001     1048849
005     20251204202146.0
024 7 _ |a 10.1109/IECON58223.2025.11221083
|2 doi
037 _ _ |a FZJ-2025-04954
041 _ _ |a English
100 1 _ |a Albanese, Mario
|0 P:(DE-Juel1)199770
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IECON 2025 – 51st Annual Conference of the IEEE Industrial Electronics Society
|g IECON 2025
|c Madrid
|d 2025-10-14 - 2025-10-17
|w Spain
245 _ _ |a Assessing the Impact of Ground-Based Cloud Observations on Photovoltaic Generation Forecast
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764851230_8851
|2 PUB:(DE-HGF)
520 _ _ |a The widespread integration of photovoltaic (PV) systems into modern power grids poses several operational challenges, primarily due to the stochastic nature of weather conditions, which leads to uncertainty in power generation. In this context, accurate forecasting of PV output becomes critical, especially for electricity markets and grid management. This paper investigates the relationship between non-conventional weather variables (i.e., ground-based cloud observations) and PV power generation, and evaluates the impact of incorporating such data into a machine learning model to improve forecasting performance. The analysis is conducted using real power output and ground-based meteorological data collected at Forschungszentrum Jülich, in Germany.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 1
|u fzj
700 1 _ |a Löhnert, Ulrich
|0 P:(DE-Juel1)129225
|b 2
|u fzj
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 3
|u fzj
773 _ _ |a 10.1109/IECON58223.2025.11221083
856 4 _ |u https://ieeexplore.ieee.org/document/11221083
909 C O |o oai:juser.fz-juelich.de:1048849
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)199770
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
914 1 _ |y 2025
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21