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Abstract

The available sequence data of RNA molecules have greatly increased in the past years. Unfortunately, while computational power is still
under exponential growth, the computer prediction quality from sequence to final structure is still inferior to labourintensive experimental work.
Although a reliable end-to-end procedure has already been developed for proteins since Alphafold2, while its successor AlphaFold3 can also
predict RNA, its confidence, in particular for novel sequences and folds, still appears limited. Another strategy entails two steps: (i) predicting

potential contacts in the form of a contact map from evolutionary data; and (ii) simulating the molecule with a physical force field while using the
contact map as restraint. However, the quality of the structure prediction crucially depends on the quality of the contact map. Until now, only

the proportion of true positive contacts was considered as a quality characteristic. We propose to also include the distribution of these contacts,
and have done so in our recent studies. We observed that the clustering of contacts, as is common for many artificial intelligence algorithms,

has a negative impact on prediction quality. In contrast, a more distributed topology is beneficial. VWWe have applied these findings from computer

experiments to current algorithms and introduced a measure of distribution, the Gaussian score.
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Introduction

According to the central dogma of molecular biology, RNA
functions as an intermediate product in protein biosynthesis
[1]. In the years following this publication, however, more and
more observations were made that RNA fulfils further func-
tions. The influence of the structure of tRNA, for example,
was already discussed in the 1980s [2], as was the structure
of rRNA [3]. These RNA molecules, that do not code for a
protein, are called non-coding RNAs (ncRNAs) [4]. Similar to
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proteins, the spatial structure of ncRNA is crucial for its abil-
ity to function successfully [5]. Therefore, the correct determi-
nation of the structure is of fundamental importance for the
understanding of ncRNA, including evolutionary paths [6],
virus genesis [7], and also the design of new drugs [8, 9]. The
problem is that unlike sequencing, the experimental determi-
nation of the structure is a very labour-intensive task [10, 11].
Therefore, an iz silico approach that requires less effort would
be a major advance and achievement.
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Immense progress has been made in the field of protein
structure prediction in the last decade. Due to the large
amount of available data, it was possible to train large lan-
guage models and thus achieve an end-to-end prediction that
comes close to experimental quality. The pioneering imple-
mentation of Google with AlphaFold [12] should be men-
tioned in this context. In the case of RNA structure prediction,
such an assessment is rather problematic due to data limita-
tions [13, 14]. To illustrate the difference in the data situation,
we can look at the published Protein Data Bank (PDB) struc-
tures in the central database resb.org: for proteins, we have
196 400 structures and for RNA only 1890 (status: November
2024). As the end-to-end machine learning (ML) approaches
are not yet fully developed, are there other possibilities?

Various physics-based methods are available to determine
the three-dimensional structure of RNA molecules. The most
prominent representative for the structure folding, but also
function determination of molecules is molecular dynamics
(MD) simulation [15-17]. For example, it can be used to
describe the full dynamics of RNA folding [18, 19]. How-
ever, while MD simulations are very accurate, when used in
the context of structure prediction they require very large
amounts of computing time, even when introducing biasing
constraints [20, 21]. For this reason, simplified models are of-
ten used in practice for structure prediction, which can deter-
mine the stationary folding more quickly using Monte Carlo
algorithms. Stationary folding is characterized by the fact that
the molecules have reached a stationary state (or ensemble),
i.e. their state (or ensemble) does not change further over time.
Similarly, much effort has been put into judging the quality
of RNA structure prediction [22]. We studied here how to
achieve reliably good predictions with moderate computing
resources. To achieve this, we use a workflow that has been
successfully used in protein structure prediction since before
AlphaFold. In the following, we will describe this process in
a little more detail; for a better understanding, it is shown
graphically in Fig. 1.

