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Abstract 

T he a v ailable sequence data of RNA molecules ha v e greatly increased in the past y ears. Unf ortunately, while computational po w er is still 
under exponential growth, the computer prediction quality from sequence to final str uct ure is still inferior to labour-intensive experimental work. 
Although a reliable end-to-end procedure has already been de v eloped f or proteins since Alphaf old2, while its successor AlphaFold3 can also 
predict RNA, its confidence, in particular for novel sequences and folds, still appears limited. Another strategy ent ails t wo steps: (i) predicting 
potential contacts in the form of a contact map from e v olutionary data; and (ii) simulating the molecule with a ph y sical f orce field while using the 
contact map as restraint. Ho w e v er, the quality of the str uct ure prediction cr ucially depends on the quality of the contact map. Until now, only 
the proportion of true positive contacts was considered as a quality characteristic. We propose to also include the distribution of these contacts, 
and ha v e done so in our recent studies. We observed that the clustering of contacts, as is common f or man y artificial intelligence algorithms, 
has a negative impact on prediction quality. In contrast, a more distributed topology is beneficial. We ha v e applied these findings from computer 
experiments to current algorithms and introduced a measure of distribution, the Gaussian score. 
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ntroduction 

ccording to the central dogma of molecular biology, RNA
unctions as an intermediate product in protein biosynthesis
 1 ]. In the years following this publication, however, more and
ore observations were made that RNA fulfils further func-

ions. The influence of the structure of tRNA, for example,
as already discussed in the 1980s [ 2 ], as was the structure
f rRNA [ 3 ]. These RNA molecules, that do not code for a
rotein, are called non-coding RNAs (ncRNAs) [ 4 ]. Similar to
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proteins, the spatial structure of ncRNA is crucial for its abil-
ity to function successfully [ 5 ]. Therefore, the correct determi-
nation of the structure is of fundamental importance for the
understanding of ncRNA, including evolutionary paths [ 6 ],
virus genesis [ 7 ], and also the design of new drugs [ 8 , 9 ]. The
problem is that unlike sequencing, the experimental determi-
nation of the structure is a very labour-intensive task [ 10 , 11 ].
Therefore, an in silico approach that requires less effort would
be a major advance and achievement. 
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Immense progress has been made in the field of protein
structure prediction in the last decade. Due to the large
amount of available data, it was possible to train large lan-
guage models and thus achieve an end-to-end prediction that
comes close to experimental quality. The pioneering imple-
mentation of Google with AlphaFold [ 12 ] should be men-
tioned in this context. In the case of RNA structure prediction,
such an assessment is rather problematic due to data limita-
tions [ 13 , 14 ]. To illustrate the difference in the data situation,
we can look at the published Protein Data Bank (PDB) struc-
tures in the central database rcsb.org: for proteins, we have
196 400 structures and for RNA only 1890 (status: November
2024). As the end-to-end machine learning (ML) approaches
are not yet fully developed, are there other possibilities? 

Various physics-based methods are available to determine
the three-dimensional structure of RNA molecules. The most
prominent representative for the structure folding, but also
function determination of molecules is molecular dynamics
(MD) simulation [ 15–17 ]. For example, it can be used to
describe the full dynamics of RNA folding [ 18 , 19 ]. How-
ever, while MD simulations are very accurate, when used in
the context of structure prediction they require very large
amounts of computing time, even when introducing biasing
constraints [ 20 , 21 ]. For this reason, simplified models are of-
ten used in practice for structure prediction, which can deter-
mine the stationary folding more quickly using Monte Carlo
algorithms. Stationary folding is characterized by the fact that
the molecules have reached a stationary state (or ensemble),
i.e. their state (or ensemble) does not change further over time.
Similarly, much effort has been put into judging the quality
of RNA structure prediction [ 22 ]. We studied here how to
achieve reliably good predictions with moderate computing
resources. To achieve this, we use a workflow that has been
successfully used in protein structure prediction since before
AlphaFold. In the following, we will describe this process in
a little more detail; for a better understanding, it is shown
graphically in Fig. 1 . 

