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ABSTRACT

Ligand-bound carboxylic acids are considered a stabilized fraction of mineral-adsorbed carbon in soil. Carboxyl-*C labeled phenylalanine or salicylic acid were
adsorbed onto goethite, kaolinite, or illite, and subsequently incubated in both loamy and sandy arable topsoil for three weeks. Contrary to our expectations, more
mineral-adsorbed carboxyl-C was mineralized than remaining C in salicylic acid and phenylalanine irrespective of mineral type or soil due to competitive desorption
followed by preferential mineralization. Factors that control the desorbability of organic molecules are more important for their stabilization in the soil than sorption

strength.

In a recent experiment (Konrad et al., 2025), we found that microbial
mineralization and assimilation of carbon (C) from mineral-adsorbed
salicylic acid and i-phenylalanine increased with desorbability from
goethite, kaolinite and illite. Desorbability is the amount desorbed
indexed to the amount adsorbed for a given extractant (0.01 M NaNs in
Konrad et al., 2025). This concurs with past research that protection of
organic matter against mineralization increases with sorption
strength—e.g., van-der-Waals forces < polyvalent exchangeable cation
bridging < ligand exchange (Mikutta et al., 2007)—only when desorb-
ability is inversely related to sorption strength. Furthermore, the ques-
tion remains whether desorbability regulates the microbial processing of
the entire molecule or only the adsorbed C atoms. If the latter, cova-
lently bonded C atoms in carboxyl groups ought to be retained in soil to a
greater extent than other moieties such as substituted phenyl or
aliphatic structures.

We tested this proposition by incubating carboxyl-'*C-labeled sali-
cylic acid and r-phenylalanine adsorbed to goethite, kaolinite or illite
parallel to the uniform-'*C label incubation experiment in Konrad et al.
(2025). Sorption was performed in 0.01 M NaCl at pH 5.5 and the sorbed
compounds were incubated in the same arable topsoils from Dikopshof
and Thyrow. Dikopshof is a loamy, aggregated Luvisol (pH 6.0), while
Thyrow is a sandy Haplic Retisol (pH 5.2). Both soils were fertilized with
farmyard manure (see Lorenz et al., 2024 for further details). At pH 5.5,
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both monomers can perform ligand exchange reactions via their
carboxyl group.

Minerals were identical to Konrad et al. (2025). Carboxyl—MC labeled
monomers came from American Radiolabeled Chemicals (St. Louis,
Missouri, USA). In agreement with the earlier experiment, sorption of
phenylalanine- and salicylic acid-carboxyl-1*C decreased from goethite
> kaolinite > illite. Sorbed amounts of salicylic acid carboxyl-'4C
equaled 87.7 nmol m~2 for goethite, 43.4 nmol m~2 for kaolinite and
12.1 nmol m~2 for illite. Those of phenylalanine carboxyl-'“C were 20.6
nmol m 2 for goethite, 17.4 m for kaolinite, and 5.6 nmol m 2 for illite.

Soils were pre-incubated for 10 days at 25 °C and 60 % water-holding
capacity in the dark. Fifty six gram of soil were subsequently mixed with
either 240 mg of '*C-loaded goethite or 300 mg of *C-loaded kaolinite
or illite, and separated into three aliquots into 250 mL Schott flasks
containing a scintillation vial with 1 mL 1 M NaOH to capture *COs.
Twenty minutes after the addition of minerals and before being closed
airtight, triplicate aliquots of mineral-amended soil were taken, treated
with ethanol to prevent further microbial processing, and combusted to
quantify initial mineralization of 14C. For three weeks, mineralization
was calculated from the total accumulation of **CO, in NaOH via liquid
scintillation counting (TriCarb 3300, PerkinElmer Inc., Shelton, Con-
necticut USA) with the same double pseudo-first-order kinetic equation
in Konrad et al. (2025, Eq. (2)). At the end of the three weeks,
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Fig. 1. Fate of carboxyl-'C after three weeks of incubation in loamy Dikopshof (left) and sandy Thyrow soil (right), partitioned into microbial biomass, water-
extractable 14C, residual **C in the soil matrix, and mineralized *C. All fractions were measured independently and total recovery may therefore slightly exceed