Two popular prediction software packages are the Monte
Carlo-based SimRNA [23] and the fragment-based program
Rosetta [24]. Both are capable of converting the initial se-
quence directly into a three-dimensional RNA structure. With
them, the structure prediction quality can vary considerably
with excellent predictions of low root mean square deviation
(RMSD), e.g. 4plx, but also, for example, 3q3z only achieving
an RMSD of ~29 A in our computer experiments. Evolution-
ary data can support predictions by acting as helpful addi-
tional biasing constraints and considerably improve the qual-
ity of predictions [25, 26] by assuming that co-evolutionary
mutational patterns are a result of spatial adjacency. To detect
co-evolutionary signals, homologous sequences from other or-
ganisms are collected for the initial sequence {a?}izle with
a) € {A, U, C, G} and organized as multiple sequence align-
ment (MSA) D={alli=1,..,L and r =1, ..., M} with 4/ €
{A, U, C, G, —}, M the number of sequences. The co-evolution
of different residues can be analysed with methods used in sta-
tistical physics, for instance mean field direct coupling analysis
(DCA) [25, 27, 28], or with modern artificial intelligence (AI)
algorithms [29-31]. These methods give us a binary mapping
CM: [1:L]x[1:L]— Zy,called a contact map, which in-
dicates whether two residues i, j are spatially adjacent [the
nitrogen atoms (N1/N9) are <9.5 A apart], i.e. form a con-
tact. This definition of a contact goes back to one of the first
papers on RNA contact maps and has since been frequently

used in the literature. In contrast to proteins, where the C,
atom has established itself as a reference point, this is not so
clear for RNA [32]. In simulations, these contacts can be used
as restraints. The outcomes of these simulations are notably
superior when evolutionary data are incorporated. Thus, the
task is on the one hand to have a good data basis for the cre-
ation of MSAs and on the other hand to develop algorithms
that provide as much information as possible from the MSA
to the simulation software. In the past, the latter was often
implemented using the direct coupling analysis method men-
tioned above. To measure the quality of the prediction, we of-
ten use the positive predicted value (PPV), which divides the
number of correctly predicted contacts (true positives) by the
total number (true positives + false positives). The bare DCA
with mean field approximations achieves PPVs of ~50% [33—
35]. The co-evolutionary analysis can also be carried out using
ML algorithms. The PPVs of these algorithms reach values of
up to 80% [29, 30], which is a remarkable increase. Due to
the high PPV, one would assume an improved structure predic-
tion by the simulation. However, detailed investigations were
unable to confirm this expectation [30]. In fact, the increased
PPV through a convolutional neural network (CNN) brought
almost no improvement in prediction quality compared with
the DCA-generated contact map. This result could have two
causes. Firstly, the prediction quality could have an upper limit
due to the simulation software, i.e. a further improvement of
the restraints is unnecessary. On the other hand, the contact
maps generated by Al algorithms could be of poorer quality,
despite a high PPV. The AI algorithms are trained to achieve
the best possible PPV, but the PPV is a massive dimension re-
duction of the prediction and ground truth. The PPV calcu-
lates a value from the contact map of the experimental struc-
ture and the contact map of the evolutionary analysis, i.e.
PPV : 75*F x 75*F — [0, 1]. ML methods, like CNNs [36],
suggest that contacts may be predicted in clusters wherever
possible, therefore the PPV of such contact maps is still high,
but information about smaller contact areas is lost. In this
study we wished to investigate whether this effect of contact
clusters is really responsible for the reduced performance in
structure prediction and to introduce a mathematical measure
to prevent this effect. This measure can be integrated into the
objective function of ML algorithms to generate more diverse
topologies of contact maps. To address these questions, we
first present the software used and our test set in the Materi-
als and methods. This is followed by an explanation of differ-
ent methods to model various kinds of topologically different
contact maps for our test set and an introduction of the new
measure to gauge the diversity. We also describe the design of
the computer experiments and how the influence of false con-
tacts was investigated. Finally, the different applications are
presented. In the Results and discussion section, the results
of the computer experiments are discussed and the value of
the new measure is shown directly in the applications. In the
Conclusion, we summarize the most important findings again,
but also address weaknesses and problems with the computer
experiments carried out. Finally, we discuss possible continu-
ations in modern Al algorithms.

Materials and methods

In this section we give an overview of our test setup and the
different computer experiments we ran on the test set to gain
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Figure 1. Schematic representation of the typical RNA structure prediction workflow. The upper route produces significantly worse results without the

detour via contact map creation.
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Figure 2. One-dimensional schematic of the Gaussian contact weighing. On the left are two contacts with a distance d much larger than . On the
right are the contacts closer together, and the overlap of the individual Gauss distributions (blue) is bigger. After summation (green) and inverting (red),
the weights wgose decrease compared with wqpart for the contacts further away.

insight into the simulation quality in relation to different con-
tact map topologies.