Two popular prediction software packages are the Monte
Carlo-based SimRNA [ 23 ] and the fragment-based program
Rosetta [ 24 ]. Both are capable of converting the initial se-
quence directly into a three-dimensional RNA structure. With
them, the structure prediction quality can vary considerably
with excellent predictions of low root mean square deviation
(RMSD), e.g. 4plx, but also, for example, 3q3z only achieving
an RMSD of ∼29 Å in our computer experiments. Evolution-
ary data can support predictions by acting as helpful addi-
tional biasing constraints and considerably improve the qual-
ity of predictions [ 25 , 26 ] by assuming that co-evolutionary
mutational patterns are a result of spatial adjacency. To detect
co-evolutionary signals, homologous sequences from other or-
ganisms are collected for the initial sequence { a 0 i } i =1 ,...,L with
a 0 i ∈ { A, U, C, G } and organized as multiple sequence align-
ment (MSA) D = { a r i | i = 1 , ..., L and r = 1 , ..., M } with a r i ∈{ A, U, C, G, −} , M the number of sequences. The co-evolution
of different residues can be analysed with methods used in sta-
tistical physics, for instance mean field direct coupling analysis
(DCA) [ 25 , 27 , 28 ], or with modern artificial intelligence (AI)
algorithms [ 29–31 ]. These methods give us a binary mapping
CM : [1 : L ] × [1 : L ] → Z 2 , called a contact map, which in-
dicates whether two residues i, j are spatially adjacent [the
nitrogen atoms (N1/N9) are ≤9.5 Å apart], i.e. form a con-
tact. This definition of a contact goes back to one of the first
papers on RNA contact maps and has since been frequently
used in the literature. In contrast to proteins, where the C α

atom has established itself as a reference point, this is not so 

clear for RNA [ 32 ]. In simulations, these contacts can be used 

as restraints. The outcomes of these simulations are notably 
superior when evolutionary data are incorporated. Thus, the 
task is on the one hand to have a good data basis for the cre- 
ation of MSAs and on the other hand to develop algorithms 
that provide as much information as possible from the MSA 

to the simulation software. In the past, the latter was often 

implemented using the direct coupling analysis method men- 
tioned above. To measure the quality of the prediction, we of- 
ten use the positive predicted value (PPV), which divides the 
number of correctly predicted contacts (true positives) by the 
total number (true positives + false positives). The bare DCA 

with mean field approximations achieves PPVs of ∼50% [ 33–
35 ]. The co-evolutionary analysis can also be carried out using 
ML algorithms. The PPVs of these algorithms reach values of 
up to 80% [ 29 , 30 ], which is a remarkable increase. Due to 

the high PPV, one would assume an improved structure predic- 
tion by the simulation. However, detailed investigations were 
unable to confirm this expectation [ 30 ]. In fact, the increased 

PPV through a convolutional neural network (CNN) brought 
almost no improvement in prediction quality compared with 

the DCA-generated contact map. This result could have two 

causes. Firstly, the prediction quality could have an upper limit 
due to the simulation software, i.e. a further improvement of 
the restraints is unnecessary. On the other hand, the contact 
maps generated by AI algorithms could be of poorer quality,
despite a high PPV. The AI algorithms are trained to achieve 
the best possible PPV, but the PPV is a massive dimension re- 
duction of the prediction and ground truth. The PPV calcu- 
lates a value from the contact map of the experimental struc- 
ture and the contact map of the evolutionary analysis, i.e.
PPV : Z 

