001     1048902
005     20251219202229.0
024 7 _ |a 10.1051/0004-6361/202452702
|2 doi
024 7 _ |a 0004-6361
|2 ISSN
024 7 _ |a 1432-0746
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05003
|2 datacite_doi
037 _ _ |a FZJ-2025-05003
082 _ _ |a 520
100 1 _ |a Molinari, S.
|0 0000-0002-9826-7525
|b 0
|e Corresponding author
245 _ _ |a ALMAGAL
260 _ _ |a Les Ulis
|c 2025
|b EDP Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766155286_16229
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Context. A large fraction of stars form in clusters containing high-mass stars, which subsequently influences the local and galaxy-wide environment.

Aims. Fundamental questions about the physics responsible for fragmenting molecular parsec-scale clumps into cores of a few thousand astronomical units (au) are still open, that only a statistically significant investigation with ALMA is able to address; for instance: the identification of the dominant agents that determine the core demographics, mass, and spatial distribution as a function of the physical properties of the hosting clumps, their evolutionary stage and the different Galactic environments in which they reside. The extent to which fragmentation is driven by clumps dynamics or mass transport in filaments also remains elusive.

Methods. With the ALMAGAL project, we observed the 1.38 mm continuum and lines toward more than 1000 dense clumps in our Galaxy, with M ≥ 500 M⊙, Σ ≥ 0.1 g cm−2 and d ≤ 7.5 kiloparsec (kpc). Two different combinations of ALMA Compact Array (ACA) and 12-m array setups were used to deliver a minimum resolution of ∼1000 au over the entire sample distance range. The sample covers all evolutionary stages from infrared dark clouds (IRDCs) to H II regions from the tip of the Galactic bar to the outskirts of the Galaxy. With a continuum sensitivity of 0.1 mJy, ALMAGAL enables a complete study of the clump-to-core fragmentation process down to M ∼ 0.3 M⊙ across the Galaxy. The spectral setup includes several molecular lines to trace the multiscale physics and dynamics of gas, notably $CH_3CN$, $H_2CO$, $SiO$, $CH_3OH$, $DCN$, $HC_3N$, and $SO$, among others.

Results. We present an initial overview of the observations and the early science product and results produced in the ALMAGAL Consortium, with a first characterization of the morphological properties of the continuum emission detected above 5σ in our fields. We used “perimeter-versus-area” and convex hull-versus-area metrics to classify the different morphologies. We find that more extended and morphologically complex (significantly departing from circular or generally convex) shapes are found toward clumps that are relatively more evolved and have higher surface densities.