Simulation software and test data

As simulation software, we use SimRNA [23], a software
based on replica exchange Monte Carlo (REMC), with the
standard configuration and 10 replicas per simulation. We use

the representative of the largest cluster as the final structure.
The contacts are added as restraints in the energy function. For
the penalty term, see Supplementary Fig. S1. We have taken
into account both short-range and long-range interactions (as
proposed in [25]), but have ensured that theenergy cost re-
mains constant above a certain threshold in orderto prevent
the energy from being dominated by a single unfulfilled re-
straint.
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Figure 3. (a) Contact map of the cobalamin riboswitch aptamer domain (ID: 4frg). In dark blue is the native contact map as derived from the crystal
structure. In green are shown a possible choice of restraints forming clusters and in red randomly distributed contacts. (b) The three-dimensional
structure of the molecule 4frg from the test set ©, determined experimentally. The coloured bonds represent the contacts belonging to (a).
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Figure 4. Complete visualization of the prediction quality for all molecules for different distributions of contacts. The molecules are sorted by size, and
increase in size from left to right. The IDs from the PDB [38] are plotted on the x-axis. All distributions have been derived from the native contacts from
experimentally determined structures. We used different methods for this: random, clustered, and Gaussian optimized. Simulations without any

restraints are also shown for comparison.

The presented computer experiments were performed with
a test subset ® of RNA families composed in Pucci et al. [35].
We had to sort out the structures that had a faulty PDB struc-
ture and thus made a comparison with our simulation results
impossible. This effectively gave us 56 RNA families repre-
senting ncRNA molecules ranging in length from 41 to 496
residues. In the Application part, we use a different test set
Dy,1- This was necessary because some of our original set ©

were part of the training of the algorithms under investiga-
tion, and we would therefore suffer from data leakage. We
are rebuilding the new validation set Dy, from scratch using
special software called NucleoSeeker [37]. We apply the fol-
lowing criteria: firstly, the filtered structures must have been
published after the training data of our Al algorithms (i.e.
from 2023 onwards) and, secondly, they must show a signifi-
cant deviation from already known structures (sequence sim-
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ilarity <80%). These strict guidelines are essential in order to
draw meaningful conclusions and avoid data leakage. Unfor-
tunately, these specifications result in a very limited validation
set of only 20 structures. After creation of the correspond-
ing MSA, most structures also have an effective family size of
<5. In addition, some of the structures are bound or occur
in a complex, which further complicates structure prediction.
We removed one structure (7yga) because it represents a dy-
namic intermediate step in splicing and therefore cannot be
meaningfully captured by static structure prediction. In this
section we have also adapted our contact definition to the
definition used in the original publications of the methods.
Supplementary Tables S1 and S2 provide an overview of all
families, representing molecules, their size, and the effective
family size .

Definition of Contact

In the course of our analysis, we use two different definitions
to describe two residues of an RNA molecule as being in con-
tact. In most of our computer experiments, we use the defini-
tion used in Pietal et al. [32], which is a fundamental work on
contact maps for RNA molecules. Two residues are according
to this definitiona contact if their N1/N9 nitrogen atoms are
no more than 9.5 A apart. The Al systems in the Application
part were trained and published using a different definition.
In their publications, the authors used 10 A from the heavy
atoms that are closest together. To keep the analysis consis-
tent, we have therefore adjusted our definition in this section.
It should be noted that whether nitrogen atoms (9.5 A) or
nearest heavy atoms (10 A) as definition does not greatly in-
fluence the outcome, as shown and investigated by Pucci et al.

[35].

Distribution of contacts

The results of CoCoNet [30] suggest that the distribution of
contacts has a direct influence on the prediction of the spa-
tial structure of the RNA molecule with L nucleotides. In
order to investigate this influence, three distinct contact dis-
tributions are generated for each molecule within the test
set ©. The individual distributions are constructed by gen-
erating the contact map from the experimentally determined
three-dimensional structure and selecting a subset of L./2 con-
tacts from it. These L/2 contacts are selected in the following
ways: (i) clustered; (ii) randomly; and (iii) Gaussian weighted.
This gives us three different contact map topologies for each
molecule.How well the three different topologies improve the
simulation and whether the simulation benefits at all from this
information are discussed in the Results and discussion.