L ×L 
2 × Z 

L ×L 
2 → [0 , 1] . ML methods, like CNNs [ 36 ],

suggest that contacts may be predicted in clusters wherever 
possible, therefore the PPV of such contact maps is still high,
but information about smaller contact areas is lost. In this 
study we wished to investigate whether this effect of contact 
clusters is really responsible for the reduced performance in 

structure prediction and to introduce a mathematical measure 
to prevent this effect. This measure can be integrated into the 
objective function of ML algorithms to generate more diverse 
topologies of contact maps. To address these questions, we 
first present the software used and our test set in the Materi- 
als and methods. This is followed by an explanation of differ- 
ent methods to model various kinds of topologically different 
contact maps for our test set and an introduction of the new 

measure to gauge the diversity. We also describe the design of 
the computer experiments and how the influence of false con- 
tacts was investigated. Finally, the different applications are 
presented. In the Results and discussion section, the results 
of the computer experiments are discussed and the value of 
the new measure is shown directly in the applications. In the 
Conclusion, we summarize the most important findings again,
but also address weaknesses and problems with the computer 
experiments carried out. Finally, we discuss possible continu- 
ations in modern AI algorithms. 

Materials and methods 

In this section we give an overview of our test setup and the 
different computer experiments we ran on the test set to gain 
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Figure 1 . Sc hematic represent ation of the t ypical RNA str uct ure prediction w orkflo w. T he upper route produces significantly w orse results without the 
detour via contact map creation. 
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Figure 2. One-dimensional schematic of the Gaussian contact weighing. On the left are two contacts with a distance d much larger than σ2 . On the 
right are the contacts closer together, and the o v erlap of the individual Gauss distributions (blue) is bigger. After summation (green) and in v erting (red), 
the weights ω close decrease compared with ω apart for the contacts further away. 
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nsight into the simulation quality in relation to different con-
act map topologies. 

imulation software and test data 

s simulation software, we use SimRNA [ 23 ], a software
ased on replica exchange Monte Carlo (REMC), with the
tandard configuration and 10 replicas per simulation. We use
the representative of the largest cluster as the final structure.
The contacts are added as restraints in the energy function. For
the penalty term, see Supplementary Fig. S1 . We have taken
into account both short-range and long-range interactions (as
proposed in [ 25 ]), but have ensured that theenergy cost re-
mains constant above a certain threshold in orderto prevent
the energy from being dominated by a single unfulfilled re-
straint. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
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(a) (b)

Figure 3. ( a ) Contact map of the cobalamin riboswitch aptamer domain (ID: 4frg). In dark blue is the native contact map as derived from the crystal 
str uct ure. In green are shown a possible choice of restraints forming clusters and in red randomly distributed contacts. ( b ) The three-dimensional 
str uct ure of the molecule 4frg from the test set D , determined experimentally. The coloured bonds represent the contacts belonging to (a). 

Figure 4. Complete visualization of the prediction quality for all molecules for different distributions of contacts. The molecules are sorted by size, and 
increase in size from left to right. The IDs from the PDB [ 38 ] are plotted on the x -axis. All distributions have been derived from the native contacts from 

experimentally determined str uct ures. We used different methods for this: random, clustered, and Gaussian optimized. Simulations without any 
restraints are also shown for comparison. 
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The presented computer experiments were performed with
a test subset D of RNA families composed in Pucci et al . [ 35 ].
We had to sort out the structures that had a faulty PDB struc-
ture and thus made a comparison with our simulation results
impossible. This effectively gave us 56 RNA families repre-
senting ncRNA molecules ranging in length from 41 to 496
residues. In the Application part, we use a different test set
D Val . This was necessary because some of our original set D
were part of the training of the algorithms under investiga- 
tion, and we would therefore suffer from data leakage. We 
are rebuilding the new validation set D Val from scratch using 
special software called NucleoSeeker [ 37 ]. We apply the fol- 
lowing criteria: firstly, the filtered structures must have been 

published after the training data of our AI algorithms (i.e.
from 2023 onwards) and, secondly, they must show a signifi- 
cant deviation from already known structures (sequence sim- 
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larity ≤80%). These strict guidelines are essential in order to
raw meaningful conclusions and avoid data leakage. Unfor-
unately, these specifications result in a very limited validation
et of only 20 structures. After creation of the correspond-
ng MSA, most structures also have an effective family size of
 5. In addition, some of the structures are bound or occur

n a complex, which further complicates structure prediction.
e removed one structure (7yga) because it represents a dy-

amic intermediate step in splicing and therefore cannot be
eaningfully captured by static structure prediction. In this

ection we have also adapted our contact definition to the
efinition used in the original publications of the methods.
upplementary Tables S1 and S2 provide an overview of all
amilies, representing molecules, their size, and the effective
amily size . 

