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Abstract

In recent years, an increasing number of large electrophysiological data sets have become publicly
available, thereby providing researchers with the opportunity to analyze spike train data without
conducting their own experiments. While this is undoubtedly a positive development, it increases the
need for proper documentation on how the data were collected and what preprocessing was performed
on the data, since interpreting analysis results in ignorance of these pieces of information can lead to
wrong conclusions. An important preprocessing step is the removal of artifacts from the recordings.
Electrophysiological recordings are particularly susceptible to electrical cross-talks between recording
channels, resulting in artifact spikes that are coincident in multiple channels on the time scale of the
data sampling rate, i.e., 1/30 ms in popular setups. The removal by signal whitening is only possible
if also the raw sampled data are available, thus to eliminate this type of artifact is to remove all
coincident spikes on the recording time scale to definitely avoid artifact spikes. However, given the
lack of the “ground truth” | this step has the potential to eliminate, in conjunction with the artifacts,
components of the data that are pertinent to the research objective. In this study, we use a modified
version of the Unitary Event Analysis and demonstrate that such preprocessing results in significantly
lower correlations than expected by chance even on longer time scales. We also propose a method to
correct for the bias introduced by this preprocessing. Thus, slight changes in the preprocessing have
potentially strong impact on analysis results and methods need to consider these effects.

Keywords: spike synchrony, spike timing, artifacts, preprocessing

1 Introduction resources. Fortunately, it has become more com-
mon to share data within the community e.g.,
Brochier et al. (2018); Steinmetz et al. (2019); Pei

et al. (2021); Chen et al. (2022), making record-

Large parts of neuroscience rely on electrophysio-
logical recordings for the investigation of dynam-

ical properties and computational mechanisms of
the brain. The experiments that are required to
obtain these data involve considerable effort and

ings accessible for a broad range of researchers.
However, there is no standardized format for
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reporting and each data set is highly individual.
Thus researchers other than the experimenters
often times do not know all information about the
data even if the data is very well documented.

Typically the data undergo a number of pre-
processing steps, such as frequency filtering, down-
sampling, spike sorting, etc., which are not neces-
sarily included in the description of the data. Each
of these steps can influence the data and not know-
ing about them might impact the interpretation
of analysis results, for example Bedenbaugh and
Gerstein (1997); Pazienti and Griin (2006) showed
how errors in spike sorting — typically a process
the data user has only limited knowledge about —
may affect the observed correlation structure.

Here we focus on another preprocessing step,
namely the removal of artifacts. In Oberste-
Frielinghaus et al. (2025), we have shown that
in electrophysiological recordings correlations on
very high time resolutions across multiple record-
ing channels are ubiquitous. These are noticeable
as high synchronous spike count entries in the
spike population histogram of the activities of all
neurons in single trials computed on the sam-
pling resolution (here: f; = 30 kHz), either on
sorted spikes or thresholded spike data. These high
entries occur much more often than expected by
chance (comparison to surrogates). Correlations
on this time resolution are very unlikely caused
by neuronal activity and thus probably are caused
by artifacts in the data. To mitigate the impact
of these artifacts, previous studies either excluded
whole recording channels e.g., Yu et al. (2009),
potentially removing large parts of the data, or
like Torre et al. (2016) removed those artifact
spikes by removing any synchronous spike events
at sampling rate resolution likely also includ-
ing “real” spikes. In Oberste-Frielinghaus et al.
(2025), we report a more elegant way for arti-
fact removal by whitening the raw signals based
on the zero-phase component analysis (Bell and
Sejnowski (1997)). However, since this cleaning
method needs to be applied to the raw continuous
data, it is not an option for data users who do not
have access to the raw data.

In this work, we illustrate the effect of data
cleaning (artifact removal) as done in Torre et al.
(2016). In particular we study the effect of this
artifact removal on the results of spike correlation
analysis on the millisecond time scale, using the

Population Unitary Event analysis (UEpqp), newly
introduced here. We choose this type of analysis
because it uses many spike trains in parallel, and
thereby the effect of errors is more apparent due
to the large amount of data. For the demonstra-
tion of the effect of the artifact removal, we apply
the UE,qp to simulated data in which we emulated
artifacts as well neuronal correlations as observed
in neural recordings. Since we know the ground-
truth processes underlying these data sets, they
are ideal to exemplify the effect of the artifact
removal under various different constellations. We
find that this removal method leads to an increase
in false negative results. Additionally, we suggest
a correction for UE,., to account for the effects
of the artifact removal and to avoid these false
results.

2 Methods

2.1 Recording and analysis time
scales

We assume the raw data to be recorded at 1/30
ms resolution (30 kHz sampling rate), as usually
nowadays performed in typical electrophysiologi-
cal recordings. These data are typically high pass
filtered (above ~ 500 Hz) to get the spiking activ-
ity, which are then spike sorted to get single unit
spiking activities at that high time resolution.
Figure 1a, top sketches such single units spike data
of N simultaneously recorded neurons. To apply
data analysis on such data we apply a temporal
binning with e.g. 1 or 5 ms bin width. If more than
one spike are in a bin, we clip them to an entry of
1 (see Figure la, bottom ) for the intended subse-
quent Population Unitary Event analysis (UEpop),
described in the following section.