The clustered contact maps are an extreme example of the
way in which a CNN, for example, operates contact predic-
tion. The probability of finding a contact is increased if there
is already a contact in the immediate vicinity. We select our
contacts from the complete contact map in which we have
previously identified all clusters. We use a very fast calculation
method for cluster definition and determination. Two contacts
are in the same cluster if there is a path between the two con-
tacts via other contacts. The method produces visually good
results for the contact maps for molecules, whereby it is im-
portant not to include diagonal contacts and their neighbours.
Advanced clustering algorithms such as k-means are therefore
not necessary. After the clustering process, we randomly se-
lect contacts from the largest cluster until all contacts from

Contact map topology 5

that cluster have been selected, and then move on to the next
smallest cluster using the same method. An example of such a
selection is drawn in Fig. 3a.

The randomly distributed contacts represent the opposite
extreme case. In this distribution, the individual restraints are
randomly selected from the entire contact map. Although we
know the complete contact map in advance in our computer
experiments, this is precisely the goal in normal RNA structure
prediction. Existing algorithms offer a larger number of con-
tacts, but the confidence of the individual contacts decreases
significantly. It is precisely the selection of a subset of contacts
based on confidence that enables the algorithms to make good
predictions. This means that it is not possible to select contacts
from the initially unknown contact map, nor is it possible to
randomly select possible contacts neglecting the confidence.
What is needed is a measure that determines the degree of
randomness. We could incorporate this measure into existing
algorithms and thus achieve a complex prediction that takes
into account the topology of the contact maps.

This measure, which determines randomness, should meet
a few requirements.

e It should be possible to determine this without being
aware of the unknown contact map.

e It should be continuous.

¢ It should be smaller for many contacts that are close to-
gether and larger for those that are further apart.

* Once a certain spread has been reached, the value should
no longer change.

We introduced this measure with a Gaussian weighting
of the individual contacts. Instead of valuing each contact
equally, contacts that are close to each other are devalued. A
one-dimensional schematic representation of this can be seen
in Fig. 2. Two scenarios are depicted there: on the one hand,
two contacts in the one-dimensional contact map that are fur-
ther apart and, on the other hand, those that are close together.
The influence of each contact on the neighbouring contact is
modelled with a Gaussian function (blue curve) and the addi-
tion of all influences of the other contacts gives the weighting
of the current contact (green curve). To devalue the individual
weights instead of enhancing them, this weighting is inverted
(red curve). Here, the value at the point of contact can be read
directly from the curve and, the closer two contacts are to each
other, the lower the value (hereafter referred to as the Gauss
score). Generalized to two dimensions, we obtain the value v;
for the addition of all Gaussian functions for each contact i
with position #; on the contact map with all contacts C:

)2
b= exp [—(7072”)} (1)

jeC

Each contact, which is surrounded by other contacts, now has
a higher v compared with isolated contacts. To devalue the
contacts, we introduce the inverse w; = v, as weights. The
total sum of weights is now reduced for a clustered contact
selection and is at its maximum for widely dispersed contacts.
The latter is closer to a random selection of contacts, so you

can incorporate
Q=)o (2)
ieC
as an additional optimization parameter in ML algorithms for
the contact diversity. This parameter is a measure of the topol-
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ogy of the contact map. It can be used to evaluate existing al-
gorithms, as we do in the Applications part, or to develop new
algorithms that use it as an additional optimization parameter
which we also show in Applications. This is also the advan-
tage over randomly distributed maps, which, although they
are maximally spread, have no quantitative measure that can
be optimized in calculations. Even though the selection of
appears arbitrary, it is not. The Gaussian bell curve approach
is a widely used method for modelling an exponential decline.
In our model, we use it to represent the declining influence of
contacts on each other. With the above argument, we have al-
ready covered all the requirements we previously set for such
a measure. The summation and inversion serve to reduce the
value to a measure that can be incorporated as an additional
term in the loss function of an Al algorithm. In the Applica-
tions part, we do this for a state-of-the-art transformer model
for contact map prediction of RNA molecules.

