001     1048915
005     20260203123432.0
024 7 _ |2 doi
|a 10.1063/5.0301891
024 7 _ |2 ISSN
|a 1527-2435
024 7 _ |2 ISSN
|a 0031-9171
024 7 _ |2 ISSN
|a 1070-6631
024 7 _ |2 ISSN
|a 1089-7666
024 7 _ |2 ISSN
|a 2163-4998
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-05014
024 7 _ |2 WOS
|a WOS:001630610600001
037 _ _ |a FZJ-2025-05014
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)177985
|a Rüttgers, Mario
|b 0
245 _ _ |a Comparative analysis of the flow in a realistic human airway
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|b American Institute of Physics
|c 2025
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1766155858_16742
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Accurate simulations of the flow in the human airway are essential for advancing diagnostic methods. Many existing computational studies rely on simplified geometries or turbulence models, limiting their simulation’s ability to resolve flow features such as shear-layer instabilities or secondary vortices. In this study, direct numerical simulations were performed for inspiratory flow through a detailed airway model that covers the nasal mask region to the sixth bronchial bifurcation. Simulations were conducted at two physiologically relevant REYNOLDS numbers with respect to the pharyngeal diameter, i.e., at Re_p = 400 (resting) and Re_p = 1200 (elevated breathing). A lattice-Boltzmann method was employed to directly simulate the flow, i.e., no turbulence model was used. The flow field was examined across four anatomical regions: (1) the nasal cavity, (2) the naso- and oropharynx, (3) the laryngopharynx and larynx, and (4) the trachea and carinal bifurcation. The total pressure loss increased from 9.76 Pa at Re_p = 400 to 41.93 Pa at Re_p = 1200. The nasal cavity accounted for the majority of this loss for both vortices in the nasopharyngeal bend and turbulent shear layers in the glottis jet enhanced the local pressure losses. In contrast, the carinal REYNOLDS numbers, though its relative contribution decreased from 81.3% at Re_p = 400 to 73.4% at Re_p = 1200. At Re_p = 1200, secondary bifurcation mitigated upstream unsteadiness and stabilized the flow. A key outcome is the spatial correlation between the pressure loss and the onset of flow instabilities across the four regions. This yields a novel perspective on how the flow resistance and vortex dynamics vary with geometric changes and flow rate.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)101136269
|a HANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)
|c 101136269
|x 1
536 _ _ |0 G:(DE-Juel-1)SDLFSE
|a SDL Fluids & Solids Engineering
|c SDLFSE
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Vorspohl, Julian
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Mayolle, Luca
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Johanning-Meiners, Benedikt
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Krug, Dominik
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Klaas, Michael
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Meinke, Matthias
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Lee, Sangseung
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Schröder, Wolfgang
|b 8
700 1 _ |0 P:(DE-Juel1)165948
|a Lintermann, Andreas
|b 9
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1472743-2
|a 10.1063/5.0301891
|g Vol. 37, no. 12, p. 121901
|n 12
|p 121901
|t Physics of fluids
|v 37
|x 1527-2435
|y 2025
856 4 _ |u https://juser.fz-juelich.de/record/1048915/files/121901_1_5.0301891.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048915
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 6
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 8
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165948
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2025
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0001
|2 APC
|a Local Funding
915 p c |0 PC:(DE-HGF)0002
|2 APC
|a DFG OA Publikationskosten
915 p c |0 PC:(DE-HGF)0102
|2 APC
|a TIB: AIP Publishing 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-11-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS FLUIDS : 2022
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-11-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21