2.2 Population Unitary Events
Analysis

The goal of UE,pis to derive if there exist excess
synchronous spike events in data of say N = 100
parallel spike trains. For this we first decide on a
time resolution at which spike synchrony is con-
sidered, here h; = 1-5 ms, and reduce the time
resolution by binning the data to that time scale.
The contents per bin is 1 if there are 1 or more
spikes in a bin, or 0 otherwise. Thereby we end
up with binary data. After this we apply UEpqpto
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Fig. 1 Sketch of spike data on original time resolution to analysis time resolution. (a) The top panel shows the N spike
data (spikes indicated by filled bins) on the hg = 1/30 ms time resolution. Below are the same data but now after binning
toh1 = 1ms bins. (b) Sketch of the UEp analysis method. All pairs of binned spike data (no repetition of identical pairs)

0,7

are illustrated. From each of those pairs (4, j) the empirical number of synchronous events n¢ip and the expected number

of synchronous events né’,zpare derived. After summing the empirical number of synchronous spike events into nle),?]% and the
expected number of spike events ng,?g the p-value and the surprise are computed from these two values. The result of this
evaluation is represented in the middle of the analysis time window of Tp ms and performed in sliding window manner.

the data, which is an extension of the Unitary
Event analysis (UE) (Griin et al. (2002a,b)) to
many pairs of spike trains. To account for non-
stationary firing rates in time, we apply - as for
UE - the analysis in a sliding window manner of
e.g. a width of Ty ms (typically 100 ms). Then
we consider all pairs of neurons (no duplication,
i.e., N(N — 1)/2 pairs), extract from each neuron
pair (i, ) in that time window the empirical num-
ber né}{;p of synchronous events (just by counting),
and then sum them across all pairs: nfil =

1.j M- Similarly we derive the expected num-

ber ngf, of synchronous spike events pair by pair

and sum them across all pairs: nbh = ZZ j né;(jp.
The expected number for a pair of neurons is com-
puted on the basis of each of their spike counts
¢; within the window to derive the probability of
bin occupation by dividing the spike count by the
number of bins My = To/h1: p; = ¢;/My. The
expected number for a neuron pair (¢,j) is then
derived as their joint probability under indepen-
dence multiplied by the number of bins in Tj:
Ny, = pi - pj - M.

The significance of potential excess synchrony

is tested with a p-value p, assuming the empirical

synchronous events Poisson distributed, which is
the case for Poisson spike trains. For spike trains
that deviate from Poisson, we suggested to use sur-
rogate methods (Louis et al. (2010); Stella et al.
(2022)), which could also be applied here, but
for the sake of simplicity we illustrate the impact
of preprocessing on simulated Poisson data. The
p-value is computed as the sum of a Poisson distri-
bution of mean nfcP from nfob to infinity, which
provides the probability to get nfoh number of
synchronous events or even more (Palm (1981)).
From the p-value we derive the surprise measure
S(py) = log((1 — py)/pv), & measure that fluc-
tuates around 0 if the data are independent, is
negative for a lack of synchrony, or is positive
if excess synchrony exists. If p, is smaller than
a predefined significance level (conventionally 5%
or 1%), we consider the empirical occurrences as
significant on the respective significance level.

2.3 Simulating ground truth data

For the demonstration of the effect of prepro-
cessing on UEp,, here the artifact removal, we
use simulated data where we have all parame-
ters under control (“ground truth data”). The
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simulations are done on the basis of a stochas-
tic point process, the Compound Poisson Process
(CPP) (Staude et al. (2010)). For all types of
data we will use, a) independent Poisson pro-
cesses, b) artifact data, ¢) neuronal correlations.
For the latter two we use a CPP with different
parameters, and depending on the data needed, we
merge the resulting data respectively. To adjust
the processes to artifact observations in experi-
mental data, we use as a reference for the degree
of artifacts the measurement of the complexity
distribution, introduced in the following.

2.3.1 Population spike counts and
complexity distribution

From parallel processes (or measurements) binned
at ho time resolution, we form the population his-
togram Z(s), i.e., the sum of spike events per bin
across all N processes Z(s) = Zf\; Xi(s), where
Xi(s) is the spike count of the i-th neuron in the
s-th bin, i.e., the time interval [shq, (s+1)ho]. The
variable Z(s) defines the complexity of the popula-
tion spike count at the s-th bin, irrespective of the
neurons that emit these spikes. We form the com-
plexity distribution (Griin et al. (2008); Staude
et al. (2010)) as the probability distribution of the
complexities Z(s): fz(l) := Pr(Z =1).

In Oberste-Frielinghaus et al. (2025) and Torre
et al. (2016), we used the population histogram
Z(s) (on the recording time scale hg) and the
resulting complexity distribution fz to identify
artifacts. To do so we compared the complexity
distribution of surrogate data generated from the
original data, i.e., randomized versions of the origi-
nal data to make the spike trains independent (e.g.
the spike train shift method, (Stella et al. (2022)))
to the complexity distribution of the original data.
The complexity distribution of the surrogate data
lacked higher complexities which were observed in
the original data. Below in Section 3.1 we make
use of the complexity distribution obtained from
experimental data for the generation of simulated
spike trains containing artifacts (Figure 2d).

