
Inverse Problems
     

PAPER • OPEN ACCESS

Existence of transmission eigenvalues for
biharmonic scattering by a clamped planar region
To cite this article: Isaac Harris et al 2025 Inverse Problems 41 125002

 

View the article online for updates and enhancements.

You may also like
The interior transmission problem for
regions on a conducting surface
Fan Yang and Peter Monk

-

Transmission eigenvalues for the self-
adjoint Schrödinger operator on the half
line
Tuncay Aktosun and Vassilis G
Papanicolaou

-

A computational method for the inverse
transmission eigenvalue problem
Drossos Gintides and Nikolaos Pallikarakis

-

This content was downloaded from IP address 134.94.123.71 on 19/12/2025 at 14:34

https://doi.org/10.1088/1361-6420/ae259b
https://iopscience.iop.org/article/10.1088/0266-5611/30/1/015007
https://iopscience.iop.org/article/10.1088/0266-5611/30/1/015007
https://iopscience.iop.org/article/10.1088/0266-5611/30/7/075001
https://iopscience.iop.org/article/10.1088/0266-5611/30/7/075001
https://iopscience.iop.org/article/10.1088/0266-5611/30/7/075001
https://iopscience.iop.org/article/10.1088/0266-5611/29/10/104010
https://iopscience.iop.org/article/10.1088/0266-5611/29/10/104010


Inverse Problems

Inverse Problems 41 (2025) 125002 (18pp) https://doi.org/10.1088/1361-6420/ae259b

Existence of transmission eigenvalues for
biharmonic scattering by a clamped planar
region

Isaac Harris1,∗, Andreas Kleefeld2,3 and Heejin Lee4

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907, United
States of America
2 Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre,
Wilhelm-Johnen-Straße, 52425 Jülich, Germany
3 Faculty of Medical Engineering and Technomathematics, University of Applied
Sciences Aachen, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany
4 Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan
University, Kunshan 215316, Jiangsu Province, People’s Republic of China

E-mail: harri814@purdue.edu, a.kleefeld@fz-juelich.de
and heejin.lee@dukekunshan.edu.cn

Received 28 August 2025; revised 19 November 2025
Accepted for publication 28 November 2025
Published 9 December 2025

Abstract
In this paper, we study the so-called clamped transmission eigenvalue problem.
This is a new transmission eigenvalue problem that is derived from the scatter-
ing of an impenetrable clamped obstacle in a thin elastic plate. The scattering
problem is modeled by a biharmonic wave operator given by the Kirchhoff–
Love infinite plate problem in the frequency domain. These scattering problems
have not been studied to the extent of other models. Unlike other transmission
eigenvalue problems, the problem studied here is a system of homogeneous
PDEs defined in all of R2. This provides unique analytical and computational
difficulties when studying the clamped transmission eigenvalue problem. We
are able to prove that there exist infinitely many real clamped transmission
eigenvalues. This is done by studying the equivalent variational formulation.
We also investigate the relationship of the clamped transmission eigenvalues
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to the Dirichlet and Neumann eigenvalues of the negative Laplacian for the
bounded scattering obstacle.

Keywords: transmission eigenvalues, biharmonic scattering,
clamped boundary conditions

1. Introduction

In this paper, we provide an analytical and numerical study of the transmission eigenvalues
associated with the scattering of an impenetrable clamped obstacle in a thin elastic plate. The
scattering problem is modeled by the Kirchhoff–Love infinite plate equation, which leads to
a biharmonic scattering problem. Recently, in [6, 20] the authors studied the well–posedness
for the direct scattering in a thin elastic plate for a clamped obstacle. Here, we study a new
transmission eigenvalue problem associated with the aforementioned scattering problem that
is different than previously studied problems [4, 9, 10, 27]. This is due to the fact that, this
eigenvalue problem is posed on all of R2 despite the scatterer being a bounded domain. This
makes the study of these eigenvalues challenging. For instance, since the problem is posed in an
unbounded domain we no longer have the compact embedding of the standard Sobolev spaces.
Transmission eigenvalue problems are often non-self-adjoint and nonlinear, which adds to the
difficulty in studying them analytically and numerically. The main contribution of this work is
proving the existence of the so–called clamped transmission eigenvalues as well as developing
new theoretical techniques that can be used for exterior transmission eigenvalue problems
[9, 16, 31].

As in previous works [4, 9, 10, 27], we see that this eigenvalue problem is derived from
studying the associated inverse scattering problem. While inverse scattering problems have
been extensively studied in acoustic and electromagnetic scattering theory, the corresponding
problems for biharmonic scattering has only recently begun to attract attention [7, 13, 21, 23,
25, 32, 34]. The aforementioned manuscripts have studied the inverse shape problem given
either near or far field data for a few kinds of scatterers. In the case of using far field data,
it has been shown that the far field operator associated with a clamped obstacle fails to be
injectivewith a dense range at a transmission eigenvalues; see, e.g. [24]. Although these inverse
problems are relevant in various applications, including non-destructive testing and medical
imaging [17, 18], both theoretical and numerical investigations remain relatively limited.

Transmission eigenvalue problems have played an important role in inverse scattering the-
ory. The existence of interior transmission eigenvalues for an isotropic acoustic scatterer has
been studied in [4, 10, 11], and the exterior transmission eigenvalues for an isotropic acoustic
scatterer has been investigated in [16] for a spherically stratified media in three dimensions.
Throughout the years, the associated inverse spectral problem has been of interest. This is
due to the fact that these eigenvalues can be shown to depend (often monotonically) on the
material properties of the scatterer. This has given rise to studying the inverse spectral prob-
lem to recover information about the scatterer from the transmission eigenvalues. In general, it
has been shown that for acoustic and electromagnetic scatterers that these eigenvalues depend
monotonically on the material parameters and geometric properties of the scatterer; see, e.g.
[4, 12, 27].

