001048778 001__ 1048778
001048778 005__ 20251204202145.0
001048778 037__ $$aFZJ-2025-04893
001048778 041__ $$aEnglish
001048778 1001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b0$$ufzj
001048778 1112_ $$a9th BigBrain Workshop - HIBALL Closing Symposium$$cBerlin$$d2025-10-27 - 2025-10-27$$wGermany
001048778 245__ $$aWorking with quantitative cortical cell densities using siibra
001048778 260__ $$c2025
001048778 3367_ $$2DRIVER$$alecture
001048778 3367_ $$031$$2EndNote$$aGeneric
001048778 3367_ $$2BibTeX$$aMISC
001048778 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1764842275_7570$$xInvited
001048778 3367_ $$2ORCID$$aLECTURE_SPEECH
001048778 3367_ $$2DataCite$$aText
001048778 520__ $$aThe regional microstructure of cortical brain areas, along with their connectivity to other regions, is linked to their functional profile. Consequently, microstructure varies significantly between different brain region. Along with modern image analysis methods, the BigBrain provides a unique resource for quantifying microstructure in terms of numbers, densities, and distributions of cell bodies at different locations in the brain. In this tutorial, we demonstrate how the siibra toolsuite can be used to access micrometer resolution BigBrain image data and extract cortical image patches for custom regions of interest. We will show how locations can be specified or sampled in interactive and scripted workflows, and demonstrate how state of the art AI models can be used to extract and quantify cell instances from extracted image patches in a reproducible fashion. We will present a dataset of layer-specific cell densities for areas defined in the Julich-Brain cytoarchitectonic atlas, which has been created on the basis of these ideas and is available through siibra.
001048778 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001048778 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001048778 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
001048778 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001048778 7001_ $$0P:(DE-Juel1)131636$$aBludau, Sebastian$$b1$$ufzj
001048778 8564_ $$uhttps://events.hifis.net/event/2171/contributions/19226/
001048778 909CO $$ooai:juser.fz-juelich.de:1048778$$popenaire$$pVDB$$pec_fundedresources
001048778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b0$$kFZJ
001048778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131636$$aForschungszentrum Jülich$$b1$$kFZJ
001048778 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001048778 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001048778 9141_ $$y2025
001048778 920__ $$lyes
001048778 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001048778 980__ $$alecture
001048778 980__ $$aVDB
001048778 980__ $$aI:(DE-Juel1)INM-1-20090406
001048778 980__ $$aUNRESTRICTED