2.3.2 Compound Poisson Process

To generate parallel point processes that contain
correlations between the processes we make us of
the Compound Poisson Process (CPP) as intro-
duced by Staude et al. (2010). We will make

use of this type of process for simulating par-
allel spike trains that contain artifacts or neu-
ronal correlations, which will be explained in
detail below. The idea is the following: a hid-
den point process z(t), called carrier process, is
generated with a particular firing rate « in con-
tinuous time. In addition, we specify an amplitude
distribution fa(a) which defines a probability dis-
tribution from which integer-valued ’amplitudes’
a are drawn with their respective probabilities.
To construct the N parallel spike trains contain-
ing correlations, amplitudes a; are drawn from fa
for all events ¢; in the carrier process, resulting in
z(t) = >, 6(t—t;) a;. The individual “child” pro-
cesses xz;(t) (i = 1,2,...,N) are then constructed
by copying every event at t; of the carrier pro-
cess into a; randomly drawn child processes at the
same time as ¢;. Thus, the probability for ampli-
tude a = 1 defines the probability for complexity
¢ = 1, amplitude a = 2 for complexity £ = 2,
and so on. This way, correlations of order £ are
induced in the child processes whenever events in
the carrier process t; are copied into £ = a; child
processes. The firing rates of the child processes
are derived as the firing rate « of the carrier pro-
cess divided by the number of child processes. The
N child processes retain the same time resolu-
tion as the carrier process. In our context we then
discretize the resulting processes defined on con-
tinuous time to the time resolution of the sampling
rate, i.e., hp = 1/30 ms and binarize the content
to 0 and 1.

2.3.3 Independent parallel spike trains

As independent spike trains we generate N =
100 realizations of stationary, independent Pois-
son processes on continuous time of rate A\, =10
sp/s and of a duration of T = 100 ms and across
multiple trials. These data are then discretized to
the time resolution of hg = 1/30 ms and binarized
to 0-1 contents.

2.3.4 Parallel spike trains with
artifacts

To generate parallel spike trains that just contain
artifacts as identified by a complexity distribution
of experimental data measured at the sampling
resolution (1/30ms). Therefore we generate a CPP
and use the measured complexity distribution and
the amplitude distribution, however with an entry


https://doi.org/10.1101/2025.11.28.691090
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.28.691090; this version posted December 2, 2025. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

of 0 at £ = 0 and 1, since the independent
background activity is generated independently
(Section 2.3.3). We estimated from experimen-
tal data that the artifact spikes had a rate of
Aa = 0.5 sp/s such that the carrier rate resulted
ina=N-\A;, =50sp/s. Also here, the resulting
data are then discretized to the time resolution of
ho = 1/30 ms and binarized to 0-1 contents.
These resulting data are then merged (on hg)
with the independent data generated through the
independent Poisson processes (Section 2.3.3) as
uncorrelated background and the artifact data
generated here. The resulting data are shown in
the raster plot in Figure 2a, the artifact spikes are
shown in red. The resulting complexity distribu-
tion (on hg) Figure 2d includes the background
activities (black) and the artifacts with com-
plexities 2-7 (red) without mentioning that some
background spikes may also generate - with low
probability - by chance also pair entries.

2.3.5 Parallel spike trains that include
’neuronal’ correlations

Physiological spike correlations, i.e., correlations
that are assumed to originate from neuronal spike
correlations, are generated by another CPP. Here
we introduce just pairwise correlations, i.e., by use
of an amplitude distribution of fa(a) = 1fora = 2
and 0 otherwise, with a correlation rate A = 1sp/s
(as found in experimental data (Maldonado et al.
(2008))). Thus the carrier rate is & = 100 - .. For
each spike of the carrier process two neurons are
drawn randomly into which a spike is copied. Thus
each correlated spike of one neuron is correlated
with another neuron.

Since neuronal correlations are typically less
precise than 1/30 ms, but rather on a 1-5ms scale
(Riehle et al. (2000)), we jitter each carrier spike
before insertion into the child process by a ran-
dom amount d; , uniformly drawn from an interval
[-A Al]. As a result the spike coincidences are
synchronous up to a precision of £A ,thus 2 - A.
Then the processes are discretized and binarized
to hg = 1/30 ms.

Finally, the processes containing neuronal cor-
relations are merged with independent processes
that have a reduced rate for each neuron, Auncorr =
Ap — A¢, such that the firing rate of the spike
trains after introduction of the correlations equals
to A = 10sp/s.

2.3.6 Parallel spike trains that include
artifacts and ’neuronal’
correlations

For wvalidation of the correction method for
the errors caused by artifact removal in pres-
ence of neuronal correlation, we also generate
ground truth data sets that include artifact spikes
and correlated neuronal spikes. To do so we
first generate independent background spikes (see
Section 2.3.3), then spike trains that contain arti-
facts (see Section 2.3.4), and also spike trains
with neuronal correlations and merge the bina-
rized versions (on hg resolution) into one data
set.

3 Results

3.1 Removal of artifacts leads to
decreased surprise

Figure 2 illustrates the effect of artifact removal on
the UEyop analysis. The data shown in Figure 2a
are N = 100 parallel spike trains containing
artifacts, generated by a CPP (Section 2.3.4) at
the time resolution hg = 1/30 ms. The ampli-
tude distribution f4 was chosen as the complexity
distribution found in an experimental dataset,
which is known to contain synchronous artifacts
(Oberste-Frielinghaus et al. (2025)). The back-
ground firing rate of each the processes was chosen
as 10 sp/s (by Section 2.3.3). Thus the complexity
distribution in Figure 2d illustrates the combina-
tion of the background activity (black) and the
artifacts (red).

