001     1048916
005     20251219202230.0
020 _ _ |a 978-3-032-07611-3 (print)
020 _ _ |a 978-3-032-07612-0 (electronic)
024 7 _ |a 10.1007/978-3-032-07612-0_12
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05015
|2 datacite_doi
037 _ _ |a FZJ-2025-05015
041 _ _ |a English
100 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 0
|e Corresponding author
|u fzj
111 2 _ |a ISC High Performance 2025
|g ISC 2025
|c Hamburg
|d 2025-06-10 - 2025-06-13
|w Germany
245 _ _ |a Optimizing Edge AI Models on HPC Systems with the Edge in the Loop
260 _ _ |a Cham
|c 2026
|b Springer Nature Switzerland
295 1 0 |a High Performance Computing
300 _ _ |a 148 - 161
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1766155760_16742
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 16091
520 _ _ |a Artificial Intelligence (AI) and Machine Learning (ML) models deployed on edge devices, e.g., for quality control in Additive Manufacturing (AM), are frequently small in size. Such models usually have to deliver highly accurate results within a short time frame. Methodsthat are commonly employed in literature start out with larger trained models and try to reduce their memory and latency footprint by structural pruning, knowledge distillation, or quantization. It is, however, also possible to leverage hardware-aware Neural Architecture Search (NAS), an approach that seeks to systematically explore the architecture space to find optimized configurations. In this study, a hardware-aware NAS workflow is introduced that couples an edge device located in Belgium with a powerful High-Performance Computing (HPC) system in Germany, to train possible architecture candidates as fast as possible while performing real-time latency measurements on the target hardware. The approach is verified on a use case in the AM domain, based on the open RAISE-LPBF dataset, achieving ≈ 8.8 times faster inference speed while simultaneously enhancing model quality by a factor of ≈ 1.35, compared to a human-designed baseline.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
700 1 _ |a Blanc, Cyril
|0 0000-0003-3271-2398
|b 1
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 2
700 1 _ |a De Grave, Kurt
|0 0000-0001-9116-6986
|b 3
770 _ _ |z 978-3-032-07611-3
773 _ _ |a 10.1007/978-3-032-07612-0_12
856 4 _ |u https://juser.fz-juelich.de/record/1048916/files/2505.19995v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1048916
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180916
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-3271-2398
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165948
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0001-9116-6986
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21