efinition of Contact 

n the course of our analysis, we use two different definitions
o describe two residues of an RNA molecule as being in con-
act. In most of our computer experiments, we use the defini-
ion used in Pietal et al. [ 32 ], which is a fundamental work on
ontact maps for RNA molecules. Two residues are according
o this definitiona contact if their N1/N9 nitrogen atoms are
o more than 9.5 Å apart. The AI systems in the Application
art were trained and published using a different definition.
n their publications, the authors used 10 Å from the heavy
toms that are closest together. To keep the analysis consis-
ent, we have therefore adjusted our definition in this section.
t should be noted that whether nitrogen atoms (9.5 Å ) or
earest heavy atoms (10 Å ) as definition does not greatly in-
uence the outcome, as shown and investigated by Pucci et al .
 35 ]. 

istribution of contacts 

he results of CoCoNet [ 30 ] suggest that the distribution of
ontacts has a direct influence on the prediction of the spa-
ial structure of the RNA molecule with L nucleotides. In
rder to investigate this influence, three distinct contact dis-
ributions are generated for each molecule within the test
et D . The individual distributions are constructed by gen-
rating the contact map from the experimentally determined
hree-dimensional structure and selecting a subset of L/ 2 con-
acts from it. These L/ 2 contacts are selected in the following
ays: (i) clustered; (ii) randomly; and (iii) Gaussian weighted.
his gives us three different contact map topologies for each
olecule.How well the three different topologies improve the

imulation and whether the simulation benefits at all from this
nformation are discussed in the Results and discussion. 

The clustered contact maps are an extreme example of the
ay in which a CNN, for example, operates contact predic-

ion. The probability of finding a contact is increased if there
s already a contact in the immediate vicinity. We select our
ontacts from the complete contact map in which we have
reviously identified all clusters. We use a very fast calculation
ethod for cluster definition and determination. Two contacts

re in the same cluster if there is a path between the two con-
acts via other contacts. The method produces visually good
esults for the contact maps for molecules, whereby it is im-
ortant not to include diagonal contacts and their neighbours.
dvanced clustering algorithms such as k-means are therefore
ot necessary. After the clustering process, we randomly se-
ect contacts from the largest cluster until all contacts from
that cluster have been selected, and then move on to the next
smallest cluster using the same method. An example of such a
selection is drawn in Fig. 3 a. 

The randomly distributed contacts represent the opposite
extreme case. In this distribution, the individual restraints are
randomly selected from the entire contact map. Although we
know the complete contact map in advance in our computer
experiments, this is precisely the goal in normal RNA structure
prediction. Existing algorithms offer a larger number of con-
tacts, but the confidence of the individual contacts decreases
significantly. It is precisely the selection of a subset of contacts
based on confidence that enables the algorithms to make good
predictions. This means that it is not possible to select contacts
from the initially unknown contact map, nor is it possible to
randomly select possible contacts neglecting the confidence.
What is needed is a measure that determines the degree of
randomness. We could incorporate this measure into existing
algorithms and thus achieve a complex prediction that takes
into account the topology of the contact maps. 

This measure, which determines randomness, should meet
a few requirements. 

� It should be possible to determine this without being
aware of the unknown contact map. 

� It should be continuous. 
� It should be smaller for many contacts that are close to-

gether and larger for those that are further apart. 
� Once a certain spread has been reached, the value should

no longer change. 

