001048842 001__ 1048842
001048842 005__ 20251219202229.0
001048842 0247_ $$2doi$$a10.5194/acp-25-17595-2025
001048842 0247_ $$2ISSN$$a1680-7316
001048842 0247_ $$2ISSN$$a1680-7324
001048842 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04947
001048842 037__ $$aFZJ-2025-04947
001048842 041__ $$aEnglish
001048842 082__ $$a550
001048842 1001_ $$00009-0000-7329-5354$$aBerthelemy, Peter G.$$b0$$eCorresponding author
001048842 245__ $$aA novel identification method for stratospheric gravity waves in nadir viewing satellite observations
001048842 260__ $$aKatlenburg-Lindau$$bEGU$$c2025
001048842 3367_ $$2DRIVER$$aarticle
001048842 3367_ $$2DataCite$$aOutput Types/Journal article
001048842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766153147_25560
001048842 3367_ $$2BibTeX$$aARTICLE
001048842 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001048842 3367_ $$00$$2EndNote$$aJournal Article
001048842 520__ $$aAtmospheric gravity waves (GWs) are an important mechanism for vertical transport of energy and momentum through the atmosphere. Their impacts are apparent at all scales, including aviation, weather, and climate. Identifying stratospheric GWs from satellite observations is challenging due to instrument noise and effects of weather processes, but they can be observed from nadir sounders such as the AIRS instrument onboard Aqua. Here, a new method (hereafter “neighbourhood method”) to detect GW information is presented and applied to AIRS data. This uses a variant of the 3D S-transform to calculate the horizontal wavenumbers of temperature perturbations, then find areas of spatially constant horizontal wavenumbers (assumed to be GWs), which allow for creating a binary wave-presence mask. We describe the concept of the neighbourhood method and use it to investigate GW amplitudes, zonal pseudomomentum fluxes, and vertical wavelengths over 5 years of AIRS data. We compare these results to those calculated from GWs detected using another widely used method based on an amplitude cutoff. 35 % of regions of wave activity detected using the neighbourhood method have amplitudes lower than is visible using the amplitude cutoff method. Three regions are studied in greater depth: the Rocky Mountains, North Africa, and New Zealand/Tasmania. GWs detected using the neighbourhood method have wave phase propagation angles consistent with linear theory. Using the neighbourhood method produces new statistics for regional and global GW studies, which compare favourably to the amplitude cutoff GW detection method.
001048842 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001048842 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001048842 7001_ $$00000-0003-2496-953X$$aWright, Corwin J.$$b1
001048842 7001_ $$00000-0003-4377-2038$$aHindley, Neil P.$$b2
001048842 7001_ $$00000-0001-6499-4620$$aNoble, Phoebe E.$$b3
001048842 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
001048842 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-25-17595-2025$$gVol. 25, no. 23, p. 17595 - 17611$$n23$$p17595 - 17611$$tAtmospheric chemistry and physics$$v25$$x1680-7316$$y2025
001048842 8564_ $$uhttps://juser.fz-juelich.de/record/1048842/files/acp-25-17595-2025.pdf$$yOpenAccess
001048842 909CO $$ooai:juser.fz-juelich.de:1048842$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
001048842 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
001048842 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001048842 9141_ $$y2025
001048842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001048842 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001048842 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001048842 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001048842 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001048842 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001048842 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001048842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001048842 920__ $$lyes
001048842 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001048842 980__ $$ajournal
001048842 980__ $$aVDB
001048842 980__ $$aUNRESTRICTED
001048842 980__ $$aI:(DE-Juel1)JSC-20090406
001048842 9801_ $$aFullTexts