Here, we consider a transmission eigenvalue problem defined through an interior–exterior
formulation, where different governing equations hold inside the scatterer and in the unboun-
ded exterior domain, respectively. These two regions are coupled through transmission condi-
tions on the boundary of the scatterer. We study the existence of the real clamped transmission
eigenvalues and investigate the relationship between the first clamped transmission eigenvalue
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and the first Dirichlet eigenvalue of the negative Laplacian for the scattering obstacle. The
same transmission eigenvalue problem was also considered in [24], where it was shown that
the transmission eigenvalues can be recovered from biharmonic far field data and that the set
of transmission eigenvalues is discrete with some assumption on the wave number.

This paper is organized as follows. In section 2, we formulate the direct scattering problem
and associated clamped transmission eigenvalue problem. These eigenvalues can be seen as
the frequencies where there is an incident wave that produces trivial far field data. In section 3,
we prove the existence of real transmission eigenvalues using the techniques introduced in
[11]. Additionally, we study the relationship between the first transmission eigenvalue and the
first Dirichlet eigenvalue of the negative Laplacian. We then numerically investigate the inter-
lacing between the clamped transmission eigenvalues along with the Dirichlet and Neumann
eigenvalues for the obstacle in section 4. Lastly, section 5 provides a summary of our work
along with outlooks to other interesting problems in this direction.

2. Formulation of transmission eigenvalue problem

In this section, we introduce the biharmonic scattering problem associated with the clamped
transmission eigenvalues. Here, we assume that the clamped obstacle is modeled by a bounded
region D⊂ R2 with a Lipschitz boundary ∂D. To illuminate the obstacle, one uses a time–
harmonic incident plane wave, which we denote as uinc(x) = eikx·d, where d is the correspond-
ing incident direction such that d ∈ S1 = {x ∈ R2 : |x|= 1}. For our model, the corresponding
scattered field uscat satisfies the biharmonic scattering problem for a fixed wave number k> 0,
given by

∆2uscat − k4uscat = 0 in R2 \D, (1)

uscat
∣∣
∂D

=−uinc and ∂νu
scat

∣∣
∂D

=−∂νuinc. (2)

In equation (2), we let ν denote the outward unit normal vector on the boundary ∂D. It is
known that the scattered field uscat satisfies the radiation conditions [29]

lim
r→∞

√
r
(
∂ru

scat − ikuscat
)
= 0 and lim

r→∞

√
r
(
∂r∆u

scat − ik∆uscat
)
= 0 r= |x|, (3)

which holds uniformly in x̂= x/|x|.
As in [20], we consider two auxiliary functions uH and uM such that

uH =− 1
2k2

(
∆uscat − k2uscat

)
and uM =

1
2k2

(
∆uscat + k2uscat

)
,

which implies that uscat = uH + uM. Then, we see that uH satisfies the Helmholtz equation and
uM satisfies the modified Helmholtz equation (i.e. with wave number = ik). This is a direct
consequence of the fact that the differential operator∆2 − k4 = (∆+ k2)(∆− k2). Therefore,
the biharmonic wave scattering problem (1)–(3) is equivalent to the following problem:

∆uH + k2uH = 0 in R2 \D and ∆uM − k2uM = 0 in R2 \D (4)

uH + uM =−uinc and ∂ν (uH + uM) =−∂νuinc on ∂D. (5)

where uH and uM satisfies the Sommerfeld radiation condition

lim
r→∞

√
r(∂ruH − ikuH) = 0 and lim

r→∞

√
r(∂ruM − ikuM) = 0 (6)
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uniformly in x̂= x/|x|. Since the scattered field is assumed to be radiating, it is known that it
has the asymptotic behavior

uscat (x,d) =
eiπ/4√
8π k

· e
ik|x|√
|x|
u∞ (x̂,d)+O

(
1

|x|3/2

)
, as |x| →∞,

where u∞(x̂,d) is the far field pattern of uscat. Note that, for k> 0 we assume that both uM and
∂ruM decay exponentially as r→∞, see for e.g. [20]. This implies that the far field pattern for
the solution to (1)–(3) is given by u∞ = u∞H , where u∞H is the far field pattern of uH.

We can now define the so–called far field operator

F : L2
(
S1
)
→ L2

(
S1
)

given by (Fg)(x) =
ˆ
S1

u∞ (x̂,d)g(d) ds(d) .

The far field operator is often used to derive qualitative reconstruction methods like the linear
sampling and factorization methods, see manuscripts [8, 28]. These methods can recover the
obstacle D with little a prior information. As discussed in [24], if we have that the far field
operatorF is not injective then there is a generic incident field v (i.e. that satisfies the Helmholtz
equation in R2) that produces a trivial far field pattern for (1)–(3) or equivalently (4)–(6) with
uinc = v. From Rellich’s lemma (theorem 3.5 in [8]) we have that the corresponding uH = 0 in
R2 \D. Therefore, we have that the pair w= uM in R2 \D and v= uinc in D satisfy

∆v+ k2v= 0 in D and ∆w− k2w= 0 in R2 \D, (7)

v+w= 0 and ∂ν (v+w) = 0 on ∂D. (8)

It is known that for k> 0, that both w and ∂rw decay exponentially fast as r→∞. Therefore,
we define the clamped transmission eigenvalues to be the wave numbers k> 0 such that there
is a non-trivial solution (v,w) ∈ H1(D)×H1(R2 \D) to the boundary value problem (7) and
(8).

3. Existence of the transmission eigenvalues

In this section, we will show the existence of real eigenvalues corresponding to the clamped
transmission eigenvalue problem (7) and (8) by appealing to theorem 2.3 in [11]. This method
has been used to prove the existence of other transmission eigenvalues in previous works [4,
10]. It has been shown in [24] that the set of transmission eigenvalues is discrete provided
that Re(k)> 0 and Re(k2)> 0. It is also shown in [24] that any transmission eigenvalue such
that Re(k)> 0 must be real–valued. Therefore, we will show the existence of infinitely many
positive clamped transmission eigenvalues.