We introduced this measure with a Gaussian weighting
of the individual contacts. Instead of valuing each contact
equally, contacts that are close to each other are devalued. A
one-dimensional schematic representation of this can be seen
in Fig. 2 . Two scenarios are depicted there: on the one hand,
two contacts in the one-dimensional contact map that are fur-
ther apart and, on the other hand, those that are close together.
The influence of each contact on the neighbouring contact is
modelled with a Gaussian function (blue curve) and the addi-
tion of all influences of the other contacts gives the weighting
of the current contact (green curve). To devalue the individual
weights instead of enhancing them, this weighting is inverted
(red curve). Here, the value at the point of contact can be read
directly from the curve and, the closer two contacts are to each
other, the lower the value (hereafter referred to as the Gauss
score). Generalized to two dimensions, we obtain the value νi

for the addition of all Gaussian functions for each contact i
with position r i on the contact map with all contacts C: 

νi = 

∑ 

j∈C 
exp 

[
− ( r i − r j ) 2 

σ 2 

]
(1)

Each contact, which is surrounded by other contacts, now has
a higher ν compared with isolated contacts. To devalue the
contacts, we introduce the inverse ω i = ν−1 

i as weights. The
total sum of weights is now reduced for a clustered contact
selection and is at its maximum for widely dispersed contacts.
The latter is closer to a random selection of contacts, so you
can incorporate 

� = 

∑ 

i ∈C 
ω i (2)

as an additional optimization parameter in ML algorithms for
the contact diversity. This parameter is a measure of the topol-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
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ogy of the contact map. It can be used to evaluate existing al-
gorithms, as we do in the Applications part, or to develop new
algorithms that use it as an additional optimization parameter
which we also show in Applications. This is also the advan-
tage over randomly distributed maps, which, although they
are maximally spread, have no quantitative measure that can
be optimized in calculations. Even though the selection of �
appears arbitrary, it is not. The Gaussian bell curve approach
is a widely used method for modelling an exponential decline.
In our model, we use it to represent the declining influence of
contacts on each other. With the above argument, we have al-
ready covered all the requirements we previously set for such
a measure. The summation and inversion serve to reduce the
value to a measure that can be incorporated as an additional
term in the loss function of an AI algorithm. In the Applica-
tions part, we do this for a state-of-the-art transformer model
for contact map prediction of RNA molecules. 

Influence of false contacts 

In reality, it is impossible to use only true positive contacts,
since even the best current ML methods only achieve a PPV
of ∼80% [ 29 ]. In the next step, we introduce false contacts
to our contact map. We therefore use randomly chosen con-
tacts C̄ from the set of residue pairs which are not part of the
native contacts. The remaining contacts, designated as set C,
are generated through a Gaussian optimization process, de-
rived from the native contacts. The PPV decreases from 1
to 1 − λ, where λ = | ̄C | / |C ∪ C̄ | is the fraction of false con-
tacts in our selection (error rate). With the selection C ∪ C̄ we
can simulate each molecule d from our test set and calculate
the RMSD ( d , C ∪ C̄ ) . To give a short overview of the quality,
we introduced the beneficial fraction 

ξ ( λ) = 

1 

| D | 
∑ 

d ∈ D 

	
[
RMSD ( d , ∅ ) − RMSD ( d , C ∪ C̄ ) 

]
(3)

which shows the fraction of molecules for a given λ with a
lower RMSD with given restraints compared with the same
molecule without any restraints. In order to stay as close as
possible to reality, we have decided on Gaussian-optimized
contacts for the true positives and random for the false posi-
tives. This should best represent the influence of the false pos-
itives. 

Applications 

In order to analyse the individual influences and results on
the structure prediction and the Gaussian score in practice,
we looked at and compared three state-of-the-art methods
for contact map creation. As a benchmark, we start with the
DCA algorithm, which has a lower PPV but should have a
diverse contact map topology. We used the implementation
pyDCA with the mean field approximation (mfDCA). As a
representative of a sparse learning algorithm (CNN) we take
CoCoNet, which, as already mentioned in the Introduction,
has extremely good PPV values but not much gain in structure
prediction [ 35 ]. The third method uses the advanced AI algo-
rithm Barnacle, which has been specially trained for contact
map prediction. Barnacle uses a transformer model to create a
prediction that is as accurate as possible. As an enhancement
of these three methods, we completely retrained Barnacle and
added the Gaussian score from Equation ( 2 ) as an additional
term in the loss function. This additional term in the loss func-
tion was assigned a scalar weighting (we used −1 for proof of
concept) and a variance σ2 of 4. We determined the scalar 
weighting so that we could see a significant increase in � dur- 
ing training, and we used the variance by analysing existing 
contact maps, i.e. the effects of clustering are well represented 

