001048888 001__ 1048888
001048888 005__ 20251204202147.0
001048888 0247_ $$2doi$$a10.48550/ARXIV.2511.06940
001048888 0247_ $$2doi$$a10.48550/arXiv.2511.06940
001048888 037__ $$aFZJ-2025-04993
001048888 088__ $$2arXiv$$a2511.06940
001048888 1001_ $$0P:(DE-Juel1)200494$$aHeib, Tim$$b0$$ufzj
001048888 245__ $$aFinite-dimensional Lie algebras in bosonic quantum dynamics: The single-mode case
001048888 260__ $$barXiv$$c2025
001048888 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764864779_18845
001048888 3367_ $$2ORCID$$aWORKING_PAPER
001048888 3367_ $$028$$2EndNote$$aElectronic Article
001048888 3367_ $$2DRIVER$$apreprint
001048888 3367_ $$2BibTeX$$aARTICLE
001048888 3367_ $$2DataCite$$aOutput Types/Working Paper
001048888 520__ $$aWe study, classify, and explore the mathematical properties of finite-dimensional Lie algebras occurring in the quantum dynamics of single-mode and self-interacting bosonic systems. These Lie algebras are contained in the real skew-hermitian Weyl algebra $\hat{A}_1$, defined as the real subalgebra of the Weyl algebra $A_1$ consisting of all skew-hermitian polynomials. A central aspect of our analysis is the choice of basis for $\hat{A}_1$, which is composed of skew-symmetric combinations of two elements of the Weyl algebra called monomials, namely strings of creation and annihilation operators combined with their hermitian conjugate. Motivated by the quest for analytical solutions in quantum optimal control and dynamics, we aim at answering the following three fundamental questions: (i) What are the finite-dimensional Lie subalgebras in $\hat{A}_1$ generated by monomials alone? (ii)~What are the finite-dimensional Lie subalgebras in $\hat{A}_1$ that contain the free Hamiltonian? (iii) What are the non-abelian and finite-dimensional Lie subalgebras that can be faithfully realized in $\hat{A}_1$? We answer the first question by providing all possible realizations of all finite-dimensional non-abelian Lie algebras that are generated by monomials alone. We answer the second question by proving that any non-abelian and finite-dimensional subalgebra of $\hat{A}_1$ that contains a free Hamiltonian term must be a subalgebra of the Schrödinger algebra. We partially answer the third question by classifying all nilpotent and non-solvable Lie algebras that can be realized in $\hat{A}_1$, and comment on the remaining cases. Finally, we also discuss the implications of our results for quantum control theory. Our work constitutes an important stepping stone to understanding quantum dynamics of bosonic systems in full generality.
001048888 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001048888 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001048888 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x2
001048888 536__ $$0G:(DE-Juel1)BMBF-13N16210$$aBMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)$$cBMBF-13N16210$$x3
001048888 536__ $$0G:(EU-Grant)101113690$$aPASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)$$c101113690$$fHORIZON-CL4-2022-QUANTUM-02-SGA$$x4
001048888 588__ $$aDataset connected to DataCite
001048888 650_7 $$2Other$$aQuantum Physics (quant-ph)
001048888 650_7 $$2Other$$aMathematical Physics (math-ph)
001048888 650_7 $$2Other$$aFOS: Physical sciences
001048888 7001_ $$0P:(DE-HGF)0$$aGoia, Andreea Silvia$$b1
001048888 7001_ $$0P:(DE-HGF)0$$aBaghiyan, Sona$$b2
001048888 7001_ $$0P:(DE-Juel1)178647$$aZeier, Robert$$b3$$ufzj
001048888 7001_ $$0P:(DE-Juel1)185963$$aBruschi, David Edward$$b4$$ufzj
001048888 773__ $$a10.48550/arXiv.2511.06940
001048888 909CO $$ooai:juser.fz-juelich.de:1048888$$popenaire$$pec_fundedresources
001048888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200494$$aForschungszentrum Jülich$$b0$$kFZJ
001048888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178647$$aForschungszentrum Jülich$$b3$$kFZJ
001048888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185963$$aForschungszentrum Jülich$$b4$$kFZJ
001048888 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001048888 9141_ $$y2025
001048888 920__ $$lyes
001048888 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001048888 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x1
001048888 980__ $$apreprint
001048888 980__ $$aEDITORS
001048888 980__ $$aVDBINPRINT
001048888 980__ $$aI:(DE-Juel1)PGI-12-20200716
001048888 980__ $$aI:(DE-Juel1)PGI-8-20190808
001048888 980__ $$aUNRESTRICTED