The spike data shown in Figure 2a were then
analyzed by UE,., performed at h; = 1 ms time
resolution in a sliding window manner (Ty =
100 ms). In Figure 2b we can observe the result-
ing empirical nPoP . (orange)) and the expected
number nfeP . (dark blue) of spike synchrony,
and below the resulting surprise. The fluctuations
of the empirical and expected numbers in time
result from stochastic fluctuations of the gener-
ated stationary processes. Over time the empirical
number is above the expected, with a slightly fluc-
tuating difference between the two, resulting in
a modulating surprise with values almost always
above 0 with a mean at around 2. Thus most of the
time the surprise shows excess synchrony (above
p-value = 0.05, i.e., a surprise of 1.67). However,
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Fig. 2 Effect of artifact removal. (a) Raster plot of parallel spike trains (N = 100) for one trial over 1s containing
background firing and artifacts, simulated using CPPs at a temporal resolution of hg = 1/30 ms. The background rate of
each spike train is 10 Hz (black dots). The amplitude distribution is set identical to the complexity distribution obtained
from an experimental dataset (d), which is known to contain synchronous artifacts (Oberste-Frielinghaus et al. (2025)). The
red dots indicate artifact coincident spikes on the 1/30 ms time scale, which are to be removed as artifacts. (b) Result of
the sliding window UEpop performed on the binned and clipped (at h1 = 1 ms resolution) data. The top panel shows the
time course of the expected and empirical number of spike coincidences (ng,?gyorg (dark blue) and ngsj%yorg (orange)). Below
is the time course of the surprise (black), with its marginal distribution to the right. The distribution of the surprise shows
a mean of about 2, indicating excess synchrony, almost throughout. (c) The same measurements (top: nixp rm (dark blue)
and n&mp rm(orange)) and the surprise below) of the same data after the artifact removal. Here the surprise distribution is
almost completely below 0, which reflects that the empirical number (orange) in the data after the removal is mostly below
the expected number (dark blue). (d) The complexity distribution of the spike coincidences at the hg time resolution (top)
and below on the same time scale after the artifact removal. In the top histogram the red entries mark complexity entries
> 1, which are removed as artifacts, corresponding to the red dots in panel a.

this excess synchrony is not due to neuronal cor-
relation but due to the artifacts contained in the

values almost always below a surprise of 0, with a
mean of about -1, thus negative correlations.

data.

In Figure 2c we see the result of the UE,,
after removal of the artifacts, i.e., the removal of
all coincident spikes at the time resolution of hg =
1/30 ms, as indicated in Figure 2d by the com-
plexity distribution after artifact removal (bot-
tom). Now the relation of the empirical (nBob ..,
orange)and the expected number(nbeP ., dark
blue) are nearly reversed: the expected number of
coincidences is almost always above the empirical
number of coincidences, which leads to surprise

This results show us two things: 1) artifacts
can lead to artificial excess correlation in uncor-
related, independent neuronal data and 2) the
approach to remove the artifacts based on the
removal of all synchronous events at the record-
ing time resolution hg overcompensates. If data
were independent and not correlated, the surprise
should not be overall negative, but should fluctu-
ate around 0. The conclusion is that we removed
too much synchronous spikes, likely chance coinci-
dences on the hg time scale. This is further studied
in the following.
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3.2 Removal of highly synchronous
spikes leads to decreased
surprise in independent data

To observe the effect of the artifact removal more
clearly, we now deal with data that contain no
artifacts (i.e., independent spike trains), and again
apply the preprocessing step of removing all coin-
cident spikes on the level of the sampling rate
resolution hg as before. Since this only concerns
the spike timing at a very high resolution, i.e.,
1/301ms, only a very small amount of synchronous
spikes is removed. In our simulated data, we have
20 trials of 1 s duration in which 100 neurons
are generated, each neuron simulated as a Poisson
process of a rate of 10 sp/s. In Figure 3a, we see
the resulting spike times as a raster plot for one
example trial under these conditions. If we now
apply the suggested preprocessing, we remove all
(synchronous) spikes marked in red. In terms of
the complexity distribution, this refers to all spikes
with a complexity equal to or larger than two (red
bars in Figure 3b). Since these are all chance syn-
chronous spike events at this high time resolution,
those are rare.

Applying the sliding window UEp., to this

dataset without preprocessing, nfoP . and
NEC org TOUghly match each other and the result-

ing surprise fluctuates around zero (Figure 3c),
which is expected from independent spike trains.
In comparison, after the preprocessing, the sur-
prise is shifted to negative values (Figure 3d),
i.e., we find slightly less coincidences as we expect
from independent data. Thus, the removal of the
synchronous events as suggested as a preprocess-
ing step, however, has here a notable impact on
the analysis result. Figure 3e shows the proba-
bility density function (PDF) of the surprise per
time window before (black) and after (gray) the
preprocessing, estimated from 1000 simulations
of independent spike train datasets. The prepro-
cessing shifts the obtained surprise to negative
values (gray) as compared to the results with-
out preprocessing (black), which is also visible
in the cumulative distributions of the two PDFs
(Figure 3f). For the independent data, the propor-
tion of time windows below a given surprise should
match the underlying null-hypothesis, in concrete,
95% of the analysis windows lie below the sig-
nificance threshold of 5% and mutatis mutandis
for a significance threshold of 1%. As we see in

Figure 3f, this is the case for the data before pre-
processing (black), whereas in the preprocessed
data a substantially fewer number of the analysis
windows are detected as significant (gray).