in �. These two parameters are the only freely selectable con- 
stants. Other values for these two constants are certainly con- 
ceivable, but it would go beyond the scope of this study to 

carry out a detailed analysis of them as well. These two pa- 
rameters can be considered well chosen if we see a decrease in 

PPV from the modified version to the generic version and an 

increase in � of the modified version during training. Here, a 
trade-off must be made between the extent to which the PPV 

is sacrificed for the topology. During our training of the mod- 
ified Barnacle model, where we optimize the AI model param- 
eter but not our chosen parameters, we saw, as expected, a 
decrease in PPV (from 0.46 to 0.38) compared with the un- 
modified (generic) version. When we looked at the Gaussian 

score separately for the training, we saw an increase (from 

first epoch 63.40 to last epoch 187.00). We can therefore be 
sure that we have retrained the system correctly. For all four 
methods, we compare the precision and the Gauss value and 

take a closer look at contact maps. We then run simulations 
using SimRNA for all contact maps created, allowing us to 

compare the RMSD for all methods and all molecules of D Val 
at the end. In order to reproduce the previous results from the 
literature [ 29 , 35 ], we also switch to a different contact def- 
inition. We count two residues i, j as contact if, and only if,
there is a pair of heavy atoms that are < 10 Å apart. 

Results and discussion 

Distribution of contacts 

We investigated the initial question of whether the influence 
of the distribution of contacts has an impact on the predic- 
tion quality by simulating different distributions of contacts.
We investigated the three different distributions clustered, ran- 
domly, and Gaussian optimized as presented in the Materi- 
als and methods. After creating these contact maps, we can 

use standard statistics, such as Hopkins statistics, to exam- 
ine whether our approach has actually led to a reduction in 

clustering. Indeed, the Hopkins value drops from 0.99 for 
the clustered contact maps to 0.91 for the random ones and 

to 0.87 for our Gaussian-optimized ones. Our method thus 
works as expected, and we can proceed with the structure pre- 
diction. We enter all our contact maps as restraints in SimRNA 

and calculate the RMSD after the simulation. The results are 
marked for all individual molecules into a common overview 

(see Fig. 4 ). For comparison, the simulation without restraints 
is also presented, and it is clear that almost without excep- 
tion the addition of restraints improves the prediction qual- 
ity. The distribution with the clustered contacts gives only a 
slight improvement in the prediction. However, the Gaussian- 
optimized distribution shows a significant improvement in the 
RMSD. Only two molecules (3r4f and 4qln, marked in red in 

Fig. 4 ) do not benefit from the Gaussian contact distribution.
However, the quality of these molecules either is already in a 
very high range (4qln) or both clustered and Gaussian con- 
tacts are worse than without restraints (3r4f), which points 
to a more fundamental problem. We have provided the two 

corresponding contact maps in Supplementary Fig. S2 . How- 
ever, these do not reveal any anomalies. One possibility is that 
both molecules are dimers and that focusing on the largest 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
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luster gives them an advantage in folding. Nevertheless, fold-
ng using SimRNA is also a stochastic process that can lead
o individual outliers. For all other molecules, the Gaussian-
ptimized distributions are in the range of randomly selected
ontacts. We can draw two conclusions from these results.
irstly, our hypothesis that a more diverse contact map con-
ributes significantly to prediction quality is correct. Secondly,
ur Gaussian weighting � (see Equation 2 ) is a useful prop-
rty of a contact map to evaluate the diversity or randomness
f the same. Before we turn to the results of the specific appli-
ations, we want to analyse the influence of false contacts. 

nfluence of false contacts 

ssuming we include false contacts in our contact maps, the
alse contacts should also lead to a worse prediction. In Fig. 5 ,
e used the beneficial fraction from Equation 3 to analyse the
PV at which it is better not to specify any restraints for the
imulation of an unknown molecule. 