Influence of false contacts

In reality, it is impossible to use only true positive contacts,
since even the best current ML methods only achieve a PPV
of ~80% [29]. In the next step, we introduce false contacts
to our contact map. We therefore use randomly chosen con-
tacts C from the set of residue pairs which are not part of the
native contacts. The remaining contacts, designated as set C,
are generated through a Gaussian optimization process, de-
rived from the native contacts. The PPV decreases from 1
to 1 — X, where A = |C|/|CUC]| is the fraction of false con-
tacts in our selection (error rate). With the selection C U C we
can simulate each molecule ? from our test set and calculate
the RMSD(d, C UC). To give a short overview of the quality,
we introduced the beneficial fraction

1

§0) =

> ©[RMSD(2, @) —RMSD(d, CUC)] (3)
€D

which shows the fraction of molecules for a given A with a
lower RMSD with given restraints compared with the same
molecule without any restraints. In order to stay as close as
possible to reality, we have decided on Gaussian-optimized
contacts for the true positives and random for the false posi-
tives. This should best represent the influence of the false pos-
itives.

Applications

In order to analyse the individual influences and results on
the structure prediction and the Gaussian score in practice,
we looked at and compared three state-of-the-art methods
for contact map creation. As a benchmark, we start with the
DCA algorithm, which has a lower PPV but should have a
diverse contact map topology. We used the implementation
pyDCA with the mean field approximation (mfDCA). As a
representative of a sparse learning algorithm (CNN) we take
CoCoNet, which, as already mentioned in the Introduction,
has extremely good PPV values but not much gain in structure
prediction [35]. The third method uses the advanced Al algo-
rithm Barnacle, which has been specially trained for contact
map prediction. Barnacle uses a transformer model to create a
prediction that is as accurate as possible. As an enhancement
of these three methods, we completely retrained Barnacle and
added the Gaussian score from Equation (2) as an additional
term in the loss function. This additional term in the loss func-
tion was assigned a scalar weighting (we used —1 for proof of

concept) and a variance o> of 4. We determined the scalar
weighting so that we could see a significant increase in Q dur-
ing training, and we used the variance by analysing existing
contact maps, i.e. the effects of clustering are well represented
in Q. These two parameters are the only freely selectable con-
stants. Other values for these two constants are certainly con-
ceivable, but it would go beyond the scope of this study to
carry out a detailed analysis of them as well. These two pa-
rameters can be considered well chosen if we see a decrease in
PPV from the modified version to the generic version and an
increase in Q2 of the modified version during training. Here, a
trade-off must be made between the extent to which the PPV
is sacrificed for the topology. During our training of the mod-
ified Barnacle model, where we optimize the Al model param-
eter but not our chosen parameters, we saw, as expected, a
decrease in PPV (from 0.46 to 0.38) compared with the un-
modified (generic) version. When we looked at the Gaussian
score separately for the training, we saw an increase (from
first epoch 63.40 to last epoch 187.00). We can therefore be
sure that we have retrained the system correctly. For all four
methods, we compare the precision and the Gauss value and
take a closer look at contact maps. We then run simulations
using SImRNA for all contact maps created, allowing us to
compare the RMSD for all methods and all molecules of D,
at the end. In order to reproduce the previous results from the
literature [29, 35], we also switch to a different contact def-
inition. We count two residues i, j as contact if, and only if,
there is a pair of heavy atoms that are <10 A apart.