100 % due to analysis errors.

microbially-assimilated and water-extractable carboxyl-'“C  were
extracted in triplicate in 2 M KCl with and without
chloroform-fumigation, respectively (Murage and Voroney, 2007; Vance
etal., 1987). Residual carboxyl-14C in the soil matrix was determined by
combustion of soil in triplicate using a Hidex OX 600 oxidizer (Hidex Oy,
Turku, Finland) and subtracting the *C activity in fumigated and water
extracts. Mineralization over time and mass balances were plotted using
Origin Pro 2024b (OriginLab Corporation, Northampton, Massachusetts,
USA). Microbial carbon use efficiency (CUE) equaled the amount of l4c
in microbial biomass relative to microbially processed 1*C. The differ-
ences in the fates of the carboxyl-'*C- and uniform-!*C-labeled mono-
mers (Konrad et al., 2025) were analyzed for significance using Welch’s
t-test (Welch, 1947) in R (R Core Team, 2022).

The majority of carboxyl-'*C in both substrates was mineralized in
both soils (Fig. 1). For all substrate-mineral-soil combinations, miner-
alization rates for carboxyl-**C were higher than uniform-'4C labels in
Konrad et al. (2025) (47 to + 33 percentage points) and retention on
minerals was mostly lower (—24 to +2; Table 1). The rate and extent of
microbial processing of carboxyl-'*C was similar in both soils
(Fig. 2a-d), with initial mineralization often being too rapid for accurate
fits even with double pseudo-first-order kinetics. When comparing
substrates, carboxyl-1*C from salicylic acid was generally retained less
and always mineralized more than from phenylalanine (Table 1).

Three main observations can be made in comparison to Konrad et al.
(2025): i) More mineral-bound carboxyl-”C was microbially processed
compared to 14¢ in other functional groups (Table 1), ii) differences in
the magnitude of carboxyl-'*C cycling between the two soils were
smaller than the effects of monomer (phenylalanine vs. salicylic acid)
and mineral type (Figs. 1 and 2); and iii) microbial CUE of carboxyl—“C
correlated with desorbability by substrate (salicylic acid: y = 0.19x, p

< 0.05, R? = 0.88; phenylalanine: y = 0.85x, p < 0.001, R? = 0.95)
(Supplementary material S1), but not by soil type (Dikopshof: R? = 0.6;
Thyrow: R% = 0.53, both p > 0.05).

The majority of carboxyl-'C being mineralized within the first days
of incubation indicating that mineral adsorbed carboxyl-C, including
ligand-exchanges, is quickly mineralized either on or near mineral sur-
faces (Figs. 1 and 2). The substantial loss of carboxyl-'*C compared to
G in other functional groups suggests that mineralization occurs after
desorption. Desorption happens when changes in solution composition
cause other solutes to diffuse towards mineral surfaces, some of those
solutes to replace inner-sphere complexes within hours via competitive
desorption (i.e. displacement of an adsorbed ligand by a different ligand,
like dissolved organic matter or ortho-phosphate; Kaiser and Zech,
1997), and displaced monomers to diffuse away from mineral surfaces.
Microbial processing occurs simultaneously with these competitive
adsorption-desorption processes and thus are rate-limited by diffusion
from minerals to decomposers (Moyano et al., 2018; Pignatello and
Xing, 1996).

