001     1048783
005     20251204202145.0
037 _ _ |a FZJ-2025-04898
041 _ _ |a English
100 1 _ |a Oberstraß, Alexander
|0 P:(DE-Juel1)184804
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 9th BigBrain Workshop - HIBALL Closing Symposium
|c Berlin
|d 2025-10-27 - 2025-10-29
|w Germany
245 _ _ |a tiamat: Tiled Image Access, Manipulation and Analysis Toolkit for Visualization and Analysis of Large Scientific Image Datasets
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1764842732_31786
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Large-scale scientific imaging datasets -ranging from terabytes to petabytes- are increasingly central to neuroscience and other scientific fields. These datasets require heterogeneous tools for analysis and visualization, which impose conflicting requirements on file formats, metadata schemas, and storage access patterns. Converting between formats or duplicating data is a common workaround, but this introduces inefficiencies, storage overhead, and potential errors in large-volume workflows.We present tiamat, the Tiled Image Access and Manipulation Toolkit, a flexible and extensible Python framework that facilitates reading, transforming, and exposing large image datasets through a configurable pipeline of readers, transformers, and interfaces.Tiamat supports on-the-fly transformations such as normalization, axis reordering, and colormapping, while streaming data to diverse endpoints—including Napari, Neuroglancer, OpenSeadragon, Python/Numpy scripts, and FUSE—without requiring intermediate file conversion or duplication. We demonstrate its use within the EBRAINS platform, where tiamat delivers 1µm-resolution histological brain images from the BigBrain dataset directly from high-performance GPFS storage to web-based viewers and analysis clients.Tiamat decouples data storage from visualization and analysis workflows, enabling modular, reusable, and domain-agnostic image processing pipelines.Its plugin-based design and compatibility with multiple tools offer a scalable solution for managing large scientific image datasets. Tiamat is implemented in Python, released under the Apache 2.0 license, and deployed via docker. The source code is available here.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 1
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 2
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 3
536 _ _ |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|0 G:(DE-Juel-1)E.40401.62
|c E.40401.62
|x 4
700 1 _ |a Schiffer, Christian
|0 P:(DE-Juel1)170068
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Matuschke, Felix
|0 P:(DE-Juel1)169807
|b 2
|u fzj
700 1 _ |a Kropp, Jan-Oliver
|0 P:(DE-Juel1)171152
|b 3
|u fzj
700 1 _ |a Thönnißen, Julia
|0 P:(DE-Juel1)171151
|b 4
|u fzj
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 5
|u fzj
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 6
|u fzj
700 1 _ |a Gui, Xiaoyun
|0 P:(DE-Juel1)172713
|b 7
|u fzj
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 8
|u fzj
856 4 _ |u https://events.hifis.net/event/2171/contributions/19161/
909 C O |o oai:juser.fz-juelich.de:1048783
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184804
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169807
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171151
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165746
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21