Results and discussion

Distribution of contacts

We investigated the initial question of whether the influence
of the distribution of contacts has an impact on the predic-
tion quality by simulating different distributions of contacts.
We investigated the three different distributions clustered, ran-
domly, and Gaussian optimized as presented in the Materi-
als and methods. After creating these contact maps, we can
use standard statistics, such as Hopkins statistics, to exam-
ine whether our approach has actually led to a reduction in
clustering. Indeed, the Hopkins value drops from 0.99 for
the clustered contact maps to 0.91 for the random ones and
to 0.87 for our Gaussian-optimized ones. Our method thus
works as expected, and we can proceed with the structure pre-
diction. We enter all our contact maps as restraints in SimRNA
and calculate the RMSD after the simulation. The results are
marked for all individual molecules into a common overview
(see Fig. 4). For comparison, the simulation without restraints
is also presented, and it is clear that almost without excep-
tion the addition of restraints improves the prediction qual-
ity. The distribution with the clustered contacts gives only a
slight improvement in the prediction. However, the Gaussian-
optimized distribution shows a significant improvement in the
RMSD. Only two molecules (3r4f and 4gln, marked in red in
Fig. 4) do not benefit from the Gaussian contact distribution.
However, the quality of these molecules either is already in a
very high range (4qln) or both clustered and Gaussian con-
tacts are worse than without restraints (3r4f), which points
to a more fundamental problem. We have provided the two
corresponding contact maps in Supplementary Fig. S2. How-
ever, these do not reveal any anomalies. One possibility is that
both molecules are dimers and that focusing on the largest
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cluster gives them an advantage in folding. Nevertheless, fold-
ing using SIimRNA is also a stochastic process that can lead
to individual outliers. For all other molecules, the Gaussian-
optimized distributions are in the range of randomly selected
contacts. We can draw two conclusions from these results.
Firstly, our hypothesis that a more diverse contact map con-
tributes significantly to prediction quality is correct. Secondly,
our Gaussian weighting € (see Equation 2) is a useful prop-
erty of a contact map to evaluate the diversity or randomness
of the same. Before we turn to the results of the specific appli-
cations, we want to analyse the influence of false contacts.

Influence of false contacts

Assuming we include false contacts in our contact maps, the
false contacts should also lead to a worse prediction. In Fig. 5,
we used the beneficial fraction from Equation 3 to analyse the
PPV at which it is better not to specify any restraints for the
simulation of an unknown molecule.

The diagram demonstrates that even for a high error rate A
of 0.5, 70% of the molecules still benefit from the restraints.
We can delve deeper into our test set by dividing it into two
groups: larger molecules and smaller molecules. This is done
by setting a threshold. We use the randomly selected values of
60, 75,100, and 150 residues as the threshold. All molecules
smaller than or equal to this value show a lower beneficial
fraction than the larger ones in the analysis, with the excep-
tion of the very small molecules at very low error rates. How-
ever, this may also be due to the statistical significance of the
very small sample. We see that the larger molecules in partic-
ular benefit from the additional restraints. For instance, the
eight largest molecules profit exclusively from the inclusion
of restraints, even though half of all contacts are false con-
tacts. This admittedly very superficial analysis neither pro-
vides explanations nor does it say anything about specific
molecules. However, it shows that even with the most un-
favourable choice of false contacts, their inclusion statistically
leads to a better prediction. It is therefore highly advisable
not to use a pure simulation, especially for larger molecules,
but to perform an evolutionary analysis beforehand. Ideally,
this evolutionary analysis should have as diverse a contact
distribution as possible, as shown in the previous section.
A detailed list of all individual molecules can be found in
Supplementary Table S1.

Applications

We have seen in the previous section that the inclusion of evo-
lutionary data is always advantageous, even if the false con-
tacts are maximally unfavourably located. The first section has
already shown that the topology of the contact map has a de-
cisive influence on the quality of the structure prediction. Fi-
nally, let us look again at familiar ML algorithms CoCoNet
[35] and Barnacle [29] and try to explain the lack of structure
prediction quality by including the topology of the contact
map.