The diagram demonstrates that even for a high error rate λ
f 0.5, 70% of the molecules still benefit from the restraints.
e can delve deeper into our test set by dividing it into two

roups: larger molecules and smaller molecules. This is done
y setting a threshold. We use the randomly selected values of
0, 75, 100, and 150 residues as the threshold. All molecules
maller than or equal to this value show a lower beneficial
raction than the larger ones in the analysis, with the excep-
ion of the very small molecules at very low error rates. How-
ver, this may also be due to the statistical significance of the
ery small sample. We see that the larger molecules in partic-
lar benefit from the additional restraints. For instance, the
ight largest molecules profit exclusively from the inclusion
f restraints, even though half of all contacts are false con-
acts. This admittedly very superficial analysis neither pro-
ides explanations nor does it say anything about specific
olecules. However, it shows that even with the most un-

avourable choice of false contacts, their inclusion statistically
eads to a better prediction. It is therefore highly advisable
ot to use a pure simulation, especially for larger molecules,
ut to perform an evolutionary analysis beforehand. Ideally,
his evolutionary analysis should have as diverse a contact
istribution as possible, as shown in the previous section.
 detailed list of all individual molecules can be found in
upplementary Table S1 . 

pplications 

e have seen in the previous section that the inclusion of evo-
utionary data is always advantageous, even if the false con-
acts are maximally unfavourably located. The first section has
lready shown that the topology of the contact map has a de-
isive influence on the quality of the structure prediction. Fi-
ally, let us look again at familiar ML algorithms CoCoNet
 35 ] and Barnacle [ 29 ] and try to explain the lack of structure
rediction quality by including the topology of the contact
ap. 
First of all, let us get a rough overview of the complete val-

dation set (all contact maps are depicted in Supplementary
igs S3 , S4 , and S5 ). Figure 6 a shows the PPV as an established
uality value, and Fig. 6 b the Gaussian value introduced by
s, normalized to the size of the molecule, for quantifying the
opology. As assumed in the Introduction, it is already appar-
nt at first glance that the ML algorithms, especially CoCoNet,
ave a more clustered topology compared with the DCA algo-
rithm. However, you can also see a difference between the two
ML algorithms. The shallow algorithm CoCoNet leads to very
poor Gauss values. In contrast, the algorithm Barnacle, which
is based on a transformer architecture, provides a significantly
higher Gauss value. If we now consider the differences be-
tween the modified Barnacle and the original, there is no no-
ticeable difference in PPV. In terms of the Gaussian score, the
modified algorithm even shows slightly lower values. These
are initial indications that our dataset could be problematic,
as the training of Barnacle showed significantly increasing
Gaussian scores. In the next step, we created the structure
prediction for all four methods using SimRNA and evalu-
ated the RMSD. Figure 6 c shows all values for all molecules.
All molecules with a length of < 100 residues [ L (9jgm) = 106]
show no differences whatsoever between the generic and mod-
ified Barnacle versions. However, differences become appar-
ent for larger molecules. Some molecules seem to benefit from
the Barnacle modification; at the very least, it does not make
the prediction any worse. However, the figure also shows that
many of the molecules are in a bound state or form complexes.
This makes structure prediction using physics-based methods
such as SimRNA very difficult without the complex partner.
It is therefore all the more surprising that, despite all these ad-
versities, we were able to observe a significant improvement
in RMSD for some larger molecules, even though, as already
described, the PPV deteriorated during training. At this point,
it should be noted once again that, at the present time, it was
not possible to generate a higher quality validation set D Val ,
as this would inevitably result in data leakage. This would di-
lute the significance of the study or render it invalid. The lack
of data leading to this suboptimal validation set also empha-
sizes the importance of including the contact map topology
in the design of AI algorithms for structure prediction. Really
good results and unnecessary detours can only be achieved
with the inclusion of a good topology and not with pure PPV-
orientated training. In the already very successful algorithms
for protein structure prediction, consideration of the topology
may already be priced in by the large amounts of training data,
but these amounts do not exist for RNA, and the use of such
knowledge is elementary for a good prediction. 

