001048915 001__ 1048915 001048915 005__ 20251219202230.0 001048915 0247_ $$2doi$$a10.1063/5.0301891 001048915 0247_ $$2ISSN$$a1527-2435 001048915 0247_ $$2ISSN$$a0031-9171 001048915 0247_ $$2ISSN$$a1070-6631 001048915 0247_ $$2ISSN$$a1089-7666 001048915 0247_ $$2ISSN$$a2163-4998 001048915 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05014 001048915 037__ $$aFZJ-2025-05014 001048915 041__ $$aEnglish 001048915 082__ $$a530 001048915 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0 001048915 245__ $$aComparative analysis of the flow in a realistic human airway 001048915 260__ $$a[Erscheinungsort nicht ermittelbar]$$bAmerican Institute of Physics$$c2025 001048915 3367_ $$2DRIVER$$aarticle 001048915 3367_ $$2DataCite$$aOutput Types/Journal article 001048915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766155858_16742 001048915 3367_ $$2BibTeX$$aARTICLE 001048915 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001048915 3367_ $$00$$2EndNote$$aJournal Article 001048915 520__ $$aAccurate simulations of the flow in the human airway are essential for advancing diagnostic methods. Many existing computational studies rely on simplified geometries or turbulence models, limiting their simulation’s ability to resolve flow features such as shear-layer instabilities or secondary vortices. In this study, direct numerical simulations were performed for inspiratory flow through a detailed airway model that covers the nasal mask region to the sixth bronchial bifurcation. Simulations were conducted at two physiologically relevant REYNOLDS numbers with respect to the pharyngeal diameter, i.e., at Re_p = 400 (resting) and Re_p = 1200 (elevated breathing). A lattice-Boltzmann method was employed to directly simulate the flow, i.e., no turbulence model was used. The flow field was examined across four anatomical regions: (1) the nasal cavity, (2) the naso- and oropharynx, (3) the laryngopharynx and larynx, and (4) the trachea and carinal bifurcation. The total pressure loss increased from 9.76 Pa at Re_p = 400 to 41.93 Pa at Re_p = 1200. The nasal cavity accounted for the majority of this loss for both vortices in the nasopharyngeal bend and turbulent shear layers in the glottis jet enhanced the local pressure losses. In contrast, the carinal REYNOLDS numbers, though its relative contribution decreased from 81.3% at Re_p = 400 to 73.4% at Re_p = 1200. At Re_p = 1200, secondary bifurcation mitigated upstream unsteadiness and stabilized the flow. A key outcome is the spatial correlation between the pressure loss and the onset of flow instabilities across the four regions. This yields a novel perspective on how the flow resistance and vortex dynamics vary with geometric changes and flow rate. 001048915 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001048915 536__ $$0G:(EU-Grant)101136269$$aHANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)$$c101136269$$x1 001048915 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001048915 7001_ $$0P:(DE-HGF)0$$aVorspohl, Julian$$b1 001048915 7001_ $$0P:(DE-HGF)0$$aMayolle, Luca$$b2 001048915 7001_ $$0P:(DE-HGF)0$$aJohanning-Meiners, Benedikt$$b3 001048915 7001_ $$0P:(DE-HGF)0$$aKrug, Dominik$$b4 001048915 7001_ $$0P:(DE-HGF)0$$aKlaas, Michael$$b5 001048915 7001_ $$0P:(DE-HGF)0$$aMeinke, Matthias$$b6 001048915 7001_ $$0P:(DE-HGF)0$$aLee, Sangseung$$b7 001048915 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b8 001048915 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b9$$eCorresponding author 001048915 773__ $$0PERI:(DE-600)1472743-2$$a10.1063/5.0301891$$gVol. 37, no. 12, p. 121901$$n12$$p121901$$tPhysics of fluids$$v37$$x1527-2435$$y2025 001048915 8564_ $$uhttps://juser.fz-juelich.de/record/1048915/files/121901_1_5.0301891.pdf$$yOpenAccess 001048915 909CO $$ooai:juser.fz-juelich.de:1048915$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH 001048915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH 001048915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b9$$kFZJ 001048915 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001048915 9141_ $$y2025 001048915 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 001048915 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001048915 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001048915 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS FLUIDS : 2022$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger 001048915 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18 001048915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 001048915 920__ $$lyes 001048915 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001048915 980__ $$ajournal 001048915 980__ $$aVDB 001048915 980__ $$aUNRESTRICTED 001048915 980__ $$aI:(DE-Juel1)JSC-20090406 001048915 9801_ $$aFullTexts