the second equality
of (81), inwhich the spin-1 has been braided back to the right
side. Applying then Eq. (10) simultaneously to the nodes of
spins fa; b; j1g and fk; 1; j1g, as well as Eq. (5) to the spin-k
link, allows us to get rid of all the arrows, obtaining the
expression in the second row of Eq. (9). Finally, using
relation (A2) [cf.Appendix (A2)],we can extract a hexagonal
spin network of the form (19), which is represented in the last
row of Eq. (9) as a Wigner 9j symbol. It is worth noting
that summation over k only covers the values j1 or j1 � 1,
but the choice of sign is constrained by the value of m: if
m ¼ j1 þ 1=2, the Clebsch-Gordan conditions only allow
k ¼ j1 or k ¼ j1 þ 1. The Wigner 9j symbol has the inter-
esting property that swapping any two of its columns or rows
gives the unswapped symbol up to a phase factor of ð−1Þs,
with s being the sum of all entries of the symbol. For the 9j

symbol in the last row of Eq. (9), s ¼ 3þ 2aþ 2bþ j1 þ k,
while aþ bþ j1 ∈N by the gauge invariance of spin net-
works. This implies that, for k ¼ j1, swapping the rows or
columns in the Wigner 9j symbol gives the same symbol
multiplied by −1. Therefore the symbol has to be zero. As a
result, the action of the operator Ŵ on the considered spin
network leads to two possible anti-symmetric2 × 2matrices.
One of them couples the spin networks with k ¼ j1 and k ¼
j1 þ 1 form ¼ j1 þ 1=2, whereas the other couples the spin
networks with k ¼ j1 − 1 and k ¼ j1 form ¼ j1 − 1=2. It is
easy to show that such matrices have two real eigenvalues
with the same absolute value. Therefore, taking the square
root of the absolute value of Q̂ gives a matrix proportional to
the identity. The volume operator in this case acts diagonally.
When we consider the volume operator acting on

4-valent nodes modified by a holonomy, we must account
for the four possible ways in which feα; eβ; eγg can be
chosen while neglecting the spin-1=2 link. CallingWαβγ the
action of Ŵfeα;eβ ;eγg on the input spin network up to

prefactors, the action of Q̂ reads

ð82Þ
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In this equation, the dotted ellipsis serves a mere illustrative
purpose, crossing the links that can be acted upon by
the grasps. We have used the notation Lj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdj=2dj

p
and καβγ ¼ κðfeα; eβ; eγgÞ=6 (with κ123 ¼ κ134 ¼ −1 and
κ234 ¼ κ124 ¼ 1). Note that the sign of the first term on the
right-hand side of Eq. (82) is different because it does not
include a “grasp” on the outward-oriented spin-c link. We
consider any trio of links to be linearly independent.

As shown in Ref. [38], our choice of καβγ corresponds
to an arrangement of links with tangents diffeomorphic to
the vectors fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ; ð−1;−1;−1Þg.
Other geometric arrangements [for which the last vector
is diffeomorphic to ð1; 1; 1Þ; ð1; 1; 0Þ; ð−1;−1; 0Þ; ð0; 0; 1Þ,
or ð0; 0;−1Þ] imply different choices of καβγ , which are not
be addressed here.
The first contribution to the right-hand side of Eq. (82) is

ð83Þ

Note that, given our choice of labels for the links of the spin
network, the grasps for the links of spins j2 and j3 have to
be braided, causing the node that joins the grasps to have a
negative or clockwise cyclicity. Braiding the spin-1 link

around the spin-j2 one (around the node joining the spins
f1; j2; j2g, where the second grasp has been attached) gives
a phase factor of ð−1Þ1þ2j2 and allows us to use Eq. (20)
along the link containing ϵðj2Þ to obtain the spin network in
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the second row of Eq. (83). Simultaneously, we can use
Eq. (10) at the node of spins fj1; j3; lg to transfer the
arrows to the spin-l link, and then remove its doubled ϵðlÞ
via Eq. (5). We also change the cyclic orientation of
the other two nodes where the other grasps were
attached. Using the resolution of the identity [Eq. (A1)
in Appendix A], we can factor out the additional structures
in the penultimate row of Eq. (83), obtaining the result in

the last row, where the input spin network graph is
recovered.
The second contribution, W134, contains a grasp in the

spin-c link, which, as previously explained, has its Wigner
matrix oriented outwards from its node, since the spin-j4
link has a Wigner matrix oriented toward the node of spins
fl; j2; j4g. The corresponding contribution reads

ð84Þ
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Between the first and second rows of Eq. (84), we have braided the spin-1 link around the spin-c one [cf. Eq. (9)], while also
employing Eqs. (10) and (5) to move ϵðcÞ to the links connected with it through the node of spins fc; c; 1g, picking up a
phase [namely, ð−1Þ1þcþc from the braiding and ð−1Þ2c from the cancellation of a doubled arrow]. Equation (20) then
allows us to move leftward the attachment point of the spin-1 link related to the rightmost grasp. A similar combination of
Eqs. (10) and (5) applied to the node joining the spins fl; j1; j3g converts ϵðj1Þ, ϵðj3Þ, and ϵðlÞ into a phase factor of ð−1Þ2l.
These operations lead to the spin network in the second row of Eq. (84). Using Eq. (10) to convert ϵðkÞ and ϵð1Þ into ϵðj4Þ, a
second application of Eq. (20) on the spin-j4 link, followed by a swap of cyclic order at the node of spins fj1; 1; j1g and
braids on the other two spin-1 links, gives the third row of the equation. Finally, Eq. (A2) allows us to factor out a term of the
form (19), and flipping ϵðmÞ results in the last row of Eq. (84).
The next term is given by

ð85Þ

As in Eq. (84), the passage from the first to the second row of Eq. (85) involves a braiding of the spin-1 link around the spin-c
one [cf. Eq. (9)], picking up a phase ð−1Þ1þcþc, followed by the application of Eqs. (10) and (4) to move ϵðcÞ to the links
connected with it through the node of spins fc; c; 1g. Equation (20) permits us to reallocate the corresponding spin-1 link.
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Analogously, braiding the spin-1 link around the spin-j1 one gives a phase ð−1Þ1þj1þj1 . The resulting spin network is given in
the second row of Eq. (85).We can then use Eq. (20) on the link containing ϵðj1Þ and combine ϵðj2Þ and ϵðlÞ into ϵðj4Þ employing
Eq. (10) (this gathers the arrows on a single node, allowing them to be effectively removed). The spin network in the third row is
then obtained after performing a braiding at the node joining the spins fj4; k; 1g. The final expression is reached by factoring
out a term of the form (19) by employing Eq. (A2), recovering in this way the input spin network graph.
The last contribution to the action of Q̂ on the modified 4-valent nodes is

ð86Þ
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Between the first and second rows of Eq. (86), we have
performed a braiding of the spin-1 link around the spin-c
one [cf. Eq. (9)], followed by the application of Eqs. (10)
and (4) to move ϵðcÞ to the links connected with it through
the node of spins fc; c; 1g, picking up a phase ð−1Þ1þcþc.
We have used Eq. (20) on the link containing ϵðj3Þ and
combined ϵðj2Þ and ϵðlÞ into ϵðj4Þ by means of Eq. (10).
Inverting the cyclic order around the node connecting the
grasps gives a −1 prefactor. This has led to the expression
in the second row of Eq. (86). We have then applied
Eq. (20) to the link containing ϵðcÞ and performed braidings
at the nodes joining the spins fj4; k; 1g and fm; l; 1g,
flipping also ϵðmÞ. The final expression has been derived by
factoring out a term of the form (19) by means of Eq. (A2),
a procedure that allows us to recover the input spin
network graph.
Normalization of spin networks results in the change

dmdk →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dldj4dmdk

p
in Eqs. (83)–(86). Once these equa-

tions have been introduced into Eq. (82), the matrix
elements of Q̂ can be calculated between spin networks
with spins fl; j4g at the input and fm; kg at the output,
for every choice of these spins that fulfills triangularity
with respect to the fixed “external” spins j1, j2, j3, and c.
Since c ¼ j4 � 1=2, its value also determines the admis-
sible values for k when the Wigner 6j symbols are taken
into account. In more detail, since both fk; 1; j4g and
fc; 1=2; kg must fulfill triangularity, c ¼ j4 � 1=2 implies
that k∈ fj4; j4 � 1g (the choice of plus or minus is fixed by
the value of c). There are, therefore, two choices of k for
each c. The values that m can assume depend on the spins
fj1; j2; j3; j4; kg, but since k can take different values on its
own, we consider jj1 − j3j ≤ m ≤ j1 þ j3, what gives
2 minfj1; j3g þ 1 possible values. The matrix representing
Q̂ has therefore dimension 2ð2 minfj1; j3g þ 1Þ. Once the
i factor is included, this matrix can be diagonalized to give
a matrix of purely real eigenvalues. The square root of their
absolute values gives the volume matrix after the applica-
tion of the inverse diagonalizing unitaries.
Since we are also interested in the expectation values of

the volume operator, we still need to calculate its action on
spin networks that have not been modified by holonomies.
For the 3-valent case [as in Eq. (33)], it is easy to show that
the volume operator always gives zero [18,42]. However,
when the volume operator is applied on spin networks of
the form (35), it acts in a nontrivial manner that differs both
from Eqs. (80) and (82), because now all of the four links
connected with the intertwiner can be grasped (as long as
they are linearly independent). In terms of the spin network
(35), only the links of spins j1, a, b, and j4 are effectively
grasped, because the two 3-valent nodes give zero con-
tributions to the volume. The action of the volume operator
can be derived in a similar manner to what was done
in Eqs. (82)–(86), having four grasp arrangements when
4-valent nodes are considered. A much simpler derivation,

however, can be obtained by setting the spin of the
temporary link in the spin network on the left-hand side
of Eq. (82) to zero and using Eq. (11) [53]. Therefore, we
omit the rederivation of the action of the volume operator
for a 4-valent intertwiner. A general derivation of the action
of the volume operator on nodes of arbitrary valence can be
found in Ref. [23], and its spectral analysis when acting on
nodes of valence up to 7 can be found in Ref. [54].