In order to use the results in [11] to prove the existence of the clamped transmission eigen-
values, it is advantageous to consider (7) and (8) in a truncated domain. With this in mind, we
now let BR ⊂ R2 denote the ball of radius R> 0 centered at the origin such that D⊂ BR where
dist(D,∂BR)> 0. With this, we can consider the eigenvalue problem

∆v+ k2v= 0 in D and ∆w− k2w= 0 in BR \D, (9)

v+w= 0, ∂ν (v+w) = 0 on ∂D and Tikw= ∂νw on ∂BR, (10)

where Tik denotes the exterior Dirichlet–to–Neumann (DtN) for the modified Helmholtz
equation in R2 \BR. The aforementioned DtN mapping Tik : H1/2(∂BR)→ H−1/2(∂BR) is
defined by
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Tikf = ∂νuf where ∆uf− k2uf = 0 in R2 \BR with uf
∣∣
∂BR

= f (11)

where ν is the unit outward normal to ∂BR. Notice that, Tik is the standard exterior DtN map-
ping for the Helmholtz equation with wave number ik.

We note that, for k> 0 we have that both uf and ∂ruf decay exponentially as r→∞ so no
radiation condition at infinity is required but we assume that uf ∈ H1(R2 \BR). First, note that
the eigenvalue problems (7), (8) and (9), (10) are equivalent.

Theorem 3.1. If there is a non-trivial solution to (7) and (8) with eigenvalue k> 0, then its
restriction to BR is a non-trivial solution to (9) and (10). Moreover, if there is a non-trivial
solution to (9) and (10) with eigenvalue k> 0, then it can be extended to R2 by (11) such that
the extension satisfies (7) and (8).

Proof. The proof of the claim is clear by the definition of the DtN mapping (11) and the fact
that the associated exterior Dirichlet problem is well–posed for any f ∈ H1/2(∂BR).

This implies that we can prove the existence of eigenpairs k> 0 and (v,w) ∈ X(D,BR) to (9)
and (10) where the Hilbert space

X(D,BR) =
{
(v,w) ∈ H1 (D)×H1

(
BR \D

)
: (v+w) |∂D = 0

}
(12)

over the complex plane with the associated inner–product

((φ1,φ2) ; (ψ1,ψ2))X(D,BR) = (φ1,ψ1)H1(D) +(φ2,ψ2)H1(BR\D) .

Therefore, to study the transmission eigenvalue problem in the truncated domain. By appealing
to Green’s first identity we have that the equivalent variational formulation of the clamped
transmission eigenvalue problem (9) and (10) is given by: find eigenpairs k> 0 and (v,w) ∈
X(D,BR) such that

Ak ((v,w) ; (ψ1,ψ2))− k2B ((v,w) ; (ψ1,ψ2)) = 0 for all (ψ1,ψ2) ∈ X(D,BR) . (13)

Here, we define the sesquilinear form Ak : X(D,BR)×X(D,BR)−→ C such that

Ak ((v,w) ; (ψ1,ψ2)) =

ˆ
D
∇v ·∇ψ1 dx+

ˆ
BR\D

∇w ·∇ψ2 + k2wψ2 dx−
ˆ
∂BR

ψ2Tikwds

(14)

and B : X(D,BR)×X(D,BR)−→ C is given by

B ((v,w) ; (ψ1,ψ2)) =

ˆ
D
vψ1 dx. (15)

By the Riesz representation theorem, there exist two bounded linear operators associated with
the sesquilinear forms denoted Ak and B : X(D,BR)−→ X(D,BR) such that

Ak ((v,w) ; (ψ1,ψ2)) = (Ak (v,w) ; (ψ1,ψ2))X(D,BR) (16)

and

B ((v,w) ; (ψ1,ψ2)) = (B(v,w) ; (ψ1,ψ2))X(D,BR) . (17)

Notice that k> 0 is a clamped transmission eigenvalue if and only if the operatorAk− k2B has
a non-trivial null space.
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As previously stated, in [24] it has been shown that the set of clamped transmission eigen-
values k> 0 corresponding to (7) and (8) (or equivalently (9) and (10)) is at most discrete.With
this, we focus on the existence of clamped transmission eigenvalues in this work. To prove this
claim, we will study the analytic properties of the operators Ak and B defined in (16) and (17).
Motivated by the results in [11], we will show that the aforementioned operators satisfy the
assumptions of a key result. To this end, we recall theorem 2.3 of [11] which will be applied
to our eigenvalue problem.

Lemma 3.1. Assume that the mapping k 7−→ Ak is continuous from [0,∞) to the set of self–
adjoint, positive definite, bounded linear operators on the Hilbert space X and assume that B
is a self–adjoint, non-negative and compact linear operator on X. If we have that there exist
two constants 0⩽ τ1 < τ2 <∞ such that

(1) Aτ1 − τ 21B is positive on X, and
(2) Aτ2 − τ 22B is non-positive on a m–dimensional subspace of X,

then there exists at least m–values k ∈ [τ1, τ2] such that Ak− k2B has a non-trivial null
space.

The operator A0 will be defined later in equation (19) by studying the limit as k→ 0+ for
the DtN mapping. This result is proven by considering the problem λj(k)− k2 = 0 where λj(k)
are the generalized eigenvalues such that Ak−λj(k)B has a non-trivial null space. Since each
λj(k) is continuous with respect to k⩾ 0, the positivity and non-positivity requirements in
lemma 3.1 implies that

λj (τ1)> τ 21 and λj (τ2)⩽ τ 22 for j = 1, . . . ,m.

By appealing to the intermediate value theorem each equation λj(k)− k2 = 0 has a solution.
With this, we turn our attention to proving that lemma 3.1 can be applied to our eigenvalue

problem. This requires us to study the analytical properties of the operators Ak and B. To this
end, notice that from the definition of Tik we have that

−
ˆ
∂BR

ψ2Tikwds=
ˆ
R2\BR

∇uw ·∇uψ2 + k2uwuψ2 dx,

where uw and uψ2 are as defined by (11). Therefore, we see that the sequilinear form in (14)
can be written as

Ak ((v,w) ; (ψ1,ψ2)) =

ˆ
D
∇v ·∇ψ1 dx+

ˆ
BR\D

∇w ·∇ψ2 + k2wψ2 dx

+

ˆ
R2\BR

∇uw ·∇uψ2 + k2uwuψ2 dx.

