001     1048831
005     20251209202150.0
037 _ _ |a FZJ-2025-04939
082 _ _ |a 690
100 1 _ |a Guan, Buliao
|0 P:(DE-Juel1)195753
|b 0
|e First author
245 _ _ |a Identifying uncertainties in snowpack variables using ensemble-based simulations of CLM5 over Alpine Sites
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1765263810_604
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Snow plays a pivotal role in the hydrological cycle, influencing surface energy and water balances in the snow-dominated regions. Land surface models such as CLM5 (Community Land Model version 5) offer a valuable tool to study snow processes and their impact on water resources, but identifying sources of uncertainties is important as meteorological forcings and parameters errors limit the accuracy of snow-related land surface model prediction. To identify sources of uncertainties in snow simulation, we conducted ensemble-based simulations of CLM5 across 10 sites in the French Alps for the period 1991-2022 using meteorological inputs from bias corrected ECMWF Reanalysis v5 (ERA5). Three ensemble experiments were performed to isolate different sources of uncertainty by perturbing (1) only snow-related parameters, (2) only atmospheric forcings, and (3) both combined. Model performance was evaluated at each site using 100 ensemble members against in-situ snow depth (SD) and remotely sensed snow cover fraction (SCF) observations using statistical metrics such as correlation (R), Root Mean Square Error (RMSE) and ensemble spread skill (SS). Our results show that observations are better captured in the combined experiment, with forcing uncertainties having a greater impact on model performance than parameter uncertainties as reflected by relatively higher ensemble SS values in both forcings and combined experiments (SD mean SS: 0.133 for parameters, 0.222 for forcing, 0.292 combined). However, the low SS values indicate that the ensemble spread does not fully capture the ensemble mean error across all three experiments. Furthermore, the model captures 30 observational variability more effectively during the accumulation season than during the ablation season, as reflected by higher SS values and lower RMSE in the combined experiment (Snow depth ablation: mean SS: 0.299, and mean RMSE: 0.229m. Accumulation SS: 0.285, and RMSE: 0.357m). In addition, CLM5 shows the lowest ensemble skill for both snow depth (SD) and snow cover fraction (SCF) for sites at high-elevation sites (>1800 m), while grassland sites show better agreement with observations than forested sites, likely due to the reduced complexity of snowpack processes in the absence of canopy–snow interactions. These findings are useful for improving uncertainty characterization, reducing model errors, and support the development of snowpack data assimilation in land surface modeling.
536 _ _ |a 2152 - Water resources and the environment (POF4-215)
|0 G:(DE-HGF)POF4-2152
|c POF4-215
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
536 _ _ |a SFB 1502 C04 - Assimilation von Schnee-Satellitendaten und ihre Auswirkungen auf den hydrologischen Kreislauf und die atmosphärischen Flüsse (C04) (495864060)
|0 G:(GEPRIS)495864060
|c 495864060
|x 2
700 1 _ |a Naz, Bibi
|0 P:(DE-Juel1)169794
|b 1
|e Corresponding author
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
773 _ _ |y 2025
|0 PERI:(DE-600)1473173-3
|t Journal of hydrology
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/1048831/files/Guan_et_al_2025_preprint.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1048831
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195753
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-215
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Terrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel
|9 G:(DE-HGF)POF4-2152
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J HYDROL : 2022
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21