First of all, let us get a rough overview of the complete val-
idation set (all contact maps are depicted in Supplementary
Figs S3, S4,and S5). Figure 6a shows the PPV as an established
quality value, and Fig. 6b the Gaussian value introduced by
us, normalized to the size of the molecule, for quantifying the
topology. As assumed in the Introduction, it is already appar-
ent at first glance that the ML algorithms, especially CoCoNet,
have a more clustered topology compared with the DCA algo-
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rithm. However, you can also see a difference between the two
ML algorithms. The shallow algorithm CoCoNet leads to very
poor Gauss values. In contrast, the algorithm Barnacle, which
is based on a transformer architecture, provides a significantly
higher Gauss value. If we now consider the differences be-
tween the modified Barnacle and the original, there is no no-
ticeable difference in PPV. In terms of the Gaussian score, the
modified algorithm even shows slightly lower values. These
are initial indications that our dataset could be problematic,
as the training of Barnacle showed significantly increasing
Gaussian scores. In the next step, we created the structure
prediction for all four methods using SimRNA and evalu-
ated the RMSD. Figure 6¢ shows all values for all molecules.
All molecules with a length of <100 residues [L(9jgm)=106]
show no differences whatsoever between the generic and mod-
ified Barnacle versions. However, differences become appar-
ent for larger molecules. Some molecules seem to benefit from
the Barnacle modification; at the very least, it does not make
the prediction any worse. However, the figure also shows that
many of the molecules are in a bound state or form complexes.
This makes structure prediction using physics-based methods
such as SIMRNA very difficult without the complex partner.
It is therefore all the more surprising that, despite all these ad-
versities, we were able to observe a significant improvement
in RMSD for some larger molecules, even though, as already
described, the PPV deteriorated during training. At this point,
it should be noted once again that, at the present time, it was
not possible to generate a higher quality validation set Dv,),
as this would inevitably result in data leakage. This would di-
lute the significance of the study or render it invalid. The lack
of data leading to this suboptimal validation set also empha-
sizes the importance of including the contact map topology
in the design of Al algorithms for structure prediction. Really
good results and unnecessary detours can only be achieved
with the inclusion of a good topology and not with pure PPV-
orientated training. In the already very successful algorithms
for protein structure prediction, consideration of the topology
may already be priced in by the large amounts of training data,
but these amounts do not exist for RNA, and the use of such
knowledge is elementary for a good prediction.

Conclusion

We investigated whether the topology of contact maps, which
are output by modern Al algorithms for RNA structure pre-
diction, has an influence on the prediction quality. To answer
this question, we created artificial contact maps and used a
large test set to show that the topology has an important in-
fluence. To quantify the topology, we also introduced a new
measure, the Gaussian score. In the last section, we applied the
measures PPV and Gauss to a smaller validation set. We had
to build this validation set from scratch, and we included all
RNA structures published after the Al algorithm was trained
to prevent data leakage. Then we carried out a structure pre-
diction for all the methods examined. At this point, however,
it should also be said that the validation set in particular is of
poor quality. In some cases, the underlying MSA consisted of
only a few entries. Therefore, the absolute values in particular
should be treated with caution. The individual contact maps
are also shown in Supplementary Figs S3, S4, and S§, and in
some of them you can see a completely inaccurate prediction
of contacts. Another limitation of our analysis is the depen-
dence on the simulation software SimRNA. However, the aim
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increase for our validation set. This is probably due to the poor quality of the test set. (¢) Representation of the RMSD for all molecules in ascending
length L of Dy, . The restraints for the simulation were created using different contact maps (mfDCA, CoCoNet, Barnacle generic, and Barnacle
modified). Bound molecules are marked in light blue and larger complexes in purple. The interpretation of the values is given in the main text. A listing of
the validation set and the analysis of all individual molecules is given in the Supplementary Table S2 and Supplementary Figs S3, S4 and S5.
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was not to achieve absolute numbers and the best possible pre-
diction, but rather to compare different starting conditions as
independently as possible. This is solved very well with Sim-
RNA, since the simulation follows a physical force field, and
not learned motifs, as with trained Al algorithms. For RNA,
we have the big problem of limited datasets for training large
language models, so an approach such as AlphaFold is not yet
feasible. Although AlphaFold 3 [31] has the option of RNA
structure prediction, initial tests show that its quality does not
match the prediction quality of proteins [39].

It is therefore of great importance to have clues for a good
structure prediction in advance, in order to compensate for
the lack of training data. The incorporation of topology is
one such clue, which is of particular importance for archi-
tectures such as CNNG. In the future design of Al algorithms
for structure prediction, on the one hand, such insights can
be integrated and provide direction for the network structure.
On the other hand, the Gaussian score can also be used di-
rectly as a candidate term in the loss function. This allows the
algorithm to directly train an optimized topology for ideally
matched contact maps for structure prediction.

Lastly, DCA identifies co-evolutionary signals within pro-
tein or RNA families, even to the extent of judging fitness
landscapes [40, 41]. The Gaussian score provides a quantita-
tive measure of the extent to which evolutionary constraints
act as delocalized across the contact map. Thus, it can be em-
ployed to assess whether evolutionary processes preferentially
stabilize localized clusters of contacts or exert their influence
in a more dispersed manner across distinct regions of the con-
tact map.
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