IX. NUMERICAL IMPLEMENTATION
OF THE SCALAR CONSTRAINT
AND THE VOLUME OPERATOR

The analytical discussion presented in Secs. VI and VII
shows the complexity of the action of the scalar constraint
on spin networks. Even though this action is confined to the
vicinity of the nodes of the spin networks, the changes it
induces forces us to consider a rapidly growing set of spin
networks with different graph structures and different spin
attributions to their links. It is well known that these
complications render the study of the scalar constraint in
LQG almost unfeasible with currently available analytical
and numerical tools [27,28]. As a consequence, many
questions still remain open in the field. As a remedy,
approximations like the graph-preserving ones have been
proposed, yet the regime of validity of most of these
approximations (or even their validity overall) remains
obscure.
As an effort to understand the graph-changing properties

of Eq. (1) and to overcome some of the problems imposed
by its action on spin networks, we develop here a new
numerical approach that allows us to apply Eq. (1) on
3-valent and 4-valent spin networks without resorting to
approximations. With this aim, we have implemented this
new numerical framework as a code in Mathematica, but
we believe that it can similarly be implemented (and
potentially further optimized) in other programming lan-
guages and computational software. The interested reader
that wants to know the code in full detail, check how it
works in practical cases or even develop it for other
applications can access it in Ref. [55].
A key idea of our approach is encoding spin networks in

a way that numerical tools can easily understand and
process. Graphical input and output are rather unpractical
and resource consuming, yet we must store information not
only about spins assigned to links, but also about the
(constantly changing) arrangement of these links on a
substrate manifold (or, more generally, their adjacency
relations). This varying complexity renders adjacency
matrices unpractical. We therefore fix a certain valency
and consider either three or four external legs (the outer-
most links) such that their internal structures can accom-
modate, in principle, an arbitrarily large number of inner
loops ordered in terms of proximity to the central virtual
link. This spin and location information is stored as ordered
lists, each being in one-to-one relation (up to a padding
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of zeros) with a given spin network (see further discussion
for details). Spanning a vector space out of these lists is,
however, not possible in a direct manner, and for this
reason, we instead adopt a vector space of functions for
which the arguments are these lists. The functions are never
truly defined (i.e., at no point during the computation they
are assigned a functional form), and for this reason, we call
them ghost functions. All needed information for the
computation is stored in the arguments of ghost functions.
These arguments can have arbitrary sizes and the ortho-
gonality relations of ghost functions are only based on
whether their arguments coincide. If si ¼ fsi;1; si;2;…g
denotes lists encoding the spin and structural information of
distinct (normalized) spin networks, the inner product I on
functions fðsiÞ is defined such that I½fðsiÞjfðsjÞ� ¼ δi;j.
The scalar constraint is then included in our code as a
linear functional Cs that acts on the ghost functions by
reading and manipulating their arguments, i.e., Cs½fðsiÞ� ¼P

j cjðsiÞfðsjÞ for coefficients cj taken from Eqs. (50) or
(78) and (79) for 3-valent or 4-valent spin networks,
respectively. Linearity then implies that Cs½

P
i cifðsiÞ� ¼P

i ciCs½fðsiÞ�, so that the constraint functional can be used
recursively, e.g., to generate perturbative outputs.
Let us start with the discussion of the functional for

4-valent spin networks, since this is the most relevant
and intricate case. We do not constrain ourselves to the

consideration of structures of the form (35), but instead
assume that we start with an NLSN with four external legs,
an inner virtual link and an arbitrary number of inner loops.
The inner loops can be arranged in six different ways, by
connecting links belonging to each possible pair of direc-
tions (say, p1, p2, p3 or p4 according to our previous
notation). We label the locations of such inner loops from 1
to 6, corresponding to inner loops connecting the links
along the pairs of directions fp1; p3g, fp2; p3g, fp2; p4g,
fp1; p4g, fp1; p2g and fp3; p4g, respectively [cf. Fig. 2(a)].
One important thing is that the presence of certain inner
loops affects the ways in which Eq. (1) can attach new inner
loops. If a loop is present in location 1 (placed between
directions p1 and p3), for example, the scalar constraint
attaches a new loop in the same location by coupling its
holonomieswith the already existing loop links, leading tono
change in the graph structure, but changing the spins
attributed to these links (unless the spin of the connecting
link is reduced to zero, which effectively changes the graph
by removing the loop). On top of that, the Hamiltonian also
applies holonomies to form inner loops in the locations 2, 3,
4, 5, and 6, but the presence of a loop in location 1means that
loops in locations 2, 4, 5, and 6 (which share a common link
with loop 1) would have to be introduced further inwards (or
closer to the node) relative to the location-1 loop, while the
introduction of a loop in location 3 is completely unaffected

FIG. 2. (a) Schematic representation of the graphical changes introduced by the Hamiltonian constraint on 4-valent node-like spin
networks. The central spin network contains its encoding function represented below. The rest of spin networks, differing from the
central one by the addition of an inner loop at the location indicated within the arrows, are represented by the functions
fðfj1; j2; j3; j4; a; j2; b; j4; k; 1; 1=2; j1; j3; 0;…; 0gÞ, fðfj1; j2; j3; j4; j1; b; a; j4; k; 2; 1=2; j2; j3; 0;…; 0gÞ, fðfj1; j2; j3; j4; j1; b; j3;
a; k; 3; 1=2; j2; j4; 0;…; 0gÞ, fðfj1; j2; j3; j4;a; j2; j3;b;k;4;1=2; j1; j4;0;…;0gÞ, fðfj1; j2; j3; j4;a;b; j3; j4; k;5;1=2; j1; j2;0;…;0gÞ,
and fðfj1; j2; j3; j4; j1; j2; a; b; k; 6; 1=2; j3; j4; 0;…; 0gÞ, respectively, for loop insertions at positions 1, 2, 3, 4, 5, and 6.
(b) Pseudocode for the Hamiltonian implementation. The code checks whether an inner loop is present. If absent, it introduces
inner loops in all six locations, with spin 1=2 on the newly created link. If present, for each possible location, a series of steps are
followed. The case for location 1 is shown, while for other locations the dashed-line continuation of the diagram implies the presence of
similar rules not shown. The corresponding innermost loop has its spins shifted by all allowed values without graph changes. If the
connecting link reaches spin 0, it is removed, and the inner-loop data in the corresponding list are shifted to the left by four entries.
Additionally, inner loops are added to all other positions, but if a loop was added at position 3 right before adding one at position 1 (these
loops share no links), it is again possible to remove its extra link or simply change its spin. The diagram contains examples for the
simplest spin networks for which the rules apply.
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by this subtlety. A diagrammatic representation of these
loop-attachment relations is shown in Fig. 2(b) in the form
of a pseudocode,which also summarizes our implementation
of Cs. As a consequence of these relations, recursive
application of Eq. (1) leads to structures with increasingly
deeper inner loops, with depths that depend on the positions
of outer loops.
We choose our spin network encoding lists to have the

first four entries representing the spins of the four outer-
most links: j1, j2, j3, and j4, following the convention of
Eq. (35). These values are fixed and unaffected by the
functional Cs, but should be stored in the list for the
purpose of normalization after Eq. (1) is applied a desired
number of times. The next four entries in the list are the
four innermost spins adjacent to the central virtual link
along directions p1, p2, p3, and p4, which will be affected
by the scalar constraint [e.g., j1, b, a, and j4 in Eq. (35)].
The ninth entry is the spin of the central virtual link. If the
spin network has no inner loops, all remaining entries in the
list are zero [cf. ghost function under central NLSN in
Fig. 2(a)]. For spin networks containing inner loops, the
innermost loop will occupy the next four entries of the list,
and every following loop, in decreasing order of depth, will
be described by four additional entries. From each such
quadruple of entries, the first two store the location of the
loop and the spin of the connecting link of the loop, while
the other two store the spins adjacent to the loop along the
directions that the loop connects. For the sake of an example,
let us consider the spin network (35). According to our
convention, the aforementioned quadruple is 2, ε, j2, and j3,
and the full encoding list corresponding to the spin network is
fj1; j2; j3; j4; j1; b; a; j4; i; 2; ε; j2; j3; 0;…; 0g, where the
zero padding should be chosen in such a way as to
accommodate as many inner-loop entries as one intends to
recursively apply the Hamiltonian constraint. The size of the
lists should be fixed prior to any calculations, so that
orthogonality relations can be properly applied.
The action of the functional Cs reorganizes the lists