We also note that in order to use lemma 3.1 we need to prove that the mapping k 7−→ Tik

depends continuously on k> 0. This is given in the following result.

Theorem 3.2. The map k 7−→ Tik defined by (11) is continuous with respect to k> 0.

Proof. We first note that by the well–posedness of

∆ukf − k2ukf = 0 in R2 \BR with ukf
∣∣
∂BR

= f

for any f ∈ H1/2(∂BR) there is a constant Ck > 0 such that

‖ukf ‖H1(R2\BR) ⩽ Ck‖f‖H1/2(∂BR).

6
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Notice that Ck can depend on k> 0 but not f and we make the dependence of the solution with
respect to k explicit. We will now employ a variational argument to prove that

‖Tik−Tiτ‖ −→ 0 as τ → k

where ‖ · ‖ is the appropriate operator norm.
Now, to continue we let ukf and uτf satisfy the above boundary value problem with ‘wave

numbers’ k> 0 and τ > 0, respectively. Notice that

∆
(
ukf − uτf

)
= k2ukf − τ 2uτf in R2 \BR with

(
ukf − uτf

)∣∣
∂BR

= 0.

By Green’s first identity, it is clear that for any φ ∈ H1
0(R2 \BR) we obtain the equalities

ˆ
R2\BR

∇
(
ukf − uτf

)
·∇φdx=−

ˆ
R2\BR

(
k2ukf − τ 2uτf

)
φdx

=−
ˆ
R2\BR

τ 2
(
ukf − uτf

)
φ+

(
k2 − τ 2

)
ukfφdx.

By letting φ = (ukf − uτf ) we get the estimate

‖ukf − uτf ‖H1(R2\BR) ⩽
|k2 − τ 2|

min{1, τ 2}
‖ukf ‖L2(R2\BR) ⩽

Ck
min{1, τ 2}

|k2 − τ 2|‖f‖H1/2(∂BR).

To proceed, we let f,g ∈ H1/2(∂BR) and consider

−
ˆ
∂BR

g(Tik−Tiτ ) f ds=−
ˆ
∂BR

ukg∂ν
(
ukf − uτf

)
ds

=

ˆ
R2\BR

∇
(
ukf − uτf

)
·∇ukg+

(
k2ukf − τ 2uτf

)
ukg dx

=

ˆ
R2\BR

∇
(
ukf − uτf

)
·∇ukg+

(
k2 − τ 2

)
ukf ukg+ τ 2

(
ukf − uτf

)
ukg dx.

Therefore, we obtain the estimate∣∣∣∣ˆ
∂BR

g(Tik−Tiτ ) f ds

∣∣∣∣⩽ {
‖ukf − uτf ‖H1(R2\BR) + |k2 − τ 2|‖ukf ‖L2(R2\BR)

+τ 2‖ukf − uτf ‖L2(R2\BR)

}
‖ukg‖H1(R2\BR).

By appealing to our above estimates, we have that∣∣∣∣ˆ
∂BR

g(Tik−Tiτ ) f ds

∣∣∣∣
⩽ C2

k

min{1, τ 2}
{
1+min

{
1, τ 2

}
+ τ 2

}
|k2 − τ 2|‖f‖H1/2(∂BR)‖g‖H1/2(∂BR).

Taking the supremum over f and g with unit norm, we obtain the bound

‖Tik−Tiτ‖⩽
C2
k

min{1, τ 2}
{
1+min

{
1, τ 2

}
+ τ 2

}
|k2 − τ 2|.

7
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Due to the fact that the pre–factor
C2
k

min{1, τ 2}

{
1+min{1, τ 2}+ τ 2

}
is bounded as τ → k for

any k> 0 we have that

‖Tik−Tiτ‖⩽
C2
k

min{1, τ 2}
{
1+min

{
1, τ 2

}
+ τ 2

}
|k2 − τ 2| −→ 0 as τ → k

which proves the claim.

With the above analysis we can now prove that the operators Ak and B satisfy the assump-
tions of lemma 3.1. We prove that each operator satisfies the assumptions in the following two
results.

Theorem 3.3. The map k 7−→ Ak defined by (16) is continuous with respect to k> 0.
Furthermore, the operator Ak is self–adjoint and coercive on X(D,BR) for k> 0.

Proof. To prove the claim, we start with the continuity with respect to k> 0. So assume that
k> 0 and τ > 0, then for any (v,w) and (ψ1,ψ2) ∈ X(D,BR), we have that

∣∣∣((Ak−Aτ )(v,w) ; (ψ1,ψ2))X(D,BR)

∣∣∣= ∣∣∣∣∣
ˆ
BR\D

(
k2 − τ 2

)
wψ2 dx−

ˆ
∂BR

ψ2 (Tik−Tiτ )wds

∣∣∣∣∣ .
Therefore, we can obtain the estimate

‖Ak−Aτ‖⩽ C
(
|k2 − τ 2|+ ‖Tik−Tiτ‖

)
,

where ‖ · ‖ denotes the appropriate operator norms. By theorem 3.2 we have that ‖Ak−
Aτ‖ −→ 0 as τ → k, proving the continuity.

Now, to prove that the operator is self–adjoint, by appealing to the definition of the sesqui-
linear form in (14) we notice that

(Ak (v,w) ; (v,w))X(D,BR) =
ˆ
D
|∇v|2 dx+

ˆ
BR\D

|∇w|2 + k2|w|2 dx−
ˆ
∂BR

wTikwds

=

ˆ
D
|∇v|2 dx+

ˆ
BR\D

|∇w|2 + k2|w|2 dx

+

ˆ
R2\D

|∇uw|2 + k2|uw|2dx.

