001048760 001__ 1048760
001048760 005__ 20251202203137.0
001048760 037__ $$aFZJ-2025-04875
001048760 041__ $$aEnglish
001048760 1001_ $$0P:(DE-Juel1)196766$$aLothmann, Kimberley$$b0$$eCorresponding author$$ufzj
001048760 1112_ $$aEBRAINS summit 2025$$cBrüssel$$d2025-12-08 - 2025-12-11$$wBelgien
001048760 245__ $$aGoing 3D with AI: Full 3D Reconstructions of Cytoarchitectonic Maps in BigBrain
001048760 260__ $$c2025
001048760 3367_ $$033$$2EndNote$$aConference Paper
001048760 3367_ $$2BibTeX$$aINPROCEEDINGS
001048760 3367_ $$2DRIVER$$aconferenceObject
001048760 3367_ $$2ORCID$$aCONFERENCE_POSTER
001048760 3367_ $$2DataCite$$aOutput Types/Conference Poster
001048760 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1764669534_20668$$xAfter Call
001048760 520__ $$a<b>Introduction:</b><br>As part of the Julich-Brain Atlas (Amunts et al., 2020), the BigBrain dataset (Amunts et al., 2013) provides the first ultrahigh-resolution 3D model of the human brain at 20 μm isotropic resolution, reconstructed from 7,404 histological sections. It enables cytoarchitectonic mapping at a level of detail that bridges microscopic organization with macroscale imaging. Traditionally, areas have been delineated on 2D sections, limiting their integration into 3D brain reference spaces.<br><br><b>Methods:</b><br>We developed a hybrid workflow combining expert identification of cortical areas with deep learningbased 3D reconstruction. Using the ATLaSUI interface (Schiffer et al., 2021), neuroscientists annotated every 10th – 15th histological section, providing training data for the CytoNet model (manuscript in preparation). CytoNet infers cortical layer continuity and areal boundaries between annotated sections, avoiding geometric interpolation and preserving cytoarchitectonic detail. Largescale model inference and reconstruction were performed on the JURECA-DC supercomputer (Jülich Supercomputing Centre).<br><br><b>Results:</b><br>Currently, 33 cortical BigBrain areas are publicly available through the siibra tool suite and EBRAINS Knowledge Graph. An additional 56 cortical areas, including eight newly mapped regions, were reconstructed at 20 μm resolution, expanding the Julich-Brain Atlas to a total of 98 BigBrain areas. All maps will be openly accessible via EBRAINS, enabling interactive and programmatic exploration within a unified reference framework.<br><br><b>Discussion:</b><br>Since areas were reconstructed independently, minor overlaps can occur at region borders, especially in highly folded cortical zones. Sampling every 10th – 15th section may also introduce interpolation artifacts in regions with steep cytoarchitectonic transitions. Future work will focus on multi-area optimization to reduce boundary inconsistencies and improve 3D continuity. These ongoing developments advance the integration of microstructural and macroscale brain data within a coherent human brain reference space.<br><br><b>Keywords:</b> BigBrain, Julich Brain Atlas, Cytoarchitecture, 3D Reconstruction, Deep Learning, Human Brain Atlas, EBRAINS<br><br><b>References</b><br>Amunts K, Lepage C, Borgeat L, et al. BigBrain: An ultrahigh-resolution 3D human brain model. Science. 2013;340(6139):1472-1475. doi:10.1126/science.1235381<br>Amunts K, Mohlberg H, Bludau S, Zilles K. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science. 2020;369(6506):988-992. doi:10.1126/science.abb4588<br>Schiffer C, Spitzer H, Kiwitz K, et al. Convolutional neural networks for cytoarchitectonic brain mapping at large scale. Neuroimage. 2021;240:118327. doi:10.1016/j.neuroimage.2021.118327<br><br><b>Acknowledgments:</b><br>This project received funding from the European Union’s Horizon 2020 Research and InnovationProgramme, grant agreement 101147319 (EBRAINS 2.0 Project), the Helmholtz Association portfolio theme “Supercomputing and Modeling for the Human Brain”, the Helmholtz Association’sInitiative and Networking Fund through the Helmholtz International BigBrain Analytics and LearningLaboratory (HIBALL) under the Helmholtz International Lab grant agreement InterLabs-0015, fromHELMHOLTZ IMAGING, a platform of the Helmholtz Information \& Data Science Incubator [XBRAIN, grant number: ZT-I-PF-4-061], and from the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) under the National Research Data Infrastructure – NFDI 46/1 –501864659.
001048760 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048760 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001048760 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x2
001048760 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x3
001048760 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001048760 536__ $$0G:(DE-HGF)ZT-I-PF-4-061$$aX-BRAIN (ZT-I-PF-4-061)$$cZT-I-PF-4-061$$x5
001048760 536__ $$0G:(GEPRIS)501864659$$aDFG project G:(GEPRIS)501864659 - NFDI4BIOIMAGE - Nationale Forschungsdateninfrastruktur für Mikroskopie und Bildanalyse (501864659)$$c501864659$$x6
001048760 7001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b1$$ufzj
001048760 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b2$$ufzj
001048760 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b3$$ufzj
001048760 8564_ $$uhttps://cdn.prod.website-files.com/67fd5fb0e5cec89dfb6b65be/692d689da7f10aeb4b0bded3_EBRAINS-Summit-2025-Book-of-Abstracts-1-Dec.pdf
001048760 909CO $$ooai:juser.fz-juelich.de:1048760$$popenaire$$pVDB$$pec_fundedresources
001048760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196766$$aForschungszentrum Jülich$$b0$$kFZJ
001048760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b1$$kFZJ
001048760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b2$$kFZJ
001048760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b3$$kFZJ
001048760 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048760 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001048760 9141_ $$y2025
001048760 920__ $$lyes
001048760 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048760 980__ $$aposter
001048760 980__ $$aVDB
001048760 980__ $$aI:(DE-Juel1)INM-1-20090406
001048760 980__ $$aUNRESTRICTED