001     1048886
005     20251204202147.0
024 7 _ |a 10.1109/QCE65121.2025.00121
|2 doi
037 _ _ |a FZJ-2025-04991
100 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 0
|e Corresponding author
111 2 _ |a 2025 IEEE International Conference on Quantum Computing and Engineering (QCE)
|c Albuquerque, NM
|d 2025-08-30 - 2025-09-05
|w USA
245 _ _ |a Partitioning Cryogenic Integrated Electronics for Scalable Spin Qubit Operation
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1083-1088
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764862283_18912
|2 PUB:(DE-HGF)
520 _ _ |a A systematic investigation of currently implemented cryogenic electronics for controlling and reading out spin qubits using complementary metal-oxide semiconductor (CMOS) technology is done. Scalability is the primary focus in developing these circuits, as enabling universal quantum computing requires increasing the number of qubits by several orders of magnitude. Low power dissipation is a main quality benchmark for cryogenic circuits that is being optimized. Next to that, the possibility of connecting multiple control signals to each qubit is a challenge for large qubit numbers. Depending on the placement of the electronics, different power budgets and connectivity options are available. These characteristics are used to discuss medium and long-term use-cases for existing designs and what future concepts and developments might be possible or necessary for full scalability on the example of spin qubit operation electronics.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Dietz Romero, Pau
|0 P:(DE-Juel1)204256
|b 1
700 1 _ |a Duipmans, Lammert
|0 P:(DE-Juel1)186966
|b 2
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
|u fzj
773 _ _ |a 10.1109/QCE65121.2025.00121
909 C O |o oai:juser.fz-juelich.de:1048886
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)204256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186966
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21