Again, we note that the extension uw is defined by (11). Since the above expression is non-
negative for all (v,w) ∈ X(D,BR) with k> 0 and X(D,BR) is assumed to be a complex Hilbert
space, we have that Ak is self–adjoint. With the above equality, we can prove the coercivity of
the operatorAk for all k> 0. For a contradiction, assumeAk is not coercive for some k> 0, then
there exists a sequence {(vn,wn)}n∈N in the Hilbert space X(D,BR) with ‖(vn,wn)‖X(D,BR) = 1
for each n such that

1
n
⩾ (Ak (vn,wn) ; (vn,wn))X(D,BR) ⩾ ‖∇vn‖2L2(D) + ‖∇wn‖2L2(BR\D)

+ k2‖wn‖2L2(BR\D)
.

Since the sequence is bounded, we have that (up to a subsequence) it is weakly convergent
to some (v,w) ∈ X(D,BR). This implies that wn → w= 0 in H1(BR \D) and that |∇vn| →
|∇v|= 0 in L2(D) as n→∞. Therefore, we see that the limiting function v is constant. By
appealing to the compact embedding H1(D) into L2(D) we have that (up to a subsequence)
vn is strongly convergent in H1(D). The boundary condition v=−w on ∂D implies that

8
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v= 0 in D. The convergence (vn,wn)→ (0,0) in X(D,BR) as n→∞ contradicts the fact that
‖(vn,wn)‖X(D,BR) = 1. This proves the coercivity and therefore proves the claim.

Theorem 3.4. The operator B defined by (17) is a self–adjoint, compact and non-negative.

Proof. It is clear that from the sequilinear form (15) that B given by (17) is self–adjoint and
non-negative since B

(
(v,w) ; (v,w)

)
= ‖v‖2L2(D). For the compactness, by definition we can

easily obtain that ‖B(v,w)‖X(D,BR) ⩽ ‖v‖L2(D). The compact embedding of H1(D) into L2(D)
proves the claim, since D is a bounded domain with a Lipschitz boundary.

Lastly, we need to consider the operator A0. To this end, we must study the DtN mapping
further, since as it is defined we require k> 0. In particular, we need to resolve the limit as
k→ 0+. With this in mind, we note that it has been shown in [22, 26] that

Tikf =
∞∑

n=−∞
ik
H(1) ′

|n| (ikR)

H(1)
|n| (ikR)

fne
inθ where f(θ) =

∞∑
n=−∞

fne
inθ

where, H(1)
ℓ denotes the first kind Hankel function of order ℓ and fn are the Fourier coefficients

for f ∈ H1/2(∂BR). Note that above we have used the fact that

H(1)
−ℓ (z) = (−1)ℓH(1)

ℓ (z) for all ℓ ∈ N.

Recall that Hp(∂BR) can be identified with Hp(0,2π) via the Fourier series expansion with
the associated norm for any p ∈ R. As in [33] the well-known recurrence relationship of the
Hankel functions and their derivatives (see for e.g. [30]) gives that

ik
H(1) ′

|n| (ikR)

H(1)
|n| (ikR)

= γ|n| (k)−
|n|
R
, where we let γ|n| (k) = ik

H(1)
|n|−1 (ikR)

H(1)
|n| (ikR)

.

With this, we define

T0 : H
1/2 (∂BR)→ H−1/2 (∂BR) such that T0f =−

∞∑
n=−∞

|n|
R
fne

inθ. (18)

The operator defined in (18) can be seen as the DtN mapping for k= 0. In order to prove
this claim, we show that γ|n|(k)→ 0 as k→ 0+ for all n ∈ Z. Indeed, by the asymptotic limits
of the Hankel functions (see for e.g. [30]) we have that

H(1)
0 (z)∼ 2i

π
lnz and H(1)

ℓ (z)∼− i
π
ℓ!
( z
2

)−ℓ

for all ℓ ∈ N as z→ 0. Therefore, after some simple calculations we have that

γ0 (k)∼
1

R ln(ikR)
, γ|±1| (k)∼ k2R ln(ikR) and γ|n| (k)∼− k2R

2|n|
when |n|> 1

as k→ 0+. With the above asymptotics we have the following result.

Theorem 3.5. The map k 7−→ Tik defined by (11) satisfies

‖Tik−T0‖ −→ 0 as k→ 0+

where ‖ · ‖ is the operator norm from H1/2(∂BR)→ H−1/2(∂BR).

9
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Proof. Here, we can prove the claim by appealing to the series representation of the DtN
mappings. Indeed, from the above discussion we have that

(Tik−T0) f =
∞∑

n=−∞
γ|n| (k) fne

inθ where again we let γ|n| (k) = ik
H(1)

|n|−1 (ikR)

H(1)
|n| (ikR)

.

Now, for the space H−1/2(∂BR), it can be identified with H−1/2(0,2π), which implies that

2π
∥∥(Tik−T0) f

∥∥2

H−1/2(0,2π)
=

∞∑
n=−∞

|γ|n| (k) |2

(1+ |n|2)1/2
|fn|2

=
N∑

n=−N

|γ|n| (k) |2

(1+ |n|2)1/2
|fn|2 +

∑
|n|⩾N+1

|γ|n| (k) |2

(1+ |n|2)1/2
|fn|2

for any N ∈ N. Let N be fixed and let k be sufficiently small, then we have that

2π
∥∥(Tik−T0) f

∥∥2

H−1/2(0,2π)
⩽ max

0⩽|n|⩽N

{
|γ|n| (k) |2

} N∑
n=−N

1

(1+ |n|2)1/2
|fn|2

+Ck4
∑

|n|⩾N+1

1

|n|2 (1+ |n|2)1/2
|fn|2.

Note, that we have used the asymptotic relationship

γ|n| (k)∼− k2R
2|n|

when |n|> 1 as k→ 0+.

From the above estimate, we have that

2π
∥∥(Tik−T0) f

∥∥2

H−1/2(0,2π)
⩽ C

(
max

0⩽|n|⩽N

{
|γ|n| (k) |2

}
+ k4

)
‖f‖2H1/2(0,2π).