contained as arguments in the ghost functions according
to all pi-direction permutations of Eqs. (78) and (79) (which
are actually not simply obtained by permuting arguments, as
explained below). When Cs creates a new inner loop, it
effectively moves all list entries from tenth onward to the
right by four entries, so that entries corresponding to inner
loops are now moved down in depth order for the data
corresponding to a new loop to be included. The new spins
immediately adjacent to the central nodes are encoded in
entries 5 to 8, and the new central spin becomes the ninth
entry. Entries 10 to 13 receive the information about the
added innermost loop, according to our loop-description
convention. In this manner, the zero padding in the lists is
gradually filled from the left with inner-loop information as
new loops are included in the spin network by the action of
the scalar constraint. Following our example, if we add a new
loop in location 1 to the spin network (35), its list will change
to fj1; j2; j3; j4; c;b;d;j4;k;1;γ; j1;a;2;ε; j2; j3;0;…;0g,

where c and d are the new innermost spins along directions
p1 and p3, respectively, k is the new central spin, and γ is the
connecting spin of the new loop at location 1. Although the
spin networks and their encoding lists become increasingly
complicated with each application of Eq. (1), only the two
deepest inner loops of a 4-valent NLSNare acted upon by the
Hamiltonian. Since in our encoding the information about
these two loops is stored between the fifth and seventeenth
entries of the list, the coefficients cjðsiÞ in Cs½fðsiÞ� ¼P

j cjðsiÞfðsjÞ depend only on these entries of the input
ghost-function argument, avoiding the search for entries
scattered among large lists (in fact, the size of the list does not
affect the Hamiltonian functional).
It turns out that the constraint functional might output the

same spin network with different coefficients as indepen-
dent terms in a linear combination, which slows recursive
application of the Hamiltonian by forcing its functional to
evolve the same spin network multiple times. To remedy
that, consecutive applications of the constraint functional
are intercalated by a “collector” functional (inbuilt in
Mathematica as “Collect[]” command) that collects all
coefficients of the same spin network into one.
The Hamiltonian acts on and also generates non-nor-

malized spin networks, so normalization takes place after
Cs has been recursively applied a number of times, and
denormalization is employed prior to any calculations if
one decides to start with normalized spin networks. We
have developed a “normalizer” functional, which linearly
implements the normalization discussed in Sec. V accord-
ing to the formula fðsiÞ → ½dj1dj2dj3dj4

Q
k d

−1
k �fðsiÞ,

where dji is associated with the outermost legs, and k runs
over the spins of all links in the spin network, including
the outermost ones (so that they effectively cancel out from
the normalization factor). To achieve this, the normalizer
reads the first six entries of each ghost-function argument
list, as well as the jth, (j − 1)th and (j − 2)th entries for
j ¼ 4nþ 9 (n∈N). Note that the zero padding does not
contribute since d0 ¼ 1. Similarly, a “denormalizer” func-
tional has been implemented to perform the inverse of the
normalizer functional.
After normalization has been performed, one can either

calculate inner products or act with observables on the
output states in order to estimate expectation values. As key
observable of our work, we have implemented a quantum-
volume functional, which generates matrices depending on
the input spin networks. Note that the volume operator only
“sees” the innermost spins in the spin network, i.e., those
closest to the inner virtual link. These spins determine the
size of the matrix Q̂ generated by the volume operator.
Since the volume operator maps a 4-valent NLSN with
central spin i to a linear combination of 4-valent NLSNs
with all possible central spins, the size of the matrix it
generates runs from jj01 − j03j to j01 þ j03 (for innermost spins
j01, j

0
2, j

0
3 and j04), and the indices are the input and output

spin values of the central link. Note that this is equivalent to
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considering the range of spins from maxfjj01 − j03j; jj02 −
j04jg to minfj01 þ j03; j

0
2 þ j04g, since for jj01 − j03j < jj02 − j04j

and/or j01 þ j03 > j02 þ j04, the matrix we generate con-
tains the actual volume matrix as a block, and the remain-
ing elements are all zero. Following the calculations in
Sec. VIII, the Q̂ matrix is generated according to Eq. (82),
and the resulting matrix is diagonalized, so that the
square root of the absolute value of its entries can be
taken before applying the inverse of the diagonalizing
transformation. The resulting matrix is the volume operator
in a basis of 4-valent spin network states and can be
turned into a linear functional V by using its matrix
elements as coefficients of the output linear combina-
tion, V½fðsiÞ� ¼

P
j Vj;ifðsjÞ.

Finally, the inner product is introduced as a functional I
that is antilinear in its first argument and linear in its second
one,

I

�X
i

cifðsiÞ;
X
j

djfðsjÞ
�
¼

X
i;j

c�i djI½fðsiÞ; fðsjÞ�: ð87Þ

Once two (linear combinations of) normalized spin net-
works are given in the form of ghost functions with sui-
table list arguments, the inner-product functional evaluates
the orthonormality based on the criterion of whether the
lists in the arguments of the functions are the same (i.e.,
I½fðsiÞ; fðsjÞ� ¼ δi;j, as defined above).
For 3-valent NLSNs, we use a similar scheme for

encoding graphs and spins as lists. The first three entries
of the list carry the information about the spins of the
outermost links of the spin network following counter-
clockwise order starting from the top [e.g., for the spin
network (33) these would be j1, j2 and j3]. The following
three entries correspond to the counter-clockwise ordered
innermost spins [once again, for the spin network (33)
these would be j1, a, and b]. For each inner loop in
descending order of depth, we assign groups of four
entries, starting at position 7 in the ordered list. In each of
these quadruples, the first entry indicates the position of
the inner loop (1 for upper left, 2 for bottom, and 3 for
upper right). The second entry stores the spin of the
bridging link in this loop, and the remainder entries give
the spins of the links adjacent to (but not included in) the
loop. The scheme is similar to the one introduced for
4-valent NLSNs and allows us to implement the scalar
constraint as a functional acting on the arguments of ghost
functions. When it creates a new inner loop, it effectively
moves all list entries from seventh onward to the right by
four entries, so that entries corresponding to inner spins
are now moved down in depth for the data corresponding
to a new loop to be included. The new spins immediately
adjacent to the node are encoded in entries 4 to 6, while
entries 7 to 10 receive the information about the new
innermost loop.

X. RESULTS

Our numerical approach allows us to investigate a
variety of properties of the scalar constraint. One of
the open questions regarding the operator (1) is finding
its zero-eigenvalue eigenstates, since these ultimately span
the space of physical states in LQG. A solution to Eq. (1)
was given in Ref. [26], although the corresponding deri-
vation was based on an incomplete application of the scalar
constraint on 4-valent spin networks. In Ref. [56] it was
shown that, in the cosmological symmetry-reduced case
where a massless scalar field serves as relational clock
variable, solutions to the scalar constraint of the joint matter
and gravitational fields in a certain region of phase space
can be given by cylindrical functions generated from
transformed wave functions depending solely on the
Ashtekar-Barbero one-form. Furthermore, in Ref. [57], it
was shown that when the quantum-deformed Temperley-
Lieb algebra is considered, certain states generated through
transforms with a Chern-Simons kernel are eigenstates of
the (deformed) Thiemann’s Hamiltonian constraint. Using
our code, which allows us to implement the scalar con-
straint acting on spin networks of the forms (33) and (35)
with arbitrary spins assigned to their links, we have
searched for zero-eigenvalue solutions of Eq. (1). Our
protocol is based on “For” loops (a routine that runs a
section of code repeatedly while varying some parameters)
covering all possible spin values within a certain range on
each of the links besides the one containing a Wigner
matrix, for which the spin is fixed at zero. Spin assignments
not fulfilling triangularity at the nodes are excluded from
the search, since they violate one of the LQG constraints.
Whenever Cs½fðsiÞ� ¼ 0 for a certain si within the search
range, our protocol prints the corresponding spin assign-
ments that led to this result. For spin networks of the form
(33), we vary each of the spins j1; j2; j3 ∈N=2 from 0 to
7=2 while keeping ε ¼ 0 (therefore a ¼ j2 and b ¼ j3).
The only spin values for which the condition Cs½fðsiÞ� ¼ 0
is fulfilled are j1 ¼ j2 ¼ j3 ¼ 0. Additional numerical data
for spin networks with more inner loops suggest that any
spin network with zero innermost spins connected to the 3-
valent intertwiner is also an eigenstate of Eq. (1) with null
eigenvalue. By inspecting Eq. (50), we can easily under-
stand and generalize these results. If we set, e.g., j1 ¼ a ¼
b ¼ 0 for the input (33), we see that the two terms within
square brackets in that equation turn out to be equal and
cancel out [cf. also Eq. (21)]. The C3 rotational symmetry at
the innermost-node level assures that the result extends to
the three possible ways of inserting an inner loop.
Running the search protocol on spin networks of the

form (35) with ε ¼ 0 (i.e., allowing for all possible terms
derived in Sec. VII) reveals that the same single family of
eigenstates of the Hamiltonian with j1 ¼ j2 ¼ j3 ¼ j4 ¼
i ¼ 0 can be found. Not surprisingly, when we assume that
the link along the direction p4 does not contribute to the
action of the constraint, we get the same zero-eigenvalue
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family of eigenstates of the Hamiltonian. These eigenstates
have no volume, since their innermost spins are all zero,
yet, due to their possible “shielding” by inner loops with
nontrivial spins, they can still have nonzero areas, and
hence, these eigenstates might potentially serve as boun-
daries. Once the spins of the innermost links of a 4-valent
NLSN are set to zero, the volume in the Hamiltonian
constraint makes the action of the latter vanish on the
central NLSN node. Owing to cylindrical consistency,
only a graph effectively containing 3-valent nodes that
belong to the inner loops is left from the NLSN. These
3-valent intertwiners have coplanar links (therefore the
Hamiltonian acts trivially on them, with vanishing result)
and possess zero volume, and consequently so does the
entire NLSN. On the other hand, these NLSNs still possess
(nonzero) lengths, areas (along certain “cuts” of the
manifold), and dihedral angles. One can hence triangulate