We conclude from this analysis that the
preprocessing step of artifact removal, i.e., the
removal of all coincident spike events at the high
time resolution hg, also removes chance coinci-
dences. This could lead, in the analysis of cor-
related spike trains, to a potential underestima-
tion of existing neuronal synchrony which will be
explored in the following. '

3.3 Preprocessing removes more
coincidences than expected by
chance

As shown in the previous section, the preprocess-
ing step intended to mitigate a problem leads to a
large change in the result we get from the UEyp.
Surprisingly, a small change of the data on the
sampling resolution, here the removal of chance
coincidences only, impacts the result of the UE,p
that operates on a coarser time scale. Through the
preprocessing on the hg time scale, roughly 50-100
spikes are removed within one analysis window per
dataset (duration: 100 ms, 20 trials) (Figure 4a).
This corresponds to 5% or less of the spikes, which
leads to a reduction of the expected coincidence
count by ~ 10% or 100 coincidences (Figure 4b).
At the same time, the empirical coincidence count
is reduced slightly more (approx. 150 coinci-
dences) (Figure 4c), which leads to the impactful
result that the resulting surprise is below zero
(as seen in Figure 3) and thus indicates nega-
tive or lacking correlations. We conclude that the
expected coincidence counts are less reduced by
the removal of coincidences at hg than the empiri-
cal counts. As a consequence, the reduction of the
expected coincidence counts after the preprocess-
ing is not sufficient to account for the reduction
of the empirical coincidence counts caused by the
preprocessing. This led us to a correction method
introduced in the following.

LCoincidentally this demonstrates that the UEpopis cali-
brated correctly: if the parallel spike trains follow a indepen-
dent Poisson process the resulting coincidence statistic exactly
matches what is statistically expected.
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Fig. 3 Effect of removal of precise coincidences on the UEpop. (a) Example raster plot for one trial over 1s of 100 neurons
in parallel with each originating from a CPP that generates independent Poisson processes of 10 sp/s (Section 2.3.3). The
dots correspond to the spike times of the neurons. Red dots mark spikes with a complexity of 2 or larger, black dots mark
spikes with complexity 1. (b) Complexity distribution of all spikes over 20 trials, analogous to Figure 2d. (¢) Top row,
result for ngr%% org and ng}?g, org calculated by a sliding analysis with a window of 100 ms and 20 trials of the same setup
as described in a). Bottom row, the resulting surprise from these values with the marginal distribution of the surprises on
the right. (d) Same as c¢) but applied to the data after removing all spikes with a complexity of 2 or larger - as if there
were artifacts in the data. Here the surprise is reduced to a mean below 0. (e) Distribution of the surprise values 1000
data sets, each consisting of 100 neurons with each a rate of 10 sp/s, recorded over 100 ms for 20 trials (without removed
spike coincidences, black) and d) (with removed coincidences, gray). The vertical lines indicate 50%, the 5% and the 1%
significance thresholds for the surprise (left to right). (f) Cumulatives of the distributions shown in e). The horizontal lines
mark the proportion of 50%, 95% and 99% of the data sets (bottom to top).

3.4 Correction method for the many chance coincidences on hgwe lose due to the
overcompensation by the artifact removal.
artifact removal We consider independent spike trains of dura-
tion T', with My bins at hg (e.g. 1/30 ms), leading
The results obtained so far lead to the conclusion to My = T/hg bins. As a first step, we aim to
that the artifact removal by mistake also removes derive, based only on the spike counts on hg after
chance coincidences of independent spikes occur- artifact removal, ¢ | and ¢, of neuron 1 and
ring on the hg time scale (i.e., data sampling time 9, respectively. Their respective firing probabili-
scale), which should have been kept in the empir- ties pilo and p;o (on hg) before artifact removal
ical coincidence counts. This removal of chance are, according to the setup above,
coincidences causes the empirical count to sys-
tematically fall behind the expected coincidence pilo - 0’110 /M, (1)
count on the h; time scale. The latter also include
the expected chance coincidences on hg. Based and
on this insight, we next derive a correction of pIon - cga /Mo, (2)

the expected coincidence count by estimating how
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Fig. 4 Impact of removal of synchronous spike events on hg on the observed parameters on hj.

emp, org

(a) Spike count of all

neurons (N = 100) in an analysis window of 100 ms duration over 20 trials, before (corg) and after (crm) artifact removal.
Each point corresponds to one data set, i.e., one simulation with the same parameters. (b) Expected coincidence counts for
the same data sets before (nfych org) and after removal (nfgp m). (¢) Empirical coincidence counts for the same data sets
before (ng%%’org) and after removal (ng&%,rm). All counts are derived at a time resolution of hy.

where c’fo and 01210 are the (unknown) spike counts

of neuron 1 and 2, respectively, before artifact
removal. Given these probabilities, the expected
number nexp of chance spike coincidences on hg
within the analysis window 7T is obtained as

h
Nexp = p1 p2 *My . (3)
Since the spikes constituting these coincidences
are the ones removed by the artifact removal, the
following relations between the spike counts before

and after the artifact removal hold:

ho ho ho
Crm 1 =6 — nexp
ho ho ho

crm 2 =Cy" — nexp'

Dividing both sides of these equations by My and
applying the relations (Equation 1), (Equation 2)
and (Equation 3), we get:

ho _ »ho ho . ho
Crm,l/MO =Dy — D1 Py

ho _ ho ho  ho
Crm,Q/MO =Py —P1 P2
We can solve these equations for p}f“ and p;“’

obtain these probabilities expressed in terms of
co o and M, as follows?:

rm,1’ “rm,2

2The given equations have another set of solutions, which
have a positive sign for the square root term, but they repre-
sent unrealistically high firing probabilities and hence can be
obviously rejected.

1
h h h
Py’ :mMO + 1~ Compg — @ (4)
1
h
Py’ ZMMO — m,1 1 Crrn 2 T (5)
with o = \/(MO 0?1?1 1 C?I(‘;l,2) 4Crm lcrm 2

Thus, (estimates of) the firing probabilities
before the artifact removal can be derived from
the spike counts after the artifact removal.