Therefore, we can conclude that∥∥(Tik−T0)
∥∥2 ⩽ C

(
max

0⩽|n|⩽N

{
|γ|n| (k) |2

}
+ k4

)
as k→ 0+.

This proves the claim since both |γ|n|(k)|2 and k4 tend to zero as k→ 0+.

With the above result in theorem 3.5 we are now able to begin showing the existence of the
clamped transmission eigenvalues. Notice, that theorem 3.5 implies that

Ak −→ A0 as k→ 0+

in the operator norm where by the Riesz representation theorem the operator A0 : X(D,BR)→
X(D,BR) is given by the variational equality

(A0 (v,w) ; (ψ1,ψ2))X(D,BR) =

ˆ
D
∇v ·∇ψ1 dx+

ˆ
BR\D

∇w ·∇ψ2 dx−
ˆ
∂BR

ψ2T0wds (19)

i.e. the mapping k 7−→ Ak is continuous for all k⩾ 0. Notice that the above analysis along with
theorems 3.3 and 3.4 imply that the operators Ak and B satisfy the assumptions of lemma 3.1.
To prove the existence of the clamped transmission eigenvalues, we now turn our attention to

10
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showing that there exists τ1 ∈ [0,∞) such that Aτ1 − τ 21B is a positive operator and that there
exists τ2 ∈ [0,∞) such thatAτ2 − τ 22B is non-positive on some subset of X(D,BR). To this end,
notice that

(A0 (v,w) ; (v,w))X(D,BR) =
ˆ
D
|∇v|2dx+

ˆ
BR\D

|∇w|2 −
ˆ
∂BR

wT0wds

⩾ ‖∇v‖2L2(D) + ‖∇w‖2
L2(BR\D)

+C‖w‖2H1/2(∂BR)

⩾min{1,C}
(
‖∇v‖2L2(D) + ‖∇w‖2

L2(BR\D)
+ ‖w‖2H1/2(∂BR)

)
,

where we have used

−
ˆ
∂BR

wT0wds⩾ C‖w‖2H1/2(∂BR)

for some constant C> 0 independent of w (see section 5.3 of [8]). We now wish to prove that
A0 is coercive which would imply that A0 − 02B is positive on X(D,BR).

Theorem 3.6. The operator A0 defined by (19) is coercive on X(D,BR).

Proof. We proceed by way of contradiction. Therefore, assume that there does not exist a
constant C> 0 such that

(A0 (v,w) ; (v,w))X(D,BR) ⩾ C‖(v,w)‖2X(D,BR),

then there exists a sequence {(vn,wn)}n∈N ∈ X(D,BR) with ‖(vn,wn)‖X(D,BR) = 1 for every
n ∈ N such that

1
n
⩾ (A0 (vn,wn) ; (vn,wn))X(D,BR) ⩾ α

(
‖∇vn‖2L2(D) + ‖∇wn‖2L2(BR\D)

+ ‖wn‖2H1/2(∂BR)

)
for some α> 0. Since the sequence is bounded, there exists a subsequence that converges
weakly to (v,w) in X(D,BR). It follows that

∇v= 0 in D and ∇w= 0 in BR \Dwith w= 0 on ∂BR.

Then, we have that wn converges strongly to w= 0 in H1(BR \D) by the compact embedding
of H1(BR \D) into L2(BR \D). In addition, from the boundary condition v|∂D = 0 we obtain
that v also vanishes in D. The compact embedding of H1(D) into L2(D), implies that vn con-
verges strongly to 0, which contradicts to ‖(vn,wn)‖X(D,BR) = 1. Therefore, the operator A0 is
coercive.

This was the last piece needed to prove the main result of the manuscript, i.e. that there
exist infinitely many real clamped transmission eigenvalues.

Theorem 3.7. There exist infinitely many positive clamped transmission eigenvalues corres-
ponding to (9) and (10) or equivalently (7) and (8).

Proof. To prove the claim, notice that we have shown that the operators Ak and B satisfy
the assumption of lemma 3.1. We have already shown that τ1 = 0 satisfies that Aτ1 − τ 21B is
coercive (i.e. positive) on X(D,BR). The last piece we need is to prove that there is a τ2 > 0
such that Aτ2 − τ 22B is non-positive on some m–dimensional subspace. This would imply the
existence of at least m clamped transmission eigenvalues.

11
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We now construct the relevant subspace by letting Bjε for j = 1, . . . ,M(ε) denote disjoint
balls of radius ε> 0. Here,M(ε) ∈ N is the largest number of disjoint disksBjε such thatBjε ⊂ D
for each j. Now let

τ2 =
√
λε, where λε is the first Dirichlet eigenvalue for the disk Bjε.

Note that since all the disks Bjε have the same radius (with different centers) they all have the
same set of Dirichlet eigenvalues. Therefore, there exists a corresponding non-trivial Dirichlet
eigenfunctions

vjε ∈ H1
0

(
Bjε

)
, such that ∆vjε+ τ 22 v

j
ε = 0 in Bjε

for each j = 1, . . . ,M(ε).
To construct an M(ε)–dimensional subspace of X(D,BR), we define vj ∈ H1

0(D) such that

vj = vjε in Bjε and vj = 0 in D \Bjε.

Since Bjε are disjoint, we have that vj for j = 1, . . . ,M(ε) have disjoint support. This implies
that the functions vj are orthogonal and therefore linearly independent in H1(D). Let us now
define the subspace

WM(ε) = Span{(vj,0) : j = 1, . . . ,M(ε)} ⊂ X(D,BR) .

It is clear that for (vj,0) ∈WM(ε) we have that

Aτ2 ((vj,0) ; (vj,0))− τ 22B ((vj,0) ; (vj,0)) =
ˆ
D
|∇vj|2 − τ 22 |vj|2 dx= 0.

Thus, we have that for any (v,0) ∈WM(ε) that

Aτ2 ((v,0) ; (v,0))− τ 22B ((v,0) ; (v,0)) =
ˆ
D
|∇v|2 − τ 22 |v|2 dx= 0,

i.e.Aτ2 − τ 22B is non-positive onWM(ε). By lemma 3.1, this implies that there are at leastM(ε)
clamped transmission eigenvalues. Using the fact that M(ε)→∞ as ε→ 0, we conclude that
there are infinitely many positive clamped transmission eigenvalues.