a three-dimensional region in four dimensions with a spin
network composed of 4-valent nodes in its bulk, but
effectively containing only 3-valent nodes at its boundaries.
When acting on any single spin network or on a linear

combination of spin networks that cannot be generated
from one another by inner-loop couplings, the Hamiltonian
generates a linear combination of spin networks that has no
overlap with the input state. In fact, starting from a certain
js0i for which Ĉsjs0i ¼ c�1js1i (e.g., a state from which one
cannot remove inner loops), if we denote the (normalized
linear combinations of) states generated by i loop insertions
as jsii, with hsijsji ¼ δij, we have Ĉsjsii ¼ cijsi−1i þ
c�iþ1jsiþ1i ¼ hsi−1jĈsjsiijsi−1i þ hsiþ1jĈsjsiijsiþ1i. From
this relation and any suitable js0i, containing intertwiners
of any valency, we can generate the following solution of
the Hamiltonian constraint,

jE0i ¼ js0i −
hs1jĈsjs0i
hs1jĈsjs2i

js2i þ
hs1jĈsjs0ihs3jĈsjs2i
hs1jĈsjs2ihs3jĈsjs4i

js4i þ… ¼
X
i even

ð−1Þi=2 hs1jĈsjs0i
hs1jĈsjs2i

� � � hsi−1jĈsjsi−2i
hsi−1jĈsjsii

jsii: ð88Þ

Although it is not clear whether this state can be normalized, it is easy to check that it is annihilated by the action of Eq. (1),

ĈsjE0i ¼
X
i even

ð� � �Þ
�hsi−1jĈsjsi−2i
hsi−1jĈsjsii

hsiþ1jĈsjsiijsiþ1i −
hsi−1jĈsjsi−2ihsiþ1jĈsjsii
hsi−1jĈsjsiihsiþ1jĈsjsiþ2i

hsiþ1jĈsjsiþ2ijsiþ1i
�
¼ 0: ð89Þ

The idea underlying the construction of the solution jE0i is
that two consecutive terms on the right-hand side of
Eq. (88) differ by two loop insertions, and applying the
Hamiltonian constraint converts them into the same linear
combination of spin networks (inserting loops on one and
removing loops from another) with opposite prefactors.
Furthermore, although Eq. (88) holds for entire spin net-
works if the values of the lapse contained in Ĉs are the same
at all nodes, if one allows different values at each node, one
needs to build NLSN solutions via Eq. (88) for each
“building block” of the spin network and then contract
these NLSN solutions to create a full spin network solution.
This construction assures that jE0i remains independent
from the values of the lapse [note the mutual cancellation of
these values between numerators and denominators in the
coefficients in Eq. (88)]. Put simply, breaking a large spin
network into NLSNs and using Eq. (88) on each of them
before reassembling a spin network assures that Eq. (89) is
fulfilled at each spin network node, since the action of the
Hamiltonian on the entire spin network is the sum of its
action at each node. Note that the series (88) does not
necessarily need to converge. A suitable habitat for
solutions of this form is the algebraic dual of the linear
span of spin network states. If this dual contains all relevant
solutions, endowing it with a convenient inner product (and
averaging over diffeomorphims) should suffice to construct
a Hilbert space of physical states. Nonetheless, exclusion of

NLSNs with (nonexceptional) links removed by the Ham-
iltonian might be necessary to implement diffeomorphism
invariance on these solutions [35], and additional modifi-
cations of the Hamiltonian action might be needed if
diffeomorphism-invariant spin networks with pairs of
nodes sharing two or more links are considered [58].
Another interesting open question in LQG is the

regime of validity of some commonly used approxima-
tions, such as the assumption that the graph does not
change. A hypothesis that is frequently employed to
support this assumption is that a coarse-grained triangula-
tion of a manifold might produce a spin network capturing
the key features of the quantum geometry and such that
its dynamics effectively leaves the graph unaffected
[48,50,59]. One can indeed see that a first application of
Eq. (35) on a spin network implements a graphical change,
but a consecutive application of the constraint should
recover the “original” spin network. Nonetheless, as our
discussion in Secs. VI and VII shows, while the scalar
constraint is formally symmetric and maps output into input
once applied a second time, it also maps these “first-order”
output states into a new family of spin networks with even
larger graphical changes relative to the input spin network.
If Eq. (1) is recursively applied many times, the number of
spin networks with graphs that depart from the starting
spin network structure increases drastically. It is therefore
unclear whether such changes can be effectively absorbed
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into a coarse-grained spin network with graph-preserving
dynamics.
To investigate the validity of this graph-preserving

approximation, in the rest of this section, we are going
to discuss the transformation properties of some fiducial
spin networks up to a certain order in perturbation theory,
which corresponds to applying Eq. (1) recursively up to a
fixed number of times. More concretely, we are going to
study how the expectation value of the volume operator
varies when comparing graph-changing and graph-
preserving dynamics. The choice of the volume operator
as the figure of merit is based on the central role that this
operator plays in the dynamics (since it is present in the
Hamiltonian) and in the conceptual foundations of LQG
(it is one of the key operators of LQG and also leads to
rather drastic and distinct quantum consequences, such as
the discretization of spacetime geometry).
The Hamiltonian constraint obtained after quantization

of the Ashtekar-Barbero variables should, in principle, be
integrated over the volume of a 3D manifold, smeared by a
distribution corresponding to the (time) lapse. When a
regularization protocol is adopted to allow for a descrip-
tion of the constraint in terms of operators acting locally
at nodes of the spin network, as in Eq. (1), the lapse
distribution is reduced to a set of parameters N⊠, each of
which is related to one of the nodes of the spin network,
appearing as a summand in Eq. (1). When considering
only a node [so that the sum in Eq. (1) disappears],
something that is justified by the independent action of the
Hamiltonian on each node of the spin network, the single
parameter N ¼ N⊠ plays a role similar to time in the
standard unitary description of quantum mechanics (in the
absence of time ordering). Following this similarity, we
choose to treat N as our perturbation parameter. Our
objective is to construct the unitary operator generated by
the Hamiltonian constraint, Û ¼ expð−iĈs½N�Þ [60], and
expand it as a series in our perturbation parameter up to a
specific desired order, acting with it on a given spin
network and then estimating the expectation value of the
volume with respect to the resulting transformed state.
For the consideration of the action of the graph-changing

constraint on all legs of an NLSN, we are going to compute
terms only up to third order in perturbation theory. The
reason is that, in this case, the number of considered
possibilities is rather large, and therefore also the compu-
tation times (cf. Table II). In contrast, for the case in which
the constraint is restricted to ignore the NLSN links along
p4, we are going to include terms up to fourth order. On the
other hand, the considered graph-preserving constraint is
going to act on spin networks that have three different
structures [see Figs. 4(a)–4(c)] by inserting extended loops
solely between neighboring intertwiners, and the perturba-
tive expansion of the unitary transformation in these cases
is going to be truncated at fourth order.
It is worth noting that third- and general odd-order

contributions to the expectation values are absent in all

calculations, but the reasons for this differ between graph-
preserving and graph-changing dynamics. Since, under the
action of the graph-changing constraint, any graph can only
be recovered after applying the constraint an even number
of times, while the volume operator does not change the
graph, but rather shuffles spin assignments, any term of the
form hĈn

s V̂
lĈm

s i in which l; n;m∈N, n is even and m is
odd, or vice versa, gives zero whenever one starts from a
single spin network. This is also true for matrix elements of
the Hamiltonian itself, with hĈm

s i ¼ 0 for m odd (since the
structures generated by Ĉm

s starting from any spin network
differ graphically from that of the starting spin network).
For the graph-preserving case, however, a certain spin
network can, in general, be recovered also after an odd
number of applications of the Hamiltonian constraint, as is
the case for ladder-like spin networks [cf. Fig. 4(c)] if one
couples loops not only between each pair or intertwiners,
but also from the “sides” of the ladder structure (which is
closed via contraction of the lower legs of the bottommost
intertwiner to the upper legs of the uppermost intertwiner,
making the ladder into a possibly twisted ring). If such spin
network is composed of an odd number m of intertwiners,
m different loops coupled between intertwiners with two
additional side loops suffice to recover the initial spin
network. Although still hĈmþ2

s i ¼ 0 (because the constraint
generates a Hermitian and purely imaginary matrix
[34,35]), the terms of odd order in the expectation value
of the transformed volume, e.g., hĈmþ2

s V̂i, can fail to cancel
out, in general, leading to asymmetries in the volume
dependence on N (and hence on the proper time T ¼R
dtNðtÞ [60]). But, since “side” loops are neglected in our

discussion (the expressions for their couplings depend on
the specific number of intertwiners in the entire spin
network), we observe no such behavior in our graph-
preserving plots.
The volume expectation value, as a function of the