Recapitulating the UE,,, analysis, excess
spike synchrony between a pair of neurons is
detected based on a comparison between empirical
and expected number (nt  and nli . respec-
tively) of spike coincidences on the time scale hy
within an analysis time window 7', with M;
T/hy bins of width hy. The expected number is
estimated based on the spike counts of the respec-
tive neurons within the analysis window, counted
on hy with clipping. With these spike counts ch

rml

and cer for neuron 1 and 2, respectively, the
expected coincidence count nexp is obtained as
hi _— M

neip Crm, 1Crm 2/M1

As shown in Figure 4, after the artifact

removal, the expected number né‘;p m of spike

coincidences is consistently higher than the empir-

h . .
ical coincidence count ng, ... This is because

can only represent the expected coin-

ho
exp

h1
Nexp,rm

cidence count for the case where n, spikes
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Fig. 5 Correction of reduced correlations by artifacts
removal. The graphs in this figure show the cumula-
tive probability distributions of the surprises from the
UEpop for 1000 generated data sets as independent pro-
cesses (see Section 2.3.3). The parameters are the same as
used in Figure 3 (N=100, rate=10sp/s, trials=20, dura-
tion=100ms). Black: Original data without any removal
of chance synchrony on the 1/30 ms resolution; red: after
removal of chance coincidences; green: after correction.

are independently removed from each of the two
spike trains, while the artifact removal selec-
tively removes n,’;,gp coincidences from both spike

3 hl
trains, and hence reduces ngp,, .y, more than by

h . . .
exp Spikes. Given this

consideration, we correct ngﬁp’rm for this excess
removal of coincidences by subtracting the num-
ber of excessively removed coincidences. Thus we

reach the following correction of nfj;p rm”

an independent removal of n

hix
exp

h1
exp,rm

hy

h ho, h
¢ _nexp7rm_p10p20M07 (6)

n exp ~

=n -,
where the relation (Equation 3) is used between
the middle and the right-hand side of the equation,

and p' and ph° should be derived from Cﬁ%; and
"o as described above (Equation 5). Note that

Tm,2

for the corrected expected, corrected count ngg
we implicitly assumed that there are no multiple
coincidences on hg within an h; bin, and that all
the n’ggp coincidences on hg do not coincide with
coincidences on hq, or in other words there is no
clipping of artifacts.

We test the performance of this correction
method first on independent spike train data. The
black and gray curves in Figure 5 are the same
as those in Figure 3, i.e.; the cumulative distribu-
tions of the surprise values from UE;,, analysis
applied to the original independent data (black)

and after artifact removal (gray). The shift of the

C

10

gray curve to the left reflects the overestimation of
chance coincidences by the uncorrected expected
coincidence count ng)}p as explained above. The
dashed green curve in Figure 5 represents the
cumulative surprise distribution from the UE,q,
analysis applied again to the data after artifact
removal, but using the corrected expected coinci-
dence count nf;}; (see Equation 6). The correction
works as expected: the cumulative distribution
curve (dashed green) matches the curve for the
original independent data (black) almost perfectly.
Thus, the proposed method properly corrects the
expected coincidence count in the case of the
artifact removal on independent spike train data,
restoring the correct analysis results expected

from independent data.

3.5 Impact of the removal on
correlated data

Until now, we have only investigated the removal
of artifacts in the case where the underlying
processes were independent. Here we apply the
correction to data containing different types of
spike correlations: neuronal correlations of differ-
ent temporal jitters, and then also with artifacts.
This allows us to validate our analytical deriva-
tions also for cases in which the data are actually
correlated or contain artifacts. Correlated spikes
are also generated by a CPP (see Section 2.3.5)
with a temporal jitter §; (—A < §; < A) that
mimics what we typically find in experimental,
neuronal spike trains (£1-5 ms). The correlated
spikes generated in such manners are then injected
into background activity, i.e., independent spike
trains (see Section 2.3.3). Our particular interest
here is to study the effect of the proposed cor-
rection method on the performance of UEy, in
detecting coincidences of correlated spikes, and
how these depend on the width A of the temporal
jitter.

To this end, we first examine the effect of
the correction on data containing only physiolog-
ically plausible spike correlations, without arti-
facts. Figure 6a left shows the results of the UEyp,
on correlated data with a jitter width of A = +1
ms. The cumulative distributions of the surprise
are obtained with the uncorrected expected coin-
cidence count nftt from the original (black) and
the artifact removal preprocessing step (although
there are none) (gray) data, and from data where
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Fig. 6 Detectability of neuronal correlations after removal of artifacts. (a) Cumulative probability distributions of the
surprises from the UEpop (on A1 = 1ms) for 1000 generated data sets generated as correlated processes without artifacts
(see Section 2.3.6, N=100, rate=10sp/s, trials=20, duration=100ms, r. = 1sp/s into one neuron pair) with jitter A = 1 ms
(left) and A = 0.25 ms (right) for the original data (black), the data after artifact removal (grey) and the corrected result
(green). (b) Same as in a, but in each of the data sets also artifacts were inserted. (c¢) Box plots for the surprise distributions
for different jitters from A = oo to 0.05 ms (A = oo refers to uncorrelated processes). The white line marks the median,
the box spans the range between the first (25%) and the third quantile (75%) , the whiskers range from the box to the 5th
percentile and 95th percentile. The dashed lines indicate a surprise of 0, at the 5% level, and the 1% level. (d) Same as c,

but for data that included artifacts.

artifacts were removed and afterwards the cor-
rection was applied, i.e., the corrected expected
coincidence count n/t* (dashed green). The dif-
ference here from the case composed of mere
independent data (Figure 5) is that all three
curves are shifted to the right, reflecting the spike
correlation introduced into the data. Despite this
shift, the corrected surprise distribution (dashed
green) is relative close to the original distribution
(black). In sum, these results demonstrate that the
coincidence detection power of the UE,q,, which is
degraded by the artifact removal, is fully restored
by using the correction of the expected coincidence
count.

