001048726 001__ 1048726
001048726 005__ 20251203202138.0
001048726 037__ $$aFZJ-2025-04848
001048726 1001_ $$0P:(DE-Juel1)187071$$aBorowec, Julian$$b0$$ufzj
001048726 1112_ $$aNanobrücken 2025$$cHalle$$d2025-03-04 - 2025-03-06$$wGermany
001048726 245__ $$aNanomechanical and Nanoelectrical Analysis of the Proton Exchange Membrane WaterElectrolyzer Anode – Impact of Reinforcement Fibers and Porous Transport Layer
001048726 260__ $$c2025
001048726 3367_ $$033$$2EndNote$$aConference Paper
001048726 3367_ $$2DataCite$$aOther
001048726 3367_ $$2BibTeX$$aINPROCEEDINGS
001048726 3367_ $$2DRIVER$$aconferenceObject
001048726 3367_ $$2ORCID$$aLECTURE_SPEECH
001048726 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1764752133_28623$$xAfter Call
001048726 520__ $$aUnderstanding the degradation of proton exchange membrane electrolyzer cells (PEMECs) is critical fordurability improvements. In this work,[1] a large-scale web-woven reinforced membrane electrode assembly(MEA) anode, was long-term operated (>5000 hours) and analyzed by nanomechanical and nanoelectricalatomic force microscopy (AFM) techniques and nanoindentation. The web-woven fibers were found to locallyenhance the reduced modulus and hardness, making them an effective reinforcement for extended operation.Notably, both pristine and operated anodes exhibited slightly reduced electrically conductive surface areasat intersections of reinforcement fibers. While the pristine anode was initially homogeneous, it heterogenizedupon operation, showing additional domains related to the porous transport layer (PTL) and increasedstatistical deviations. Nanoindentation revealed an increased reduced modulus and hardness upon operation,accompanied by a near surface stiffening of the catalyst shown by AFM. This effect is promoted by the lossof low-stiffness ionomer. Confirmed by the increase of electrically conductive anode surface area. The most pronounced aging effects were observed only at a small fraction of the surface, particularly at specific PTL-related features. This study provides the first detailed analysis of a web-woven fiber-reinforced MEA, offeringnew insights into anode aging mechanisms associated with reinforcement fibers and PTL.[1] Borowec, Julian, et al. “Nanomechanical and Nanoelectrical Analysis of the Proton Exchange MembraneWater Electrolyzer Anode—Impact of Reinforcement Fibers and Porous Transport Layer.” Journal of MaterialsChemistry A (2025). DOI: 10.1039/D4TA07367C
001048726 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001048726 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001048726 7001_ $$0P:(DE-Juel1)194729$$aRein, Lukas$$b1
001048726 7001_ $$0P:(DE-Juel1)196700$$aGorin, Nelli$$b2
001048726 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b3
001048726 7001_ $$0P:(DE-HGF)0$$aDobrenizki, Ladislaus$$b4
001048726 7001_ $$0P:(DE-HGF)0$$aSchmid, Günter$$b5
001048726 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b6
001048726 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b7
001048726 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8$$ufzj
001048726 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b9$$ufzj
001048726 909CO $$ooai:juser.fz-juelich.de:1048726$$pVDB
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187071$$aForschungszentrum Jülich$$b0$$kFZJ
001048726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)187071$$aRWTH Aachen$$b0$$kRWTH
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194729$$aForschungszentrum Jülich$$b1$$kFZJ
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b3$$kFZJ
001048726 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Siemens Energy$$b4
001048726 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Siemens Energy$$b5
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b6$$kFZJ
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b7$$kFZJ
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
001048726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
001048726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b9$$kFZJ
001048726 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b9$$kRWTH
001048726 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001048726 9141_ $$y2025
001048726 920__ $$lyes
001048726 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001048726 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
001048726 980__ $$aconf
001048726 980__ $$aVDB
001048726 980__ $$aI:(DE-Juel1)IET-1-20110218
001048726 980__ $$aI:(DE-Juel1)IET-4-20191129
001048726 980__ $$aUNRESTRICTED