(perturbative) lapse parameter for two fiducial NLSNs, is
shown in Fig. 3 for the complete (up to third order) and
link-excluded (up to fourth order) cases, respectively. Note
that, in the last case, since the link of spin j4 is effectively
disregarded in the transformation, inner loops can only
appear in locations 1, 2, and 5 (nonetheless, the same
volume operators are used as in the general graph-changing
case). We choose NLSNs of the form (35) with
j1 ¼ j2 ¼ j3 ¼ j4 ¼ 1=2, ε ¼ 0, and i ¼ 0 (red curves)
or i ¼ 1 (black curves). The choice of spin assignments
for the considered spin networks aims at minimizing the
computational times, since higher spins also imply an
increase in the time cost of computations, as shown in
Table I.
For comparison, we also show in Fig. 3 the volume for

the (twisted) ladder-like spin networks transformed under
graph-preserving dynamics [represented in Fig. 4(c)],
expanded up to fourth order in N. Since graph-preserving
calculations depend on specificities of the choice of spin
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network, we provide in Fig. 4(d) additional data to compare
the behaviors of three spin network structures with different
modular “patches”, shown in Figs. 4(a)–4(c). This addi-
tional comparison supports the choice of the spin network
displayed in Fig. 4(c) as a reference to study the deviations
between graph-changing and graph-preserving dynamics.
Indeed, the spin networks in Figs. 4(b) and 4(c) seemingly
have very close volume profiles, possibly indicating that
other more complicated spin networks could have volumes
not so far from those plotted in Fig. 4(d) when graph-
preserving dynamics is implemented. To that extent, we
may regard this ladder-like spin network as a good
representative for the study of graph-preserving dynamics.
It is worth noting that the “bubble-like” spin networks
shown in Fig. 4(a) are eigenstates of the graph-preserving
Hamiltonian, therefore their volume and volume variance
remain equal to zero.
The results displayed in the figures indicate that the

graph-preserving approximation leads to a miss estimation
of the geometric observables of the system by nearly one
order of magnitude at moderate values of the lapse. As
discussed previously, the fact that hĈm

s̃ V̂i can be different

from zero for m odd in the graph-preserving scenario
(assuming one allows for all possible loop-coupling loca-
tions) also shows that the dynamics of the constraint is
affected by this approximation. Although computational-
time limitations have prevented us from completing the
graph-changing calculations at fourth order, the results for
graph-changing dynamics of NLSNs without acting on one
of the links indicate that the volume tends to increase for
N ≳ 3=4 under graph-changing dynamics, even somewhat
higher than the volume increase for N ≳ 1=2 observed
under graph-preserving dynamics [61]. The behaviors of
two (out of the three) investigated spin network graphs for
the graph-preserving dynamics are qualitatively similar to
the fourth-order graph-changing case. For the considered
NLSNs, the fourth-order contributions to the volume under
graph-changing dynamics only become comparable to the
second-order ones at N ∼ 10=9, while this happens at
N ∼ 4=5 in the graph-preserving case. This fact supports
the idea that the graph-changing perturbative results are
more reliable than the graph-preserving ones. Furthermore,
within the range of positivity of the variance, which
provides an estimate of the maximum value of the lapse
for which perturbation theory is acceptable, the two NLSNs
transformed under graph-changing dynamics have the same
volume profile, in contrast to what we see in the graph-
preserving case.
Although consideration of only two spin networks

does not provide a proof that the graph-preserving approxi-
mation leads to a considerable departure from the graph-
changing dynamics, the presented numerical data serve
as the first evidence that this might indeed be the case.
Further scrutinization of the different behavior of the
volume expectation value between the graph-changing
and graph-preserving scenarios is still needed, as well as
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FIG. 3. Variation of the dimensionless volume expectation
value with respect to the lapse under different scenarios. The
curves correspond to two fiducial spin networks with
j1 ¼ j2 ¼ j3 ¼ j4 ¼ 1=2, ε ¼ 0, and i ¼ 0 (red) or i ¼ 1 (black).
We compare graph-changing dynamics with (dot-dashed lines)
and without (solid lines) allowing the Hamiltonian to act on the
link along p4, as well as a graph-preserving transformation of the
spin network shown in Fig. 4(c) (dashed lines). Unitary trans-
formations are expanded up to third order in N for the full graph-
changing case, and fourth order otherwise. Note that, as expected
from our discussion in the main text, the third-order contributions
to the volume vanish. It is possible to see that the graph-
preserving dynamics miss estimates the volume expectation
value both in absolute value and in the location of its minima.
The graph-preserving dynamics also violates the equality be-
tween volume profiles observed for the two choices of inner
virtual spins, i ¼ 0 and i ¼ 1. The input spin networks employed
in the calculations are normalized. The inset gives the corre-
sponding curves for the variance, ðhV̂2i − hV̂i2Þ=V2

0. Recall that
V0 is the global constant factor introduced in our definition of the
volume operator.

TABLE I. Computational times for the application of the
Hamiltonian constraint, Eq. (1), on node-like spin networks
without inner loops [Eq. (35) for ε ¼ 0, α ¼ j3 and β ¼ j2]
for several choices of link spins. As higher spins are chosen, the
computational times rise considerably. We estimate that the time
T scales as T ∼ 24j1j2j3j4 maxfigT0, where maxfig is the
maximum value of the spin i allowed by the Clebsch-Gordan
conditions and T0 is the time cost of the lowest spin choice,
f1=2; 1=2; 1=2; 1=2; 0g. Times were recorded on a MacBook Pro
with M1 chip.

fj1; j2; j3; j4; ig Time (s)

f1=2; 1=2; 1=2; 1=2; 0g 168.8
f1=2; 1=2; 1=2; 1=2; 1g 187.5
f1; 1=2; 1=2; 1; 1=2g 668.8
f1; 1=2; 1=2; 1; 3=2g 687.9
f1=2; 1; 1=2; 1; 0g 822.4
f1=2; 1; 1=2; 1; 1g 826.0
f1; 1; 1; 1; 0g 6543.8
f1; 1; 1; 1; 1g 6744.7
f1; 1; 1; 1; 2g 6482.7
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TABLE II. Computational times for the application of several functionals at different perturbative levels on node-like spin networks
(NLSNs) given by Eq. (35) for ε ¼ 0, α ¼ β ¼ j1 ¼ j2 ¼ j3 ¼ j4 ¼ 1=2, and i ¼ 0; 1. Subscripts gc and gp denote NLSNs transformed
under graph-changing or graph-preserving constraints, respectively. Superscripts e refer to the exclusion of one link from the
Hamiltonian action, while ∘;Δ;□ represent the spin network structures depicted, respectively, in Figs. 4(a)–4(c). The number of
recursive applications of the Hamiltonian constraint is labeled by the exponent n in Cn

s , with the unit 1 representing no application. In the
Hamiltonian rows, the entries correspond to times consumed when applying the constraint the nth time. The other considered
functionals are generally applied afterwards. However, in the case of the normalizer and volume functionals, they are also applied on the
initial spin networks. Therefore, they possess entries at the column labeled by 1, corresponding to the level prior to the first application of
the Hamiltonian. Normalization times marked with an asterisk (*) were recorded without using the collector functional before, since for
very large linear combinations of ghost functions the collector offers no time advantage relative to a direct application of the normalizer.
Not every functional needs to be applied to every output NLSN superpostion to calculate the volume expectation value; therefore, some
entries are marked as “nonapplicable” (NA). Times were recorded on a MacBook Pro with M1 chip.

Time (s)

Functional fj1; j2; j3; j4; ig 1 Cs C2
s C3

s C4
s

Hamiltonian f1=2; 1=2; 1=2; 1=2; 0gjgc NA 168.8 10058.5 106 NA
f1=2; 1=2; 1=2; 1=2; 1gjgc NA 187.5 10438.1 106 NA
f1=2; 1=2; 1=2; 1=2; 0gjegc NA 44.8 1048.1 9793.3 85985.6
f1=2; 1=2; 1=2; 1=2; 1gjegc NA 42.0 1054.0 10230.4 85636.3
f1=2; 1=2; 1=2; 1=2; 0gj∘gp NA 70.1 1057.7 7282.4 21233.1
f1=2; 1=2; 1=2; 1=2; 1gj∘gp NA 71.2 1054.0 6141.1 21196.5
f1=2; 1=2; 1=2; 1=2; 0gj△gp NA 69.8 1212.1 7070.1 32628.2

f1=2; 1=2; 1=2; 1=2; 1gj△gp NA 69.9 1177.0 7650.5 33529.5

f1=2; 1=2; 1=2; 1=2; 0gj□gp NA 35.4 746.7 11562.7 59017.1

f1=2; 1=2; 1=2; 1=2; 1gj□gp NA 69.7 2203.7 22876.1 96747.7

Collector f1=2; 1=2; 1=2; 1=2; 0gjgc NA 0.009 11.06 NA NA
f1=2; 1=2; 1=2; 1=2; 1gjgc NA 0.008 11.66 NA NA
f1=2; 1=2; 1=2; 1=2; 0gjegc NA 0.002 0.44 147.7 NA
f1=2; 1=2; 1=2; 1=2; 1gjegc NA 0.002 0.43 157.1 NA
f1=2; 1=2; 1=2; 1=2; 0gj∘gp NA 0.001 0.04 0.9 22.4
f1=2; 1=2; 1=2; 1=2; 1gj∘gp NA 0.001 0.03 1.1 23.9
f1=2; 1=2; 1=2; 1=2; 0gj△gp NA 0.001 0.06 2.5 114.5