Next, we examine whether the correction
works equally well on data containing correlation
with a narrower or wider jitter width than 1 ms.
Figure 6a, right shows the same graphs as shown
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left, but obtained from the correlated data with a
jitter width of 0.5 ms, i.e., the spike coincidences
are temporally partly more precise than in the
previous case. Due to this enhanced coincidence
precision, the cumulative distribution curves shift
further to the right, since more coincidences are
captured within the 1 ms analysis bin (used here)
as they become more precise. A rough approxima-
tion of the amount of jittered coincidences within
the bin of h; 1 ms to estimate, how many
bins of hg = 1/30 ms of the total jitter (2 - A)
fall into the 30 - 1/30 ms bins within h; = 1
ms, thereby neglecting the cutting of coincidences
across multiple bins of 1ms. Thus a jitter width
of 0.5ms covers in total 1ms, such that almost all
coincidences should be in h; = 1 ms (neglecting
the fission of coincidences by disjunct binning).
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Thus in the case of a jitter of 1ms less coinci-
dences fall into a bin A1, which explains the shift
of the surprise curves to the right for a jitter
of 0.5ms. Regarding the effect of the correction,
the corrected surprise distribution (dashed green)
resembles the original distribution (black) again,
but in this case a noticeable gap can be seen
between the two. Thus, the effect of the correction
appears to depend on the size of the jitter of the
correlated spikes or, in other words, the precision
of spike coincidences of physiologically plausible
spike time correlation.

This leads us to systematically scan a range
of jitter widths to compute the respective surprise
distributions, and examine how their relative posi-
tions along the surprise axis change. Figure 6c¢
shows box-and-whisker plots of the surprise dis-
tributions obtained from correlated data with
different jitter widths A (x-axis), ranging from
o0, 2 to 0.05 ms, sampled approximately loga-
rithmically. The surprise distributions generally
shift towards larger surprise values as the jitter
width decreases, because by decreasing the jitter,
more and more correlated spikes fall into the h
bin. This is the case for the surprise distribution
from the original correlated data before artifact
removal (black) over the entire range of the jitter
widths examined here. In comparison, the distri-
butions of the data after artifact removal (gray)
and corrected (dashed green) show an increasing
drop in surprise with decreasing jitter widths. This
happens because the likelihood of an exact coin-
cidence between correlated spikes increases as the
jitter width decreases, resulting in more coinci-
dent spikes on hy being removed by the artifact
removal, despite these spikes reflecting physio-
logical spike correlation. This excess removal of
spike coincidences at hg influences the effect of
the correction: while the corrected surprise distri-
bution (green) closely matches the original distri-
bution (black) for large jitter widths (say, those
larger than 1 ms), it diverges progressively from
the original distribution for smaller jitter widths.
Thus, this analysis reveals a limitation of our cor-
rection approach. It cannot compensate for the
excess removal of extremely precise coincidences
of correlated spikes. However, the correction works
reasonably well for a wide range of coincidence
precision, up to coincidences within ~ 2 ms,
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which seems physiologically plausible. Smaller jit-
ter widths (< 1ms) were studied to make the effect
of wrongly removing precise coincidences on hg
more obvious.

Finally, we confirm if the correction works
in the case where the correlated data also con-
tain artifacts. Figure 6b shows the same graphs
as in a, but obtained from correlated data also
containing artifacts. Whereas the surprise dis-
tributions before artifact removal (black) largely
shift towards right due to the coincidences that
originate from the artifacts, the distribution after
artifact removal (gray) closely matches between
the data with and without artifacts, so is also the
case for the surprise distribution after the correc-
tion (dashed green), for both wider (1 ms, left
in each panel) and shorter (0.25 ms, right) jitter
widths. The same observation holds for other jit-
ter widths, as shown in Figure 6d. Despite the
extremely large surprises in the data before arti-
fact removal (black), the surprise distributions
after artifact removal (gray) and further correc-
tion (green) are almost identical to those obtained
from the data without artifacts (see Figure 6a,c).
All these results confirm that the correction indeed
works in the case of the UE,,, on the data con-
taining artifacts, retaining as good performance as
on the data without artifacts.

4 Discussion

In this study we reported that the removal of
artifacts, identified in massively parallel spike
trains as spike coincidences at the data sampling
rate precision, has an impact on spike correlation
analysis performed at a much lower time resolu-
tion. We focused here on the simplest and the
most straightforward way of artifact removal, i.e.,
removal of all coincident spikes on the data sam-
pling rate time scale (1/30 ms in popular setups).
We demonstrated by use of simulated data and
application of the UE,., analysis that the arti-
fact removal leads to an underestimation of the
significance of the amount of spike coincidences in
independent spike trains. We revealed that this is
caused by an overestimation of the expected num-
ber of coincidences that is part of the UE,,, anal-
ysis, which needs to take into account the amount
of the chance spike coincidences that occur on the
data sampling time scale and are removed by the
artifact removal. We here proposed a correction


https://doi.org/10.1101/2025.11.28.691090
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.28.691090; this version posted December 2, 2025. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

of the expected coincidence count for this effect,
and demonstrated that this correction works for
independent spike trains almost perfectly, and for
correlated spike trains with certain limitations, no
matter whether the data contain artifacts or not.

