001048746 001__ 1048746
001048746 005__ 20251222202220.0
001048746 0247_ $$2doi$$a10.1093/nar/gkaf1370
001048746 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04861
001048746 037__ $$aFZJ-2025-04861
001048746 082__ $$a570
001048746 1001_ $$0P:(DE-Juel1)188661$$aFaber, Christian$$b0$$ufzj
001048746 245__ $$aInfluence of Contact Map Topology on RNA Structure Prediction
001048746 260__ $$aOxford$$bOxford Univ. Press$$c2025
001048746 3367_ $$2DRIVER$$aarticle
001048746 3367_ $$2DataCite$$aOutput Types/Journal article
001048746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766383945_30590
001048746 3367_ $$2BibTeX$$aARTICLE
001048746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048746 3367_ $$00$$2EndNote$$aJournal Article
001048746 520__ $$aThe available sequence data of RNA molecules have greatly increased in the past years. Unfortunately, while computational power is still under exponential growth, the computer prediction quality from sequence to final structure is still inferior to labour-intensive experimental work. Although a reliable end-to-end procedure has already been developed for proteins since Alphafold2, while its successor AlphaFold3 can also predict RNA, its confidence, in particular for novel sequences and folds, still appears limited. Another strategy entails two steps: (i) predicting potential contacts in the form of a contact map from evolutionary data; and (ii) simulating the molecule with a physical force field while using the contact map as restraint. However, the quality of the structure prediction crucially depends on the quality of the contact map. Until now, only the proportion of true positive contacts was considered as a quality characteristic. We propose to also include the distribution of these contacts, and have done so in our recent studies. We observed that the clustering of contacts, as is common for many artificial intelligence algorithms, has a negative impact on prediction quality. In contrast, a more distributed topology is beneficial. We have applied these findings from computer experiments to current algorithms and introduced a measure of distribution, the Gaussian score.
001048746 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001048746 588__ $$aDataset connected to DataCite
001048746 7001_ $$0P:(DE-Juel1)195915$$aUpadhyay, Utkarsh$$b1$$ufzj
001048746 7001_ $$0P:(DE-HGF)0$$aTaubert, Oskar$$b2
001048746 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b3$$eCorresponding author
001048746 773__ $$0PERI:(DE-600)1472175-2$$a10.1093/nar/gkaf1370$$pgkaf1370$$tNucleic acids research$$v53$$x0305-1048$$y2025
001048746 8564_ $$uhttps://juser.fz-juelich.de/record/1048746/files/Invoice_SOA25LT015730.pdf
001048746 8564_ $$uhttps://juser.fz-juelich.de/record/1048746/files/gkaf1370.pdf$$yOpenAccess
001048746 8767_ $$8SOA25LT015730$$92025-11-29$$a1200221133$$d2025-12-18$$eAPC$$jZahlung erfolgt$$zUSD 3992
001048746 8767_ $$8SOA25LT015730$$92025-11-29$$a1200221133$$d2025-12-18$$eAPC$$jZahlung erfolgt
001048746 909CO $$ooai:juser.fz-juelich.de:1048746$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001048746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188661$$aForschungszentrum Jülich$$b0$$kFZJ
001048746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195915$$aForschungszentrum Jülich$$b1$$kFZJ
001048746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b3$$kFZJ
001048746 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001048746 9141_ $$y2025
001048746 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001048746 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001048746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001048746 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048746 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNUCLEIC ACIDS RES : 2022$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:02Z
001048746 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:02Z
001048746 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048746 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:37:02Z
001048746 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCLEIC ACIDS RES : 2022$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001048746 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-10$$wger
001048746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001048746 920__ $$lyes
001048746 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001048746 980__ $$ajournal
001048746 980__ $$aVDB
001048746 980__ $$aUNRESTRICTED
001048746 980__ $$aI:(DE-Juel1)JSC-20090406
001048746 980__ $$aAPC
001048746 9801_ $$aAPC
001048746 9801_ $$aFullTexts