001     1048726
005     20251203202138.0
037 _ _ |a FZJ-2025-04848
100 1 _ |a Borowec, Julian
|0 P:(DE-Juel1)187071
|b 0
|u fzj
111 2 _ |a Nanobrücken 2025
|c Halle
|d 2025-03-04 - 2025-03-06
|w Germany
245 _ _ |a Nanomechanical and Nanoelectrical Analysis of the Proton Exchange Membrane WaterElectrolyzer Anode – Impact of Reinforcement Fibers and Porous Transport Layer
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1764752133_28623
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Understanding the degradation of proton exchange membrane electrolyzer cells (PEMECs) is critical fordurability improvements. In this work,[1] a large-scale web-woven reinforced membrane electrode assembly(MEA) anode, was long-term operated (>5000 hours) and analyzed by nanomechanical and nanoelectricalatomic force microscopy (AFM) techniques and nanoindentation. The web-woven fibers were found to locallyenhance the reduced modulus and hardness, making them an effective reinforcement for extended operation.Notably, both pristine and operated anodes exhibited slightly reduced electrically conductive surface areasat intersections of reinforcement fibers. While the pristine anode was initially homogeneous, it heterogenizedupon operation, showing additional domains related to the porous transport layer (PTL) and increasedstatistical deviations. Nanoindentation revealed an increased reduced modulus and hardness upon operation,accompanied by a near surface stiffening of the catalyst shown by AFM. This effect is promoted by the lossof low-stiffness ionomer. Confirmed by the increase of electrically conductive anode surface area. The most pronounced aging effects were observed only at a small fraction of the surface, particularly at specific PTL-related features. This study provides the first detailed analysis of a web-woven fiber-reinforced MEA, offeringnew insights into anode aging mechanisms associated with reinforcement fibers and PTL.[1] Borowec, Julian, et al. “Nanomechanical and Nanoelectrical Analysis of the Proton Exchange MembraneWater Electrolyzer Anode—Impact of Reinforcement Fibers and Porous Transport Layer.” Journal of MaterialsChemistry A (2025). DOI: 10.1039/D4TA07367C
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Rein, Lukas
|0 P:(DE-Juel1)194729
|b 1
700 1 _ |a Gorin, Nelli
|0 P:(DE-Juel1)196700
|b 2
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 3
700 1 _ |a Dobrenizki, Ladislaus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schmid, Günter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 6
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|u fzj
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 9
|u fzj
909 C O |o oai:juser.fz-juelich.de:1048726
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187071
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)187071
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194729
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180432
910 1 _ |a Siemens Energy
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Siemens Energy
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)167581
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IET-4-20191129
|k IET-4
|l Elektrochemische Verfahrenstechnik
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-Juel1)IET-4-20191129
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21