We found that the performance of the UEy,p,
in detecting excess spike synchrony in correlated
spike trains, is degraded by the artifact removal
even after the proposed correction, when the
temporal precision of the coincidences of corre-
lated spikes is set to be very high, e.g. more
precise than +1 ms (Figure 6¢). This happens
because the artifact removal does not discriminate
between artifactual and physiological coincidences
but blindly removes all exact coincidences on the
data sampling time resolution, and hence the
removed coincidences contain more physiological
coincidences as their precision becomes higher.
The proposed correction cannot compensate for
this excess removal of physiological coincidences,
because it is based solely on the estimate of chance
coincidences (on the sampling rate time scale),
assuming no physiological correlations. In prac-
tice, however, this limitation would not cause
serious problems when the UE,, is applied to
experimental spike recordings, because the bio-
physical constraints on the temporal precision of
spiking activity of in vivo neurons is on the order
of 1 or more ms (Riehle et al. (2000); Zandvakili
and Kohn (2015)). Our analysis results indicate
that, on this physiological temporal scale of coinci-
dence precision, the performance of the UE,;, on
data after artifact removal does provide a reason-
able correction. The fact that the correlation for
jitter widths smaller than 0.5ms further increases
has another reason. UEy, relies on binned and
clipped (0-1) data. We apply disjunct binning, i.e.,
we do not have overlapping bins. This in turn may
lead to a fission of synchronous events, e.g., for the
case of a jitter of A = £1 ms and lms binning,
there is a high chance that coincidences are dis-
tributed into 2 bins and thus not detected (Griin
et al. (1999)). The smaller the jitter, the larger
the probability that part of those coincidences fall
into the 1ms bin and thus more are detected. This
leads to a higher surprise. Thus, the results shown
in Figure 6 contain a mix of effects: the smaller
the jitter, the larger the amount of coincidences
are detected, and on the other hand the more coin-
cidences on the sampling rate time scale do exist
and are removed as artifacts. This results with
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increasing jitter first in an increase of the corrected
surprise and then to a decrease.

In Oberste-Frielinghaus et al. (2025), we
reported that data sets of different labs and dif-
ferent recording techniques contain synchronous
artifacts ranging across channels in the high-pass
filtered raw recordings at the data sampling rate
resolution, and we proposed a whitening tech-
nique to remove these artifacts based on the raw
unfiltered recordings. However, often raw data are
not available with publicly available spike data,
which obviously have experienced preprocessing
steps already, at least filtering and spike sorting.
Then one would rather tend to remove the syn-
chronous artifact events as we did in this study, in
order to make sure that they are cleanly removed.
We showed here that this may severely impact the
subsequent analyses, in particular if fine tempo-
ral correlations in spike times are of interest. The
removal of the artifacts and — by mistake, since
they cannot be distinguished — chance events at
the sampling resolution in turn reduces the sig-
nificance of spike synchrony at a coarser time
resolution and may lead to undetected excess spike
synchrony, since the significance can be massively
reduced. For the particular removal of the artifacts
discussed here, we presented a correction that can
be applied to mitigate this negative effect.

In Oberste-Frielinghaus et al. (2025), we also
suggested to check if artifacts are in the data
by computing the complexity distribution, based
on the population time histogram of all spike
trains at the sampling rate resolution, which illus-
trates how many synchronous events exist across
the population. The complexity distribution, can
be compared to that of an independent version
of the data obtained by a surrogate generation
method, e.g. by shifting the spike trains in time
against each other up to a certain amount ran-
domly (shift-dithering, see Stella et al. (2022)).
This comparison is helpful to observe how many
synchronous artifact events are in the data (see
Oberste-Frielinghaus et al. (2025), Fig 1d). Unfor-
tunately, the artifacts are not only above a certain
complexity level, but are also mixed with uncor-
related chance synchronous events at lower com-
plexities. Therefore, it is difficult to remove only
the artifact events based solely on the complexity,
though the complexity distribution is still a con-
venient tool to judge if a dataset is contaminated
by synchronous artifacts or not.
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One procedure to remove the artifacts in the
raw data at a high time resolution is by whitening
the data by using the zero-phase component anal-
ysis (ZCA) method by Bell and Sejnowski (1997).
This approach assumes that the cross-talk across
the recording channels is linear. In such a case
this method removes only the artifacts, keeping
the chance coincidences at the sampling rate time
resolution intact, such that it should not affect
the following spike correlation analysis on a longer
time scale. The whitening step is often already an
integrated part of the spike sorting method (e.g.
in Kilosort (Pachitariu et al. (2024)) or Moun-
tainsort (Chung et al. (2017))). Often there is a
default setting in the sorting methods for how
many of the recorded channels are included in one
whitening step, typically smaller than the total
number of parallel channels for reducing memory
demand. How many channels are included in the
whitening analysis is typically not obvious or men-
tioned in the metadata associated with publicly
available datasets. However, this is an important
piece of information, since we observed that, if
the whitening does not include all channels but
subsets of them, another artifact may be induced,
e.g. electrode distance dependent artificial correla-
tions. To be on the safe side, one should apply the
whitening always to all channels simultaneously
(Oberste-Frielinghaus et al. (2025)).

It turned out in this study that the UEy is
a very sensitive detector for removed chance coin-
cidence events on the recording time resolution.
If the surprise values resulting from the UE,,
analysis are not distributed around 0, or above
in case of the existence of excess spike synchrony,
but rather below, one should be careful about
potential impact of preprocessing. We assume that
this effect is noticeable in any spike correlation
method that compares to what is expected based
on the firing rates, e.g. correlation coefficient etc.
Likely the problem may not be noticed at all if the
analysis is only based on firing rates.
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