Conclusions. ALMAGAL is poised to serve as a game-changer for a number of specific issues in star formation: clump-to-core fragmentation processes, demographics of cores, core and clump gas chemistry and dynamics, infall and outflow dynamics, and disk detections. Many of these issues will be covered in the first generation of papers that closely follow on the present publication.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schilke, P.
|0 0000-0003-2141-5689
|b 1
700 1 _ |a Battersby, C.
|0 0000-0002-6073-9320
|b 2
700 1 _ |a Ho, P. T. P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sánchez-Monge, Á.
|0 0000-0002-3078-9482
|b 4
700 1 _ |a Traficante, A.
|0 0000-0003-1665-6402
|b 5
700 1 _ |a Jones, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Beltrán, M. T.
|0 0000-0003-3315-5626
|b 7
700 1 _ |a Beuther, H.
|0 0000-0002-1700-090X
|b 8
700 1 _ |a Fuller, G. A.
|0 0000-0001-8509-1818
|b 9
700 1 _ |a Zhang, Q.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Klessen, R. S.
|0 0000-0002-0560-3172
|b 11
700 1 _ |a Walch, S.
|0 0000-0001-6941-7638
|b 12
700 1 _ |a Tang, Y.-W.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Benedettini, M.
|0 0000-0002-3597-7263
|b 14
700 1 _ |a Elia, D.
|0 0000-0002-9120-5890
|b 15
700 1 _ |a Coletta, A.
|0 0000-0001-8239-8304
|b 16
700 1 _ |a Mininni, C.
|0 0000-0002-2974-4703
|b 17
700 1 _ |a Schisano, E.
|0 0000-0003-1560-3958
|b 18
700 1 _ |a Avison, A.
|0 0000-0002-2562-8609
|b 19
700 1 _ |a Law, C. Y.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Nucara, A.
|0 0009-0005-9192-5491
|b 21
700 1 _ |a Soler, J. D.
|0 0000-0002-0294-4465
|b 22
700 1 _ |a Stroud, G.
|0 0000-0002-4935-2416
|b 23
700 1 _ |a Wallace, J.
|0 0009-0002-7459-4174
|b 24
700 1 _ |a Wells, M. R. A.
|0 0000-0002-3643-5554
|b 25
700 1 _ |a Ahmadi, A.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Brogan, C. L.
|0 0000-0002-6558-7653
|b 27
700 1 _ |a Hunter, T. R.
|0 0000-0001-6492-0090
|b 28
700 1 _ |a Liu, S.-Y.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Pezzuto, S.
|0 0000-0001-7852-1971
|b 30
700 1 _ |a Su, Y.-N.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Zimmermann, B.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Zhang, T.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Wyrowski, F.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a De Angelis, F.
|0 0009-0002-6765-7413
|b 35
700 1 _ |a Liu, S.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Clarke, S. D.
|0 0000-0001-9751-4603
|b 37
700 1 _ |a Fontani, F.
|0 0000-0003-0348-3418
|b 38
700 1 _ |a Klaassen, P. D.
|0 0000-0001-9443-0463
|b 39
700 1 _ |a Koch, P.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Johnston, K. G.
|0 0000-0003-4509-1180
|b 41
700 1 _ |a Lebreuilly, U.
|0 0000-0001-8060-1890
|b 42
700 1 _ |a Liu, T.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Lumsden, S. L.
|0 0000-0001-5748-5166
|b 44
700 1 _ |a Moeller, T.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Moscadelli, L.
|0 0000-0002-8517-8881
|b 46
700 1 _ |a Kuiper, R.
|0 0000-0003-2309-8963
|b 47
700 1 _ |a Lis, D.
|0 0000-0002-0500-4700
|b 48
700 1 _ |a Peretto, N.
|0 0000-0002-6893-602X
|b 49
700 1 _ |a Pfalzner, S.
|0 P:(DE-Juel1)177668
|b 50
700 1 _ |a Rigby, A. J.
|0 0000-0002-3351-2200
|b 51
700 1 _ |a Sanhueza, P.
|0 0000-0002-7125-7685
|b 52
700 1 _ |a Rygl, K. L. J.
|0 0000-0003-4146-9043
|b 53
700 1 _ |a van der Tak, F.
|0 0000-0002-8942-1594
|b 54
700 1 _ |a Zinnecker, H.
|0 0000-0003-0504-3539
|b 55
700 1 _ |a Amaral, F.
|0 0009-0003-4618-8504
|b 56
700 1 _ |a Bally, J.
|0 0000-0001-8135-6612
|b 57
700 1 _ |a Bronfman, L.
|0 0000-0002-9574-8454
|b 58
700 1 _ |a Cesaroni, R.
|0 0000-0002-2430-5103
|b 59
700 1 _ |a Goh, K.
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Hoare, M. G.
|0 0000-0003-2684-399X
|b 61
700 1 _ |a Hatchfield, P.
|0 0000-0003-0946-4365
|b 62
700 1 _ |a Hennebelle, P.
|0 0000-0002-0472-7202
|b 63
700 1 _ |a Henning, T.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Kim, K.-T.
|0 0000-0003-2412-7092
|b 65
700 1 _ |a Kim, W.-J.
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Maud, L.
|0 0000-0002-7675-3565
|b 67
700 1 _ |a Merello, M.
|0 0000-0003-0709-708X
|b 68
700 1 _ |a Nakamura, F.
|0 0000-0001-5431-2294
|b 69
700 1 _ |a Plume, R.
|0 0000-0002-6482-8945
|b 70
700 1 _ |a Qin, S.-L.
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Svoboda, B.
|0 0000-0002-8502-6431
|b 72
700 1 _ |a Testi, L.
|0 0000-0003-1859-3070
|b 73
700 1 _ |a Veena, V. S.
|0 0000-0002-0801-8550
|b 74
700 1 _ |a Walker, D.
|0 P:(DE-HGF)0
|b 75
773 _ _ |a 10.1051/0004-6361/202452702
|g Vol. 696, p. A149 -
|0 PERI:(DE-600)1458466-9
|p A149
|t Astronomy and astrophysics
|v 696
|y 2025
|x 0004-6361
856 4 _ |u https://juser.fz-juelich.de/record/1048902/files/aa52702-24.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048902
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 50
|6 P:(DE-Juel1)177668
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ASTRON ASTROPHYS : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ASTRON ASTROPHYS : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21