f1=2; 1=2; 1=2; 1=2; 1gj△gp NA 0.001 0.07 2.6 111.7

f1=2; 1=2; 1=2; 1=2; 0gj□gp NA 0.001 0.09 5.4 375.9

f1=2; 1=2; 1=2; 1=2; 1gj□gp NA 0.005 0.25 19.8 NA

Normalizer f1=2; 1=2; 1=2; 1=2; 0gjgc 0.00010 0.0013 0.617 24.982� NA
f1=2; 1=2; 1=2; 1=2; 1gjgc 0.00009 0.0021 0.408 7.30692� NA
f1=2; 1=2; 1=2; 1=2; 0gjegc 0.00010 0.0014 0.053 2.270 10.14�

f1=2; 1=2; 1=2; 1=2; 1gjegc 0.00011 0.0006 0.026 1.346 9.95�

f1=2; 1=2; 1=2; 1=2; 0gj∘gp 0.00083 0.0004 0.001 0.002 0.43
f1=2; 1=2; 1=2; 1=2; 1gj∘gp 0.00011 0.0005 0.001 0.003 0.47
f1=2; 1=2; 1=2; 1=2; 0gj△gp 0.00083 0.0010 0.003 0.003 2.38

f1=2; 1=2; 1=2; 1=2; 1gj△gp 0.00003 0.0004 0.001 0.002 2.34

f1=2; 1=2; 1=2; 1=2; 0gj□gp 0.00005 0.0042 0.002 0.010 9.47

f1=2; 1=2; 1=2; 1=2; 1gj□gp 0.00024 0.0009 0.003 1.103 7.33�

(Table continued)
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consideration of other figures of merit beyond the volume
operator. We note that, although the spin networks con-
sidered in the analysis of the volume dynamics are not
solutions to the Hamiltonian, they can describe the gravi-
tational part of physical states in the presence of a suitable
scalar field or nonrotational dust serving as clock [29,62].
In this context, the different volume profiles in graph-
changing and graph-preserving approaches can have great
influence, for instance, in cosmology [14,32,63], leading to
different expansion rates or distinct behaviors, compatible
or not with an inflationary regime. Similarly, for black hole
geometries, they can modify the dynamical properties of a
black-to-white hole transition and its characteristic time
[64–66]. Moreover, even though we have employed the
Euclidean constraint, this Hamiltonian is known to become
proportional to the Lorentzian one in flat cosmological
scenarios [67], and one could then expect that the pertur-
bative evolution that we have considered can shed light on
some distinctive dynamical features of these cosmological
systems.

XI. CONCLUSIONS AND OUTLOOK

In the first part of our work, we have made use of the
modern conventions in recoupling theory to fully derive
the action of the LQG Euclidean scalar constraint around
3-valent and 4-valent nodes of spin networks. These results
represent an update, as well as an extension, of previous
derivations [23–26]. Our discussion shows how reversibil-
ity and self-adjointness can be directly visualized in the
spin networks acted upon by the Hamiltonian constraint:
inner loops can both be added or removed around the
intertwiner. In fact, we show that, when acting on spin
networks with inner loops, possible outcomes of the scalar
constraint are spin networks with the same graph, but with
different spin assignments on the bridging link of the inner
loops. We derive this “loop-coupling”mechanism using the

TABLE II. (Continued)

Time (s)

Functional fj1; j2; j3; j4; ig 1 Cs C2
s C3

s C4
s

Volume f1=2; 1=2; 1=2; 1=2; 0gjgc 0.092 1.39 27.8 NA NA
f1=2; 1=2; 1=2; 1=2; 1gjgc 0.086 1.40 27.7 NA NA
f1=2; 1=2; 1=2; 1=2; 0gjegc 0.091 0.81 7.6 NA NA
f1=2; 1=2; 1=2; 1=2; 1gjegc 0.096 0.85 8.3 NA NA
f1=2; 1=2; 1=2; 1=2; 0gj∘gp 0.085 0.37 1.5 NA NA
f1=2; 1=2; 1=2; 1=2; 1gj∘gp 0.095 0.38 1.6 NA NA
f1=2; 1=2; 1=2; 1=2; 0gj△gp 0.094 0.47 2.0 NA NA

f1=2; 1=2; 1=2; 1=2; 1gj△gp 0.081 1.38 8.7 NA NA

f1=2; 1=2; 1=2; 1=2; 0gj□gp 0.090 0.46 3.2 NA NA

f1=2; 1=2; 1=2; 1=2; 1gj□gp 0.094 0.82 5.3 NA NA
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FIG. 4. (a)–(c) Three different choices of spin networks,
selected for the study of graph-preserving dynamics. Structures
(b) and (c) are modular, as implied by the dotted links above and
below. The red dots mark locations where loops can be coupled
(note the absence of loops coupled from the sides of the spin
networks, even though this is technically possible). The loops
extend along the entire perimeter of the regions marked by these
red dots. The red link represents the sole intertwiner acted upon
by the graph-preserving Hamiltonian, and its spin takes values
i ¼ 0 or i ¼ 1, each corresponding to red or black volume
profiles in (d), respectively. (d) Variation of the dimensionless
volume expectation value with respect to the lapse N for the three
different choices of spin networks. The unitary transformation is
expanded up to fourth order in N. Volumes of spin networks (a),
(b), and (c) are represented by long-dashed, dotted, and dashed
lines, respectively. Note the similarity of the results for spin
networks (b) and (c), particularly when i ¼ 0. The inset shows the
corresponding curves for the variance, ðhV̂2i − hV̂i2Þ=V2

0, where
V0 is the global constant factor introduced in our definition of the
volume operator.
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tools from recoupling theory, something so far not yet
presented in the literature. These calculations should serve
as a reference for future studies of the full Euclidean
Hamiltonian constraint in the graph-changing regime.
We have then introduced a novel numerical approach

that enables us to encode spin networks and implement the
action of the Hamiltonian constraint on them. The code
allows us to explore the effects of the graph-changing
behavior of the scalar constraint on the expectation value of
the volume operator and even compare them to the
approximated, graph-preserving constraint. Our results
show that the assumption that the graph-changing dynam-
ics can be properly approximated by a graph-preserving
Hamiltonian might not be firmly justified for generic spin
networks states, at least if we restrict them to low spins. In
addition to this analysis, we have also managed to
determine with our numerical methods two families of
solutions of the Euclidean Hamiltonian. It is reasonable to
expect that solutions of the form (88) live in the algebraic
dual of the dense set of spin network states on which we
define our constraint. Their definitive physical interpreta-
tion should depend on the feasibility of introducing an inner
product that endows them with a physical Hilbert-space
structure. However, even though the set of such solutions is
remarkably infinite (in contrast with the situation before our
work), they do not seem to include yet enough degrees of
freedom to capture the complete phenomenology of general
relativity (two per the discrete counterpart of a spatial
point). The determination of a physical inner product seems
still out of reach, and further scrutiny of the solutions and
their properties is needed and planned for future works.
It is worth noting that, as we showed in our time-cost

analysis, computations on a single computer are expectedly
demanding and processing times increase rapidly both with
the number of recursive applications of the Hamiltonian
and with the spins involved. Therefore, it would be
interesting to explore the potential to run these calculations
in a computational cluster.
Our work is a thorough study of the graph-changing

aspects of the Euclidean scalar constraint, both analytically
and numerically, and introduces a new tool to further
explore its action on spin networks. These contributions
enable new analyses in LQG, allowing developments in
areas previously assumed to be numerically unfeasible.
More concretely, we expect future works on LQG to further
use and build on our numerical approach and therewith
extend our results to a wider domain of validity, potentially
also unveiling new families of eigenstates and new phe-
nomenology in LQG. In particular, it would be interesting
to discuss how precise LQG formulations would affect
relevant semiclassical results such as the black-to-white-
hole tunneling [68], the potential tiny-white-hole nature of
dark matter [69] or the black-hole halos potentially left
from past universes through bounces [70]. Comparison of
our results with compatible spin-foam numerical data might

also shed light on the possible connection between canoni-
cal and covariant formalisms in LQG. Note, however, that
unlike current numerical results in covariant LQG, our
calculations include all possible superpositions of graphs
generated by the Hamiltonian, up to a desired order in the
lapse, a feature we believe is needed to fully embrace the
graph-changing character of the theory. Lastly, in future
studies, we plan to focus our investigations on the numeri-
cal implementation of the Lorentzian constraint and on the
search for its solutions.
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APPENDIX A: ADDITIONAL FORMULAS FROM
RECOUPLING THEORY