With theorem 3.7, we have shown the existence of infinitely many real clamped transmis-
sion eigenvalues. One open question is to determine how the clamped transmission eigenvalues
depend on the scatterer D. It is conjectured in [24] that these clamped transmission eigenval-
ues are monotonically decreasing with respect to the measure of D. This conjecture is backed
up by some numerical evidence. We know this fact to be true for the Dirichlet eigenvalues
of the region D. Now, we aim to investigate the relationship between the first real clamped
transmission eigenvalue and the first Dirichlet eigenvalue of the negative Laplacian in D.

Theorem 3.8. Let k1 be the first eigenvalue corresponding to (9) and (10) or equivalently (7)
and (8) and λ1 be the first Dirichlet eigenvalue of the negative Laplacian in D. Then, we have
that k21 ⩽ λ1.

Proof. To begin, we can work similarly to the proof of the previous result.We consider the first
Dirichlet eigenvalue of the negative Laplacian in D which we denote λ1 with corresponding
normalized eigenfunction v ∈ H1

0(D). Now, we define the positive value τ2 =
√
λ1. Therefore,

we have that

W= Span{(v,0)} ⊂ X(D,BR)

12
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Table 1. Comparison of the first clamped transmission eigenvalue and first Dirichlet
eigenvalue for an elliptical scatterer.

ε k1
√

λ1(ε)

0.5 2.404 18 3.756 45
0.6 2.143 77 3.262 14
0.7 1.956 46 2.918 75
0.8 1.814 92 2.669 90
1.0 1.614 64 2.404 83

is a one dimensional subspace of X(D,BR). By Green’s first identity, we obtain that

Aτ2 ((v,0) ; (v,0))− τ 22B ((v,0) ; (v,0)) =
ˆ
D
|∇v|2 − τ 22 |v|2 dx= 0

i.e. Aτ2 − τ 22B is non-positive on W. Again by appealing to lemma 3.1, we have that there is
at least one clamped transmission eigenvalue in the interval (0, τ2]. In particular, this would
imply that the smallest (i.e. first) clamped transmission eigenvalue k1 satisfies k21 ⩽ λ1, proving
the claim.

This result provides a connection between the first clamped transmission eigenvalues and
the first Dirichlet eigenvalue of D. This does not prove that the first clamped transmission
eigenvalue is monotonically decreasing with respect to the measure of D, but does give some
analytical evidence to this conjecture. This is due to the fact that the first Dirichlet eigenvalue
is monotonically decreasing as a function of the measure of D.

To conclude this section, we want to give a numerical example of theorem 3.8. Therefore,
we will let D be given by an ellipse such that

∂D=
(
cos t , εsin t

)⊤
for t ∈ [0,2π) for 0< ε⩽ 1.

Assuming we have a ‘thin’ ellipse (i.e. ε� 1) it has been proven in [5] (see equation (1.2))
that the first Dirichlet eigenvalue of the negative Laplacian has the asymptotic expansion

λ1 (ε) =
π2

4ε2
+
π

2ε
+

3
4
+

(
11
8π

+
π

12

)
ε+O

(
ε2
)

as ε→ 0.

Using the above formula for an approximation of the first Dirichlet eigenvalue along with the
reported clamped transmission eigenvalues in [24] we can provide some numerical validation
for theorem 3.8. For the case when ε= 1, we use the well known explicit value for λ1(1)≈
5.78323. From table 1, we see that theorem 3.8 has been validated. Also, as previously stated,
we see that the clamped transmission eigenvalue seems to be monotonically decreasing as a
function of the measure of D since in our setup meas(D) = πε.

4. Numerical investigation

In this section, we will provide some numerical calculations for our clamped transmission
eigenvalue problem. We also provide numerical evidence for an ‘interlacing conjecture’.
Notice, that by theorem 3.8 we have that 0< k21 ⩽ λ1 where λ1 is the first Dirichlet eigen-
value of the negative Laplacian in D. This can also be seen as

13
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µ1 = 0< k21 ⩽ λ1 where λ1 = 1st Dirichlet eigenvalue and

µ1 = 1st Neumann eigenvalue.

This brings up the natural question, are the clamped transmission eigenvalues interlaced with
the Dirichlet and Neumann eigenvalues? It is known that the Dirichlet and Neumann eigen-
values are interlacing, i.e. µj ⩽ λj where λj is the jth Dirichlet eigenvalue and µj is the jth
Neumann eigenvalue. Here we will investigate the interlacing conjecture: for any j ∈ N

µj ⩽ k2j ⩽ λj where λj = jth Dirichlet eigenvalue and µj = jth Neumann eigenvalue

via our numerical calculations.
To this end, we will use the method described in section 5 of [24] to numerically compute

the clamped transmission eigenvalues for a smooth scatterer D. This uses boundary integral
equations to compute the clamped transmission eigenvalues. Similarly, we will use bound-
ary integral equations to compute the corresponding Dirichlet and Neumann eigenvalues.
Therefore, let uDir and uNeu be the corresponding Dirichlet and Neumann eigenfunctions for
the region D.

