001     1048888
005     20251204202147.0
024 7 _ |a 10.48550/ARXIV.2511.06940
|2 doi
024 7 _ |a 10.48550/arXiv.2511.06940
|2 doi
037 _ _ |a FZJ-2025-04993
088 _ _ |a 2511.06940
|2 arXiv
100 1 _ |a Heib, Tim
|0 P:(DE-Juel1)200494
|b 0
|u fzj
245 _ _ |a Finite-dimensional Lie algebras in bosonic quantum dynamics: The single-mode case
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1764864779_18845
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We study, classify, and explore the mathematical properties of finite-dimensional Lie algebras occurring in the quantum dynamics of single-mode and self-interacting bosonic systems. These Lie algebras are contained in the real skew-hermitian Weyl algebra $\hat{A}_1$, defined as the real subalgebra of the Weyl algebra $A_1$ consisting of all skew-hermitian polynomials. A central aspect of our analysis is the choice of basis for $\hat{A}_1$, which is composed of skew-symmetric combinations of two elements of the Weyl algebra called monomials, namely strings of creation and annihilation operators combined with their hermitian conjugate. Motivated by the quest for analytical solutions in quantum optimal control and dynamics, we aim at answering the following three fundamental questions: (i) What are the finite-dimensional Lie subalgebras in $\hat{A}_1$ generated by monomials alone? (ii)~What are the finite-dimensional Lie subalgebras in $\hat{A}_1$ that contain the free Hamiltonian? (iii) What are the non-abelian and finite-dimensional Lie subalgebras that can be faithfully realized in $\hat{A}_1$? We answer the first question by providing all possible realizations of all finite-dimensional non-abelian Lie algebras that are generated by monomials alone. We answer the second question by proving that any non-abelian and finite-dimensional subalgebra of $\hat{A}_1$ that contains a free Hamiltonian term must be a subalgebra of the Schrödinger algebra. We partially answer the third question by classifying all nilpotent and non-solvable Lie algebras that can be realized in $\hat{A}_1$, and comment on the remaining cases. Finally, we also discuss the implications of our results for quantum control theory. Our work constitutes an important stepping stone to understanding quantum dynamics of bosonic systems in full generality.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 1
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 2
536 _ _ |a BMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)
|0 G:(DE-Juel1)BMBF-13N16210
|c BMBF-13N16210
|x 3
536 _ _ |a PASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)
|0 G:(EU-Grant)101113690
|c 101113690
|f HORIZON-CL4-2022-QUANTUM-02-SGA
|x 4
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a Mathematical Physics (math-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Goia, Andreea Silvia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baghiyan, Sona
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zeier, Robert
|0 P:(DE-Juel1)178647
|b 3
|u fzj
700 1 _ |a Bruschi, David Edward
|0 P:(DE-Juel1)185963
|b 4
|u fzj
773 _ _ |a 10.48550/arXiv.2511.06940
909 C O |o oai:juser.fz-juelich.de:1048888
|p openaire
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200494
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178647
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185963
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 1
980 _ _ |a preprint
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21