Conclusion 

We investigated whether the topology of contact maps, which
are output by modern AI algorithms for RNA structure pre-
diction, has an influence on the prediction quality. To answer
this question, we created artificial contact maps and used a
large test set to show that the topology has an important in-
fluence. To quantify the topology, we also introduced a new
measure, the Gaussian score. In the last section, we applied the
measures PPV and Gauss to a smaller validation set. We had
to build this validation set from scratch, and we included all
RNA structures published after the AI algorithm was trained
to prevent data leakage. Then we carried out a structure pre-
diction for all the methods examined. At this point, however,
it should also be said that the validation set in particular is of
poor quality. In some cases, the underlying MSA consisted of
only a few entries. Therefore, the absolute values in particular
should be treated with caution. The individual contact maps
are also shown in Supplementary Figs S3 , S4 , and S5 , and in
some of them you can see a completely inaccurate prediction
of contacts. Another limitation of our analysis is the depen-
dence on the simulation software SimRNA. However, the aim

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1370#supplementary-data
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Figure 5. Illustrations of the beneficial fraction. In black is the whole test set for comparison, in green the larger molecules above the specific threshold, 
and in red the smaller portion with fe w er or an equal number of residues. The pie chart is a visual representation of the ratio and number of molecules 
for the individual subsets. This means, for example, that with a threshold of 60 residues, 14 molecules in our test set are shorter and 42 molecules are 
longer. We ha v e illustrated this binary division for different thresholds. 

Figure 6. ( a and b ) Study of the individual quantities (PPV and �/L ) of the predictions on the test set D Val . Despite Barnacle’s retraining, � does not 
increase for our validation set. This is probably due to the poor quality of the test set. ( c ) Representation of the RMSD for all molecules in ascending 
length L of D Val . The restraints for the simulation were created using different contact maps (mfDCA, CoCoNet, Barnacle generic, and Barnacle 
modified). Bound molecules are marked in light blue and larger complexes in purple. The interpretation of the values is given in the main text. A listing of 
the validation set and the analysis of all individual molecules is given in the Supplementary Table S2 and Supplementary Figs S3 , S4 and S5 . 
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as not to achieve absolute numbers and the best possible pre-
iction, but rather to compare different starting conditions as

ndependently as possible. This is solved very well with Sim-
NA, since the simulation follows a physical force field, and
ot learned motifs, as with trained AI algorithms. For RNA,
e have the big problem of limited datasets for training large

anguage models, so an approach such as AlphaFold is not yet
easible. Although AlphaFold 3 [ 31 ] has the option of RNA
tructure prediction, initial tests show that its quality does not
atch the prediction quality of proteins [ 39 ]. 
It is therefore of great importance to have clues for a good

tructure prediction in advance, in order to compensate for
he lack of training data. The incorporation of topology is
ne such clue, which is of particular importance for archi-
ectures such as CNNs. In the future design of AI algorithms
or structure prediction, on the one hand, such insights can
e integrated and provide direction for the network structure.
n the other hand, the Gaussian score can also be used di-

ectly as a candidate term in the loss function. This allows the
lgorithm to directly train an optimized topology for ideally
atched contact maps for structure prediction. 
Lastly, DCA identifies co-evolutionary signals within pro-

ein or RNA families, even to the extent of judging fitness
andscapes [ 40 , 41 ]. The Gaussian score provides a quantita-
ive measure of the extent to which evolutionary constraints
ct as delocalized across the contact map. Thus, it can be em-
loyed to assess whether evolutionary processes preferentially
tabilize localized clusters of contacts or exert their influence
n a more dispersed manner across distinct regions of the con-
act map. 
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