One important point for the derivation of the action of the
scalar constraint (1) on 4-valent NLSNs is how to factor out
diagonal inner links. The relation that allows this requires the
use of several expressions from Sec. IV. For this reason, we
include its derivation here. The idea is that one uses a double
braid operation (namely, on the nodes of spins fa; j3; 1=2g
and fj3; j1; pg) to convert the spin network into a more
tractable formwhile picking up a phase from these braidings
[cf. Eq. (9) and the discussion thereafter]. One then uses
Eq. (10) to introduce arrowson the four links connected to the
intertwiner. This permits us to use Eq. (20) on the links with

spins j3 and q. The double Pachner move combined with the
removal of three arrows at the node fp; o; 1=2g [which
requires flipping ϵðpÞ and therefore contributes with a phase
factor ð−1Þð2pÞ] gives the expression in the second row of
Eq. (A1). We are required to flip the cyclicity of the node
fp; o; 1=2g to allow for the use of Eq. (13), which factors out
the inner “bubble” loop and removes a prefactor of dn.
Flippingboth ϵðj1Þ and ϵðj2Þ leads to the expression in the third
row of the equation. Finally, since ð−1Þð2j3Þ ¼ ð−1Þð2aþ1Þ

and ð−1Þð2nÞ ¼ ð−1Þð2j2þ2mÞ (note the triangularity condi-
tions imposed by theWigner 6j symbols), we can rewrite the
final expression in the form given in the last row of Eq. (A1)
(using the symmetry of the Wigner 6j symbols),

ðA1Þ

Another important relation appears in the derivation of the action of the volume operator (or, more precisely, in the action
of Ŵ). We use Eq. (28) to introduce the resolution of the identity in such a way that it isolates the spin-1 links, i.e., it “splits”
the links of spins j1, j3, andm. The factored term forms a hexagonal spin network that corresponds to the Wigner 9j symbol
[cf. Eq. (19)],
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ðA2Þ

We now show a simple example of how the arrows within a tetrahedral spin network of the form (18) can be rearranged
using Eq. (10) to give similar structures, all of which correspond to the Wigner 6j symbol up to varying phase factors. In the
concrete example below, we introduce three arrows on the node joining the spins fk3; k1; j3g, and use Eqs. (4) and (5) to
remove doubled arrows, obtaining a phase,

ðA3Þ

Expressions like the one on the right-hand side are often factored out in the equations of Secs. VI and VII.
Finally, the 2-2 Pachner move can be derived by means of a braid, Eq. (17) and another braid, in the following sequence:

ðA4Þ

Note that, in the last row of this equation, the intertwiner
has been rotated clockwise by π=2. Furthermore, the
(Clebsch-Gordan) relation ð−1Þ2lþ2j2þ2j4 ¼ 1 has been
employed in the phase factor.

APPENDIX B: TEMPERLEY-LIEB ALGEBRA

Instead of using the modern orthonormalized spin net-
works as quantum states in our description, we use here the
old-fashioned, yet more graphically intuitive, description of
such systems in terms of Temperley-Lieb tangles [19]. We
introduce below the main working tools from recoupling
theory with Temperley-Lieb algebra, that will be needed to
follow the following derivations (note the difference from
what was introduced in Sec. IV),

ðB1Þ

ðB2Þ
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ðB3Þ

ðB4Þ

ðB5Þ

ðB6Þ

ðB7Þ

ðB8Þ

The labels (a; b; c; d; i; j; m; n; r; s; t) used in Eqs. (B1)–
(B8) are “colors,” corresponding to twice the spins.
Equation (B1) represents a so-called 2-2 Pachner move
[19]. The coefficient in the summand of Eq. (B1), related
through Eq. (B2) to other commonly occurring symbols in
recoupling theory, is the 6j symbol in the Temperley-Lieb
normalization. The tetrahedral net symbol with inputs
(a; b; c; d; i; j) on the (numerator on the) right-hand side
of Eq. (B2) will regularly appear throughout the following
calculations. Its formula [71] can be found in Sec. 9.11
of Ref. [19], but we often convert it to the most widely

used 6j symbol with spin entries rather than colors [72],
often encountered in mathematical softwares [e.g., the
“SixJSymbol” function in Mathematica] and represented
here in parentheses,

ðB9Þ

It is worth noting that the tetrahedral net symbol is
invariant with respect to the following permutations of
arguments: ða; b; i; c; d; jÞ, ðb; a; i; d; c; jÞ, ða; i; b; c; j; dÞ,
ða; d; j; c; b; iÞ, ðc; d; i; a; b; jÞ, and ðc; b; j; a; d; iÞ.
Another important property of this function is its triangu-
larity; i.e., it only assumes nonzero values if the triples
ða; b; iÞ, ði; c; dÞ, ðd; j; aÞ, and ðc; b; jÞ simultaneously
fulfill the triangle/Clebsch-Gordan conditions for all (per-
mutations of) its entries. Equation (B5) is a symbolic
representation of the Clebsch-Gordan spin coupling, with
the colors n andm summing up to all allowed values i such
that jm − nj ≤ i ≤ mþ n, with the additional (gauge-
invariance) constraint mþ nþ i ¼ 2k ðk∈NÞ, referred to
as the Clebsch-Gordan or triangle conditions. One inter-
esting aspect of the Temperley-Lieb algebra is the fact that
the geometric arrangement of colors in Eq. (B9) differs
from that in Eq. (18), resulting in different predictions for
the two approaches considered. The single loop in Eq. (B3)
represents, up to a possible −1 factor, the dimension of the
color-i representation (i.e., for i ¼ 2j, d ¼ 2jþ 1) and
results from summing over all tangle permutations (the
permutation is represented by a white square). The remain-
ing equations are mostly used for the purpose of renorm-
alization of virtual edges (edges added to the spin network
through manipulations). Making use of those equations, we
proceed with the derivation of the action of the scalar
constraint on general spin networks.
We start with a generic collection of three linearly

independent edges attached to a common vertex of
valence 3. We label their colors as r, p and q. Following
Refs. [24,25], both the edges and the paths of the
holonomies in Eq. (1) are oriented towards the vertex
(inverse holonomies are therefore associated with segments
oriented away from the vertex). Whenever necessary, the
orientation of edges and holonomies will be indicated by an
arrow. The orientation is important, since the consecutive
application of the holonomies in Eq. (1) should follow a
cyclic orientation closed by the trace (i.e., two holonomies
connected by a virtual 2-valent vertex should not be
simultaneously oriented toward this vertex).
We proceed with the application of the first holonomy of

the first term on the right-hand side of Eq. (1) to the three
fiducial edges from the same vertex. At first, we consider
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the action of ĥ−1½pk� only along the path pr parallel to the
edge labelled by r, i.e.,

ðB10Þ

The action of the holonomies ĥ−1½pp� and ĥ−1½pq� along the
edges p and q follow analogous relations with permuted
labels. Note that the holonomy ĥ−1½pr� is represented as an
arrow of color 1 [the fundamental representation of the
SU(2) group] with orientation opposite to its adjacent edge,
with label given by r. Using Eq. (B5), the two parallel
segments with labels r and 1 (i.e., the edge and the
holonomy) can be coupled, with their combined colors/
spins assuming all values c allowed by the Clebsch-Gordan
conditions, namely, c ¼ rþ ϵ with ϵ ¼ �1. The use of
Eq. (B5) automatically results in a trivalent decomposition,
with the small r-colored segment attached to the original
vertex being actually virtual (i.e., it has no physical
extension in the manifold), so that this vertex becomes
effectively 4-valent with edges p, q, c and 1. The increased
valence of the original vertex, however, is not permanent,
since the new inward-oriented edge of color 1 is supposed
to be tied to the other holonomies in Eq. (1), in a similar
way to how the indices of a product of matrices have to be

contracted pairwise (and therefore no free indices are left
after a trace is applied). The same holds for the oriented
edge of color 1 created on the upper-most virtual vertex.
The considered spin networks, and therefore also their

corresponding tangles, are eigenstates of the volume
operator. This operator acts on the (physical) vertices of
the graph, giving zero contribution from vertices with
valence below 4, while higher-valence vertices have a
contribution defined by the colors of the edges attached

to them. In practice, V̂ ≡ l3
0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiŴð4Þ

½p;q;c�j
q

is defined in terms

of the Planck length l0 and the operator Ŵð4Þ
½p;q;c�. Applying

Ŵð4Þ
½p;q;c� on the right-hand side of Eq. (B10), which contains

an effective 4-valent vertex with edges of colors p, q, c and
1 decomposed in a trivalent arrangement, leads to

ðB11Þ

The matrix Wð4Þ
½p;q;c�ðp; q; 1; cÞβr in Eq. (B11) is skew

symmetric, and with the exception of two entries is
composed of zeros. The two nonzero entries depend on
the value of c: if c ¼ rþ 1, the entries with row r − 2 and
column r, and vice versa, are nonzero, while if c ¼ r − 1,
the entries with row r and column rþ 2, and vice versa, are
nonzero instead [24,25,42]. These matrix elements read

Wð4Þ
½p;q;c�ðp; q; 1; cÞr�2

r ¼ �ð−1Þðpþqþrþ1�1Þ=2

×

�
1

28
ðpþ qþ r� 1þ 3Þð1þ pþ q − r ∓ 1Þð1þ pþ r� 1 − qÞð1þ qþ r� 1 − pÞ

�
1=2

:

ðB12Þ

While Wð4Þ
½p;q;c�ðp; q; 1; cÞβα is not diagonal, it can be easily

diagonalized by a unitary matrix U. The two eigen-

values of Wð4;diagÞ
½p;q;c� ðp; q; 1; cÞ ¼ UWð4Þ

½p;q;c�ðp; q; 1; cÞU†

are Wð4Þ
½p;q;c�ðp; q; 1; cÞr�2

r and −Wð4Þ
½p;q;c�ðp; q; 1; cÞr�2

r . The

square root of the matrix iWð4Þ
½p;q;c�ðp; q; 1; cÞ can be

expanded to show that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiWð4Þ

½p;q;c�ðp; q; 1; cÞj
q

¼ U†
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiWð4;diagÞ

½p;q;c� ðp; q; 1; cÞj
q

U

¼ U†1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWð4Þ

½p;q;c�ðp; q; 1; cÞr�2
r j

q
U

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWð4Þ

½p;q;c�ðp; q; 1; cÞr�2
r j

q
:

ðB13Þ

The matrix representation of the volume operator is there-
fore diagonal.
The next operator on the right-hand side of Eq. (1) is

the holonomy ĥ½pk�. For the specific case of the path pr

along the r-colored edge, ĥ½pr� is graphically repre-
sented by an arrow parallel, but oppositely oriented, to
the arrow representing ĥ−1½pr� in Eq. (B10). ĥ½pr� can
be directly attached [73] to the loose end of the upper
edge of color 1 on the right-hand side of Eq. (B10)
to give

ðB14Þ
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The holonomies over the triangular loop, ĥ½αij� − ĥ½αji�,
should be applied on the right-hand side of Eq. (B14) in
such a way that the orientation of the sequentially coupled
holonomies is preserved. Since αij and αij have opposite
orientations, they are attached to the loose ends of the two
virtual edges of color 1 (which are physically at the same
point of the manifold) in different ways. The presence of
the trace in Eq. (1) enforces that all virtual edges should be
tied together, such that no loose virtual edges remain. As a
result,

ðB15Þ

The effect of coupling holonomies (with color 1) to the
edges of colors p and q can be accounted for by applying
Eq. (B5) to each of those edges. For the first subgraph
(i.e., a region of a spin network around one of its vertices)
on the right-hand side of Eq. (B15), this leads to

ðB16Þ

where a ¼ pþ ϵ0 and b ¼ qþ ϵ00 (with ϵ0; ϵ00 ¼ �1
according to the Clebsch-Gordan conditions), and all
virtual edges originating from holonomies have color 1
(this also applies for the following derivations). We can
now use Eq. (B8) to rearrange the crossings of edges [74],

ðB17Þ

This operation is performed three times, once for each
of the original edges that we are considering. The
virtual loops that appear on the right-hand side of
Eq. (B17) can be renormalized with the aid of Eq. (B6)
to give

ðB18Þ

Similar operations can be performed on the second
graph on the right-hand side of Eq. (B15).
After taking into account that the trace gives an

additional −1 prefactor, Eqs. (B10)–(B17) synthesize
the action of the first term of the Hamiltonian (1) on
the fiducial three edges attached to the same vertex. The
second term of the Hamiltonian, arising from the alter-
nate order of operators in the anticommutator, has a
similar effect, but since the holonomies ĥ½αij� − ĥ½αji� are
applied before the volume operator, the latter has instead
the matrix elements

l30
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWð4Þ

½pþϵ0;qþϵ00;c�ðpþ ϵ0; qþ ϵ00; 1; cÞr�2
r j

q
:

Calling

K½a;b;c�
½p;q;c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWð4Þ

½p;q;c�ðp; q; 1; cÞr�2
r j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWð4Þ

½a;b;c�ða; b; 1; cÞr�2
r j

q
; ðB19Þ

the action of the Hamiltonian (1) can thus be written as

GUEDES, MENA MARUGÁN, MÜLLER, and VIDOTTO PHYS. REV. D 112, 026024 (2025)

026024-64



ðB20Þ
Since the Hamiltonian is Hermitian, if it takes an input spin network jAi into an output spin network jBi, it should take

jBi into jAi with equal probability, i.e., hAjĈsjBi ¼ hBjĈsjAi�. We apply our constraint operator on the first subgraph on
the right-hand side of Eq. (B20) to check this condition. Similar arguments to those presented in the derivation of
Eqs. (B10)–(B20) show that one of the terms resulting from the application of Eq. (1) on this subgraph introduces a
triangular loop inside the previously added loop, i.e.,

ðB21Þ

where the sum over ξ0; ξ00; ϵ (with d ¼ aþ ξ0, c ¼ rþ ϵ, e ¼ bþ ξ00 and ξ0; ξ00; ϵ ¼ �1), as well as the factor

λ1;rc λ1;ad λ1;be K½d;e;c�
½a;b;c�, have been omitted. The two previously nonexistent edges of color 1 in the subgraph on the right-

hand side of Eq. (B21) can be combined with the help of relation (B5), which merges the two into a single edge that can take
the colors 0 or 2,

ðB22Þ

When the merging of the edges of color 1 leads to an
edge of color 2, its attachments to the two previously
existent edges can be renormalized by means of Eq. (B6)
to remove the virtual triangles. When this merging
process results in no edge (l ¼ 0), the coefficient on
the right-hand side in Eq. (B22) becomes −1=2, and the

remaining “loop” in two of the edges can be removed
with the aid of Eq. (B7), recovering the original sub-
graph (with no added triangular loops) with an overall

coefficient λ1;rc λ1;ap λ1;bq K½p;q;c�
½a;b;c�=2ð¼ λ1;cc λ1;pa λ1;qb K½a;b;c�

½p;q;c�=2Þ
multiplied by
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ðB23Þ

This differs from the first coefficient in Eq. (B20) by

ðB24Þ

Equation (B24) seems in conflict with the self-adjointness
of the Hamiltonian. This illusory tension is a by-product
of the usage of Temperley-Lieb tangles rather than
normalized spin networks. As show in Ref. [42]
(cf. Sec. VIII), tangles have to be normalized by the
square root of the product of loops of the form (B3), one
for each edge of the tangle, divided by the product of
theta symbols of the form (B4), and one for each vertex
of the tangle (the indices of the symbols are the colors of
the corresponding edges and vertices), i.e.,

jspin network fjigi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
v

Y
e

Δe

θv

s
jtanglef2jigi; ðB25Þ

where Δe is given by Eq. (B3) with the same color as
edge e, θv by Eq. (B4) for the vertex v (the arguments
being the three colors of the edges connected to that
vertex) and products run over edges e and vertices v.
Note that the orthonormalized spin network state in
Eq. (B25) has a set fjig of spins attached to its vertices,
while the tangle has a corresponding set of colors f2jig.
Hence, if the subgraph on the left-hand side of Eq. (B21)
is associated with the spin network jAi and the subgraph
on the left-hand side of Eq. (B20) (before the application
of the Hamiltonian) is associated with jBi (the rest of the
two graphs being identical), the ratio hAjAi=hBjBi is

exactly given by Eq. (B24) (up to a minus sign).
Therefore hAjĈsjBi=hBjĈsjAi ¼ −1, and the scalar
Hamiltonian constraint is self-adjoint.
Notwithstanding the apparently cumbersome form of

Eq. (B20), a few properties can be extracted from its
coefficients. The tetrahedral net symbol, for example, can
be recast using Eq. (B9) as a spin-normalized 6j symbol,
with well known properties. It is therefore clear that, if
p ¼ q and a ¼ b, the pairs of tetrahedral net symbols
(related by p ↔ q, a ↔ b up to symmetry) will cancel each
other in the first coefficient of the right-hand side of
Eq. (B20). Similarly, its second coefficient vanishes when
r ¼ p and c ¼ a (owing to the swap p ↔ r, a ↔ c
between pairs of symbols), while the third coefficient
vanishes for r ¼ q and c ¼ b (owing to the argument
swap q ↔ r, b ↔ c).
Triangularity in Eq. (B9) requires that ða; 1; cÞ, ðc; r; qÞ,

ðq; p; aÞ, ðr; 1; pÞ, ða; c; rÞ, ðr; 1; bÞ, ðb; q; aÞ, and ð1; c; qÞ
all fulfill the triangular condition in order for the first pair
of tetrahedral net symbols on the right-hand side of
Eq. (B21) to be nonzero [75]. If p ¼ q ¼ r ¼ 1, for
example, the aforementioned term will give zero when-
ever a ¼ b ¼ 0, c ¼ a ¼ 0, c ¼ b ¼ 0, a ≠ b, c ≠ a, or
c ≠ b (because, in this case, a, b, and c can only assume
the values 0 or 2). Additionally, if a ¼ b ¼ 2, the two
pairs of tetrahedral net symbols subtracted from each
other will be equal and therefore cancel out (since they
differ by a a ↔ b argument swap). As a result, a vertex
with all edges of color 1 is annihilated by the action of
the Hamiltonian [in other words, it is a zero-eigenvalue
eigenstate of Eq. (1)].
Similarly, if p ¼ q ¼ 1 and r ≥ 3, the triples ðr; 1; pÞ

and ðr; 1; qÞ are not triangular. Permutation of these labels
reveals that no combination of the labels 1, 1, and n (with
n ≥ 3) can simultaneously fulfill all the triangularity
conditions. It is worth noting that these vertices violate
the gauge constraint; therefore, they are not contained in the
physical Hilbert subspace. Nonetheless, 3-valent vertices
with edges of colors 1, 1þ n, and 1þ n with n∈N� fulfill
the gauge constraint, but when acted upon by the
Hamiltonian constraint cannot satisfy the triangularity
conditions of the 6j symbols in Eq. (B20) (giving a zero
outcome) and are therefore zero-eigenvalue eigenstates of
the Hamiltonian constraint when the Temperley-Lieb alge-
bra is adopted.
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