The comparably low retention of carboxyl-1*C via mineral-binding
also highlights the role of other associations such as electrostatic in-
teractions, H-bonding and hydrophobic exclusion in determining the
balance between adsorption, desorption, and microbial processing. For
instance, chelation is the preferred adsorption process for salicylic acid
to goethite via its de-protonated carboxyl and ortho-hydroxy groups at
the mineral loading used in this experiment (87.7 vs. conservative max.
50-95 nmol m 2 reported in Yost et al., 1990). However, salicylic acid is
easily displaced by dissolved organic matter (Gu et al., 1994, 1996). In
contrast, both the de-protonated carboxyl group and protonated amino
group in zwitterionic phenylalanine can adsorb via electrostatic in-
teractions (Yeasmin et al., 2014) as well as self-assemble with



A. Konrad et al.

Table 1

Fate of carboxyl-'*C (1-'%C) in salicylic acid and phenylalanine adsorbed to goethite, kaolinite, or illite after three weeks of incubation in loamy Dikopshof (Dik) or sandy Thyrow (Thy) topsoil, and its difference to the fate
of uniformly labeled phenylalanine and salicylic acid (A™C(U) in Konrad et al. (2025)). 1-'4C values are percentage of C mineralized, assimilated into biomass, extractable by water (WEOC), and retained as residues on

minerals. A'C(U) values represent the absolute difference in percent (i.e., percentage points) between 1-'*C and'*C(U) values. Significant differences between 1-'*C and'*C(U) are indicated (*p < 0.1, **p < 0.05,

*p <

0.01).
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hydrophobic phenyl edges (Mossou et al., 2014). When displaced by
dissolved organic matter, even more phenylalanine can adsorb to min-
eral surfaces due to more negative surface charges in soil compared to
added minerals (Gao et al., 2018).

When accessible, carboxyl-C is often the first C mineralized due to
decarboxylation (Dippold et al., 2014; Dippold and Kuzyakov, 2013).
Decarboxylation typically has low activation energy since heterolytic
cleavage next to carboxyl-C releases thermodynamically stable CO5 and
it is further lowered by microbial decarboxylases. The remaining
monomer-C undergoes other biochemical pathways, sometimes in
combination with carboxyl-C as evidenced by the greater assimilation
and higher CUE of phenylalanine carboxyl-C—a proteinogenic amino
acid—into microbial biomass than for salicylic acid carboxyl-C
(Table 1). Kinetics also differentiate these C moieties since breaking
less polar or non-polar aliphatic or aromatic C-C bonds requires higher
activation energies and thus is expected to proceed more slowly.
Furthermore, after desorption as whole molecules and preferential
mineralization of carboxyl-C, partitioning and van-der-Waals in-
teractions between silicon surfaces and aromatic rings can occur,
resulting in re-adsorption and reduced bioavailability of remaining
C-atoms (Keiluweit and Kleber, 2009). However, since the incubation
was only three weeks, the long-term retention of both mineral-bound
and microbially assimilated C can only be speculated.

In both instances, the propensity to dissociate—that is,
desorbability—is determined by factors beyond sorption strength. The
addition of substrate-coated minerals to soil leads to changes in
boundary conditions, new interactions and thus altered desorbability of
adsorbates. Mineral characteristics likely matter more than soil cation
exchange capacity, texture, pH and nutrient availability as indicated by
similar patterns between the two soils. Yet it should be noted that both
soils are agricultural topsoils with a narrow pH range and regular
farmyard manure additions with shared litter composition (Simon et al.,
2025), and thus the potential role of soil and entire ecosystems in
determining desorbability and thus C mineralization may be larger than
observed (Stutz, 2023).

Our results demonstrate that even ligand binding to mineral surfaces
does not necessarily protect the C involved in coordination with the
mineral surface from microbial processing. Competitive desorption fol-
lowed by partial mineralization best explains how inner-sphere associ-
ations of carboxyl groups can be overcome and mineralized while other
functional groups persist. Mineralogy seems to matter more than other
soil properties, but any factor that alters the tendency for mineral-bound
compounds to desorb—e.g., increasing pH, or increased concentrations
of oxyanions in solution—could lead to mineralization at the expense of
sequestration.
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