In order to compute the Dirichlet and Neumann eigenvalues, we will appeal to the method
introduced in [3]. Therefore, we will write the eigenvalue problems as a nonlinear operator
values problem just as in [1]. With this in mind, we make the ansatz that

uDir (x) = DL√
λφ(x) and uNeu (x) = SL√

µψ (x)

for some densities φ and ψ. Here, we let the double and single–layer operator be defined as

DLτφ(x) =
ˆ
∂D
∂ν(y)Φτ (x,y)φ(y) ds(y) for x ∈ D

and

SLτψ (x) =
ˆ
∂D

Φτ (x,y)ψ (y) ds(y) for x ∈ D

where

Φτ (x,y) =
i
4
H(1)

0 (τ |x− y|) for all x 6= y,

is the radiating fundamental solution for the Helmholtz equation in R2. Here, λ and µ are the
corresponding Dirichlet and Neumann eigenvalues when

uDir (x) = 0 and ∂ν(x)uNeu (x) = 0 for x ∈ ∂D,

i.e. by the well-known jump relations we have that there are non-trivial densities satisfying(
−1

2
I+D√

λ

)
φ(x) = 0 and

(
1
2
I+D⊤√

µ

)
ψ (x) = 0 for x ∈ ∂D. (20)

Here, we have that the above boundary integral operator are defined as

Dτφ(x) =
ˆ
∂D
∂ν(y)Φτ (x,y)φ(y) ds(y) for x ∈ ∂D

and

D⊤
τ ψ (x) =

ˆ
∂D
∂ν(x)Φτ (x,y)ψ (y) ds(y) for x ∈ ∂D

with I denoting the identity operator in the appropriate Sobolev Space for the unknown
densities.

14
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Table 2. The first five Dirichlet, Neumann and clamped transmission eigenvalues for a
unit disk.

NE 0.00 000 1.84 119 1.84 119 3.05 424 3.05 424
Unit Disk TE 1.61 464 3.05 164 3.05 164 4.36 453 4.36 453

DE 2.40 483 3.83 171 3.83 171 5.13 563 5.13 562

Table 3. The boundary parameterizations of ∂D= x(t) for t ∈ [0,2π).

Scatterer Parameterization

Star–shaped x(t) = 0.25(3cos(5t)/10+ 2)
(
cos(t),sin(t)

)⊤
Peanut–shaped x(t) = 0.5

√
3cos(t)2 + 1

(
cos(t),sin(t)

)⊤
Kite–shaped x(t) =

(
0.75cos(t)+ 0.3cos(2t),sin(t)

)⊤

Figure 1. Visual representations of the three scatterers defined in table 3.

The above boundary integral equations in (20) are discretized in the same way as the one
for the computation of clamped transmission eigenvalues via boundary element collocation
method. Precisely, we use 40 faces (120 collocation nodes) to approximate the integral oper-
ators. With this we are able to compute the first five eigenvalues for each system to check
the interlacing conjecture by using the algorithm in [3]. First, we consider the case when D is
given by the unit disk. In table 2 we provide the first five clamped transmission eigenvalues kj
(TE) along with the square root of the Dirichlet eigenvalues

√
λj (DE) and square root of the

Neumann eigenvalues
√
µj (NE).

Notice that the computed Dirichlet and Neumann eigenvalues in table 2 match up with the
known eigenvalues computed via separation of variables. This implies that the aforementioned
method is an accurate way to compute the Dirichlet and Neumann eigenvalues via boundary
integral equations. We also notice that the interlacing conjecture seems to hold for the unit
disk from our calculations.

We will now check our conjecture for different scatterers. Therefore, we will apply the
numerical procedure described above for more complex shaped scatterers. This requires com-
puting the boundary integral equations for the scatterers defined by their parametric repres-
entations. In table 3, we provide the representations for the Peanut–shaped, Star–shaped and
Kite–shaped scatterers. Also, the visual representation of the scatterers is given in figure 1.

The numerical results for the three different scatterers is given in table 4. Here, we again
present the first five eigenvalues for the aforementioned scatterers. This gives numerical evid-
ence that the interlacing conjecture seems to hold for all three scatterers (and the unit disk).
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Table 4. The first five Dirichlet, Neumann and clamped transmission eigenvalues for
the Peanut–shaped, Star–shaped and Kite–shaped scatterers.

NE 0.000 00 3.511 76 3.511 76 5.326 57 5.326 57
Star–shaped TE 3.267 16 6.186 38 6.186 38 8.702 90 8.702 90

DE 5.069 79 8.003 14 8.003 14 10.455 44 10.455 44

NE 0.000 00 1.721 26 3.026 11 3.458 54 3.661 18
Peanut–shaped TE 2.130 93 3.419 00 4.702 89 4.892 66 5.552 46

DE 3.360 58 4.385 35 5.794 06 6.082 87 6.687 97

NE 0.000 00 1.770 91 2.182 72 3.391 90 3.522 98
Kite–shaped TE 1.916 65 3.383 73 3.751 51 4.964 16 5.035 81

DE 2.955 02 4.372 04 4.788 39 6.039 03 6.663 70

Another observation to make from tables 2 and 4 is that the first clamped transmission eigen-
value is seen to be monotone with respect to meas(D) as stated in the previous section. Indeed,
we have that

meas(Kite)≈ 2.356, meas(Peanut)≈ 1.963, and meas(Star)≈ 0.758

and from our calculations we have that

k1 (Kite)⩽ k1 (Peanut)⩽ k1 (Star) .

For some simpler eigenvalue problems, interlacing inequalities and monotonicity with respect
to meas(D) can be obtained via the Rayleigh quotient. Due to the more complex structure of
the clamped transmission eigenvalue problem, this approach is not as straightforward.

5. Conclusion

In conclusion, we have provided an analytical and numerical study of the new clamped trans-
mission eigenvalue problem. This eigenvalue problem is associated with scattering in a thin
elastic plate. Even though the scatterer is bounded, the eigenvalue problem (7) and (8) is posed
in the entirety of R2. With the results in this paper, we now know that there exists an infin-
ite discrete set of real eigenvalues such that k> 0. Here, we have provided more justification
that the first clamped transmission eigenvalue is monotonically decreasing with respect to
the measure of D, but it has not yet been proved. Another question that arises from theorem
3.8 is if there are interlacing inequalities with other eigenvalues associated with the scatterer,
which we have numerically investigated in section 4. Also, the eigenvalue problem studied
here is derived via a clamped obstacle assumption. It would be interesting to see what eigen-
value problems one derives from either the simply supported or free plate obstacle assumption.
Lastly, spectral patterns of transmission eigenfunctions have received considerable attention
with striking applications in [2, 14, 15, 19], which can also be studied for this model.
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